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Online Linear Optimization with the Log-Determinant Regularizer
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SUMMARY  We consider online linear optimization over symmetric
positive semi-definite matrices, which has various applications including
the online collaborative filtering. The problem is formulated as a repeated
game between the algorithm and the adversary, where in each round ¢ the
algorithm and the adversary choose matrices X; and L,, respectively, and
then the algorithm suffers a loss given by the Frobenius inner product of X;
and L;. The goal of the algorithm is to minimize the cumulative loss. We
can employ a standard framework called Follow the Regularized Leader
(FTRL) for designing algorithms, where we need to choose an appropri-
ate regularization function to obtain a good performance guarantee. We
show that the log-determinant regularization works better than other pop-
ular regularization functions in the case where the loss matrices L; are all
sparse. Using this property, we show that our algorithm achieves an opti-
mal performance guarantee for the online collaborative filtering. The tech-
nical contribution of the paper is to develop a new technique of deriving
performance bounds by exploiting the property of strong convexity of the
log-determinant with respect to the loss matrices, while in the previous
analysis the strong convexity is defined with respect to a norm. Intuitively,
skipping the norm analysis results in the improved bound. Moreover, we
apply our method to online linear optimization over vectors and show that
the FTRL with the Burg entropy regularizer, which is the analogue of the
log-determinant regularizer in the vector case, works well.

key words: online matrix prediction, log-determinant, online collaborative
filtering

1. Introduction

Online prediction is a theoretical model of repeated pro-
cesses of making decisions and receiving feedbacks, and has
been extensively studied in the machine learning community
for a couple of decades [1]-[3]. Typically, decisions are for-
mulated as vectors in a fixed set called the decision space
and feedbacks as functions that define the losses for all de-
cision vectors. Recently, much attention has been paid to a
more general setting where decisions are formulated as ma-
trices, since it is more natural for some applications such as
ranking and recommendation tasks [4]-[6].

Take the online collaborative filtering as an example.
The problem is formulated as in the following protocol: As-
sume we have a fixed set of n users and a fixed set of m
items. For each round ¢t = 1,2,...,T, the following hap-
pens. (i) The algorithm receives from the environment a
user-item pair (i, j;), (ii) the algorithm predicts how much
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user i, likes item j; and chooses a number x, that represents
the degree of preference, (iii) the environment returns the
true evaluation value y, of the user i, for the item j;, and
then (iv) the algorithm suffers loss defined by the predic-
tion value x, and the true value y,, say, (x; — y,)?. Note that,
(iii) and (iv) in the protocol above can be generalized in the
following way: (iii) the environment returns a loss function
£, say £,(x) = (x — y,)%, and (iv) the algorithm suffers loss
€,(x;). The goal of the algorithm is to minimize the cumula-
tive loss, or more formally, to minimize the regret, which is
the most standard measure in online prediction. The regret is
the difference between the cumulative loss of the algorithm
and that of the best fixed prediction policy in some policy
class. Note that the best policy is determined in hindsight,
i.e., it depends on the whole feedback sequence. Now we
claim that the problem above can be regarded as a matrix
prediction problem: the algorithm chooses (before observ-
ing the pair (i, j,)) the prediction values for all pairs as an
n X m matrix, although only the (i;, j;)-th entry is used as
the prediction. In this perspective, the policy class is formu-
lated as a restricted set of matrices, say, the set of matrices
of bounded trace norm, which is commonly used in collab-
orative filtering [7]-[10]. Moreover, we can assume without
loss of generality that the prediction matrices are also cho-
sen from the policy class. So, the policy class is often called
the decision space.

In most application problems including the online col-
laborative filtering, the matrices to be predicted are not
square, which makes the analysis difficult. Hazan et al. [11]
show that any online matrix prediction problem formulated
as in the protocol above can be reduced to an online pre-
diction problem where the decision space consists of sym-
metric positive semi-definite matrices under linear loss func-
tions. A notable property of the reduction is that the loss
functions of the reduced problem are the inner product with
sparse loss matrices, where only at most 4 entries are non-
zero. Thus, we can focus on the online prediction problems
for symmetric positive semi-definite matrices, which we call
the online semi-definite programming (online SDP) prob-
lems. In particular we are interested in the case where the
problems are obtained by the reduction, which we call the
online sparse SDP problems. Thanks to the symmetry and
positive semi-definiteness of the decision matrices and the
sparseness of the loss matrices, the problem becomes fea-
sible and Hazan et al. propose an algorithm for the online
sparse SDP problems, by which they give regret bounds for
various application problems including the online max-cut,
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online gambling, and the online collaborative filtering [11].
Unfortunately, however, all these bounds turn out to be sub-
optimal.

In this paper, we propose an algorithm for the online
sparse SDP problems by which we achieve optimal regret
bounds for those application problems.

To this end, we employ a standard framework called
Follow the Regularized Leader (FTRL) for designing and
analyzing algorithms [12]? —[14], where we need to choose
as a parameter an appropriate regularization function (or
regularizer) to obtain a good regret bound. Hazan et al.
use the von Neumann entropy (or sometimes called the ma-
trix negative entropy) as the regularizer to obtain the results
mentioned above [11], which is a generalization of Tsuda
et al.[15]. Another possible choice is the log-determinant
regularizer, whose Bregmann divergence is so called the
LogDet divergence. There are many applications of the
LogDet divergence such as metric learning [16] and Gaus-
sian graphical models [17]. However, the log-determinant
regularizer is less popular in online prediction and it is un-
clear how to derive general and non-trivial regret bounds
when using the FTRL with the log-determinant regularizer,
as posed as an open problem in [15]. Indeed, Davis et al.
apply the FTRL with the log-determinant regularizer for
square loss and give a cumulative loss bound [16], but it
contains a data-dependent parameter and the regret bound is
still unclear. Christiano considers a very specific sub-class
of online sparse SDP problems and succeeds to improve the
regret bound for a particular application problem, the on-
line max-cut problem [18]. But the problems he examines
do not cover the whole class of online sparse SDP problems
and hence his algorithm cannot be applied to the online col-
laborative filtering, for instance.

In this paper, we improve regret bounds for online
sparse SDP problems by analyzing the FTRL with the log-
determinant regularizer. In particular, our contributions are
summarized as follows.

1. We give a non-trivial regret bound of the FTRL with the
log-determinant regularizer for a general class of online
SDP problems. Although the bound seems to be some-
what loose, it gives a tight bound when the matrices are
diagonal (which corresponds to the vector predictions).

2. We extend the analysis of Christiano in [18] and de-
velop a new technique of deriving regret bounds by ex-
ploiting the property of strong convexity of the regu-
larizer with respect to the loss matrices. The analysis
in [18] is not explicitly stated as in a general form and
focused on a very specific case where the loss matrices
are block-wise sparse.

3. We improve the regret bound for the online sparse SDP
problems, by which we give optimal regret bounds for
the application problems, namely, the online max-cut,
online gambling, and the online collaborative filtering.

4. We apply the results to the case where the decision
space consists of vectors, which can be reduced to
online matrix prediction problems where the decision
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space consists of diagonal matrices. In this case, the
general regret bound mentioned in 1 also gives tight
regret bound.

2. Problem Setting

We first give the notations and then describe the problem set-
ting: the online semi-definite programming problem (online
SDP problem, for short).

2.1 Notations

Throughout the paper, matrices are denoted by roman cap-
ital letters. Let R™", SNV SV*N denote the set of m X n
matrices, the set of N X N symmetric matrices, and the set
of N X N symmetric positive semi-definite matrices, respec-
tively.

We write the trace of a matrix X as Tr(X) and the
determinant as det(X). We write the trace norm of X as
IIXllr = X; o, the spectral norm as ||X]|sp = max; o, and

the Frobenius norm as |[X|lg: = /> o-l?, where o; is the
i-th largest singular value of X. Note that if X is positive
semi-definite, then Tr(X) = ||X||1; and o is the i-th largest
eigenvalue of X. The identity matrix is denoted by E. For
any positive integer m, we write [m] = {1,2,...,m}. We
define the vectorization of a matrix X € R™" as

vee(X) = (X! . X1,, ..., X7,

where X, ; is the i-th column of X. For a vector x € RV,
diag(x) denote the N X N diagonal matrix X such that X;; =
x;. For m x n matrices X and L, X o L = 3%, 37, X; ;L; ; =
vec(X)"vec(L) is the Frobenius inner product.

For a differentiable function R : R™" — R, its graadRi&t)lt

VR(X) is the mXn matrix whose (i, j)-th component is 3=,
L]

and its Hessian V2R(X) is defined by the mn x mn matrix

*R(X)

V2R(X))(j 1ymsi(I = —
( ( ))(j Dm+i,(I-1)m+k an,laxi,j

for ((i, j), (k, 1)) € ([m] % [n])2. (Here we follow the defini-
tion in [19].) We denote the Kronecker product of two ma-
trices A € RM*Nt gnd B € RM2XM2 35 A @ B € RMiMaxXNiN2 |
which is defined as (A ® B, (- )+ jnva-n+1 = AixBji. We
use the notation A ® B € RMMXMN: a5 the box product
of A and B, which is introduced by [20] and defined as
(A ® B) s, (i-1)+ v (k-1)+1 = AigBjx. Note that these products
have the following properties [20]:

(A®B)vec(X) = vec(BXAT) (D)
(A & B)vec(X) = vec(BX'AT) (2)

for any matrix X € R™",
2.2 Online SDP Problem

We consider an online linear optimization problem over
symmetric semi-definite matrices, which we call the online
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SDP problem. The problem is specified by a pair (%, £),
where K C S¥ is a convex set of symmetric positive semi-
definite matrices and £ € SV is a set of symmetric matri-
ces. The set K is called the decision space and L the loss
space. The online SDP problem (K, £) is a repeated game
between the algorithm and the adversary (i.e., an environ-
ment that may behave adversarially), which is described as
the following protocol.
Ineachround? = 1,2,...,T, the algorithm

1. chooses a matrix X, € K,
2. receives a loss matrix L; € £ from the adversary, and
3. suffers the loss X, o L;.

The goal of the algorithm is to minimize the regret
Reg(T, K, L), defined as

T T
Reg(T, 'K, L) = ZL;OX,—ZL,OU,

t=1 t=1

where U = arg minxex Zthl L; e X is the best matrix in the
decision set K that minimizes the cumulative loss. The ma-
trix U is called the best offline matrix.

2.3 Online Linear Optimization Over Vectors

The online SDP problem is a generalization of the online
linear optimization problem over vectors, which is a more
standard problem setting in the literature. For the “vector”
case, the problem is described as the following protocol:
Ineachround ¢ =1,---,T, the algorithm

1. chooses x; € K C RY,
2. receives £, € £ c RY from the adversary, and
3. suffers the loss x/¢,.

It is easy to see that the problem is equivalent to the online
SDP problem (K’L’) where K’ = {diag(x) | x € K} and
L = {diag(f) | £ € L}. So, all the results for the online
SDP problem can be applied to the online linear optimiza-
tion over vectors.

3. FTRL and Its Regret Bounds by Standard Deriva-
tions

Follow the Regularized Leader (FTRL) is a standard frame-
work for designing algorithms for a wide class of online op-
timizations (see, e.g., [13]). To employ the FTRL, we need
to specify a convex function R : K — R called the regu-
larization function, or simply the regularizer. For the online
SDP problem (K, £), the FTRL with regularizer R suggests
to choose a matrix X; € %K as the decision at each round ¢
according to

-1
X, = arg g}ziqrg(R(X) +n Z; L, e X),

where 17 > 0 is a constant called the learning rate. Through-

out the paper, we assume for simplicity that all the regular-

izers R are differentiable.
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The next lemma gives a general method of deriving re-
gret bounds.

Lemma 3.1 (See, e.g., Theorem 2.11 of [13]). Assume that
for some real numbers s,g > 0 and a norm ||-|| the following
holds.

1. R is s-strongly convex with respect to the norm ||-||, i.e.,
forany X,Y € K,

R(X) = R(Y) + VR(X) o (X = Y) + %ux Y|
or equivalently, for any X € K and W € SV,
vec(W)TVZR(X)vec(W) > s||W]]%.

2. Any loss matrix L € L satisfies ||L||. < g, where || - ||, is
the dual norm of || - ||.

Then, the FTRL with regularizer R achieves

maxX!X/ErK(R(X) - R(Xl)) T
N

Reg(T, K, L) < 29\/

for an appropriate choice of the learning rate 1.

In the subsequent subsections, we give regret bounds
for the FTRL with popular regularizers. The first two are
straightforward to derive from known results.

3.1 FTRL with the Frobenius Norm Regularization

The Frobenius norm regularization function is defined as
R(X) = %||X||12:r, which is the matrix analogue of the L,-
norm for vectors. The FTRL with this regularizer yields the
online gradient descent (OGD) algorithm [14]. Since R is
1-strongly convex with respect to || - ||g: and the dual of || - ||g;
is || - |lgr, Lemma 3.1 gives

Reg(T, Ko, L) < py» V2T, 3)

where G = {X € SN |IX|lg < p} and £ = {L € SV :
ILllE: < y2}.

3.2 FTRL with the Entropic Regularization

The entropic regularization function is defined as R(X) =
Tr(X1In X — X), which is the matrix analogue of the unnor-
malized entropy for vectors. Slightly modifying the proof
in [11], we obtain the following regret bound for the FTRL
with this regularizer:

Reg(T, Ky, Leo) < 21y T log N, 4)

where K = {X € SVV : [|X|l;; < 7} and Lo, = {L € SV :
[ILllsp < Yeol-

3.3 FTRL with the Log-Determinant Regularization

The log-determinant regularization function is defined as
R(X) = —Indet(X + €E) where € is a positive constant.
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This is the matrix analogue of the Burg entropy — ZZI In x;
for vectors x whose Bregman divergence is the Itakura-
Saito divergence. The constant € stabilizes the regularizer
to make the regret bound finite. Unfortunately, it is unclear
what norm is appropriate for measuring the strong convex-
ity of the log-determinant regularizer to obtain a tight regret
bound. In the next theorem, we examine the spectral norm
and give a (probably loose) regret bound for the online SDP
problem (Kw, L), where Koo = {X € SV ¢ [ X]lsp < o}
and £; = {L € SN Ll < 91}

Theorem 3.1. The FTRL with the log-determinant regular-
izer with € = o achieves

Reg(T, Ko, L1) < 40y1 VTN In2. (5)

Proof. Below we show that R is (1/ (40'2))-str0ngly convex
with respect to || - |lsp and R(X) — R(X") < NIn2 for any
X, X" € K. Since || - ||1r is the dual norm of || - [lsp and it
is clear that ||L||r; < yy for any L € £, the theorem follows
from Lemma 3.1.

The strong convexity of the log-determinant can be ver-
ified by showing positive definiteness of the Hessian of R.
By the chain rule and derivative formulas [20], we have the
derivative of R given by VR(X) = —(V(X + €B))(X + €E)~T
and the Hessian by

VIR(X) = ~(VY Tly=x+e)(V(X + €E))

(X+€eB) TR (X +€eE)L.

Now we will convert the box product to the Kronecker prod-
uct. By using (1), (2) and the symmetricity of matrices X
and W, we have

vec(W)' (X + €B) T & (X + €E) ") vec(W)
vec(W) vec ((X + €B)'W'(X + €E) ™)
vec(W) vec (X + €E)'W(X + €E) )
vec(W)' (X + €B)™' ® (X + €B)™") vec(W).

Since an eigenvalue of A ® B is the product of some eigen-
values of A and B (see, e.g., [21]) and an eigenvalue of Al
is the reciprocal of an eigenvalue of A, the minimum eigen-
value of (X+€E)"'®(X+€E)™" is (|X||sp+€) ™. This implies
that minyesvar vec(W)TVZR(X)vec(W) > (o+€)~2[[WI2,. In
other words, for any W € SV,

vec(W) (V2R(X) = (o + €) 2E)vec(W) > 0.

Rearranging this inequality and using the fact that
vec(W)Tvec(W) = ||W||%r > ||W||2p, we get
vec(W)TVZR(X)vec(W) > (o + e)‘2||W||§p. This implies that
R is (1/(40?%))-strongly convex with respect to || - IIsp-

Next we give upper and lower bounds of R. Note that
det(X+€E) is the product of all eigenvalues of X +€E. Since,
all the eigenvalues are positive and the maximum of them is
bounded by o + €, we have € < det(X + €E) < (o + )Y =
(2e)V. So, maxx xex., (R(X) — R(X’)) < NIn2. o
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Note that this result is not very impressive, because
K. C K> withp = VYNo and £, € £, with v, = y;, and
hence the FTRL with the Frobenius norm regularizer has a
slightly better regret bound for (K, L1).

In the following sections, we consider a special class
of online SDP problems (K, £) where K and L are further
restricted by some complicated way. For such problems, it
is unlikely to derive tight regret bounds from Lemma 3.1.

4. Online Matrix Prediction and Reduction to Online
SDP

Before going to our main contribution, we give a more nat-
ural setting to describe various applications, which is called
the online matrix prediction (OMP) problem. Then we
briefly review the result of Hazan et al., saying that OMP
problems are reduced to online SDP problems (%, L) of
special form [11]. In particular, the loss matrices in £ ob-
tained by the reduction are sparse. This result motivates us
to improve regret bounds for online sparse SDP problems.

An OMP problem is specified by a pair (W, G), where
W C [-1, 17™" is a convex set of matrices of size mxn and
G > 0 is a positive real number. Note that we do not require
m =nor W' = W. The OMP problem (‘W, G) is described
as the following protocol: In each round r = 1,2, ..., T, the
algorithm

1. receives a pair (i;, j,) € [m] X [n] from the adversary,

2. chooses W, € ‘W and output W, ;),

3. receives G-Lipschitz convex loss function ¢,
[-1,1] — R from the adversary, and

4. suffers the loss £:(W,,.j,))-

The goal is to minimize the following regret:

T T
Regose(T. W) = 3 (e jp) = min > 64U ;).
t=1

t=1

The online max-cut, the online gambling and the online
collaborative filtering problems are instances of the OMP
problems.

Online max-cut:  On each round, the algorithm receives
a pair of nodes (i, j) € [n] X [n] and should decide whether
there is an edge between the nodes. Formally, the algorithm
chooses §j; € [—1, 1], which is interpreted as a randomized
prediction in {—1, 1}: predicts 1 with probability (1 + §,)/2
and —1 with the remaining probability. The adversary then
gives the true outcome y, € {—1, 1} indicating whether (i;, j;)
is actually joined by an edge or not. The loss suffered by the
algorithm is €,(;) = |§; — y,//2, which is interpreted as the
probability that the prediction is incorrect. Note that ¢; is
(1/2)-Lipschitz. The decision space ‘W of this problem is
the convex hull of the set C of matrices that represent cuts,
that is, C = {C* € {-1,1}™" : A C [n]}, where Cl{*j =
1if (G € A)and(j ¢ A)) or (( ¢ A)and (j € A)), and
C}, = —1 otherwise. Note that the best offline matrix C* =
argmincaee Y, £(U;, ) in C is the matrix corresponding to
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the max-cut A in the weighted graph whose edge weight are
given by wi; = Y., jy=(i.j) Y. Tor every (i, j) [11]. This is the
reason why the problem is called online max-cut.

Online gambling:  On each round, the algorithm receives
a pair of teams (i, j) € [n] X [n], and should decide whether i
is going to beat j or not in the upcoming game. The decision
space is the convex hull of the class C of all permutation ma-
trices C” € {0, 1}™*, where C” is the matrix corresponding
to permutation P over [n] that satisfies Cf =1 if i appears

before j in the permutation P and C f ;= 0 otherwise.

Online collaborative filtering: =~ We described this prob-
lem in Introduction. We consider ‘W = {W € [-1,1]™" :
[[Wllt: < 7} for some constant T > 0, which is a typical

choice for the decision space in the literature.

The next proposition shows how the OMP problem
(‘W, G) is reduced to the online SDP problem (K, £). Be-
fore stating the proposition, we need to define the notion of
(B, T)-decomposability of W.

For a matrix W € W, let sym(W) = WOT Vg] if
‘W is not symmetric (some W € ‘W is not symmetric)
and sym(W) = W otherwise. Let ¢ = m if ‘W is not
symmetric and ¢ = 0 otherwise. Let p be the order of
sym(W), that is p = g + n. Note that any symmetric ma-
trix can be represented by the difference of two symmetric
and positive semi-definite matrices. For real numbers 5 > 0
and T > 0, the decision space ‘W is (B, 7)-decomposable
if for any W € W, there exists P,Q € S7” such that
sym(W) =P-Q, Tr(P+Q) < tand P;; < B, Qi < B
for every i € [p].

Proposition 4.1 (Hazan et al. [11]). Let (W, G) be an OMP
problem where W C [-1,11™" is (B, 1)-decomposable.
Then, the OMP problem (‘W,G) can be reduced to the on-
line SDP problem (K, L) with

K = {X e SN Xl < 7,Vi € [N, Xi; < B,
Y@, j) € [m] X [n], X; jrg — Xptiprjrqg € 1,11},
L ={Les™ VG )e[NIx[NLL,; <G,
(G, j) : Lij # O}l < 4,
L? is diagonal),

where N = 2p and p = n + q for some g € {0, m}. Moreover,
the regret of the OMP problem is at most half of the regret
of the reduced online SDP problem, i.e.,

1
Regomp(T, W) < §R€Q(T, K, L).

Note in the original proposition given in [11], the de-
cision space ‘W is not necessarily convex. But what they
actually show is a reduction from the OMP problem for its
convex hull to the online SDP for the set K. So we define
‘W to be convex from the beginning.

Note also that the loss space £ obtained by the reduc-
tion is very sparse: each loss matrix has only 4 non-zero
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entries. Thus, we can say that for every L € L, ||IL||g: < 2G
and ||vec(L)||; < 4G.

Hazan et al. also give a regret bound of the FTRL with
the entropic regularizer when applied to the online SDP
problem (K, £) for K obtained by the reduction above with
a larger loss space L (thus applicable to the online OMP
problems).

Theorem 4.1 (Hazan et al. [11]). For the online SDP prob-
lem (K, L) where

K ={X e SN Xl < 7,Vi € [N], Xi; < B,

L ={LeSYN:Tr(L? <vy,L? is diagonal),

there exists an algorithm that achieves

Reg(T, K, L) <2+/pryT InN.

Note that the algorithm is known as an online mirror
descent, which is closely related to the FTRL with the en-
tropic regularizer R(X) = Tr(X In X-X). Combining Propo-
sition 4.1 and Theorem 4.1, we can easily get regret bounds
for OMP problems.

Corollary 4.1. For the OMP problem (W, G), where W C
[-1, 17™" is (B, T)-decomposable, there exists an algorithm
that achieves

Regoyp(T, W) = O(G /BrT In(m + n)).

Hazan et al. apply the bound to the three applications,
for which the decision spaces ‘W are all (8, T)-decomposable
for some B and 7[11]. Note that for the online max-cut and
online gambling problems, what they show is the decompos-
ability of the discrete classes C. But the result holds for our
classes W as well, since it holds in general that if a class C
is (B, T)-decomposable then so is its convex hull [11].

More specifically, the results are summarized as shown
below.

Online max-cut: The problem is (1, n)-decomposable and
thus has a regret bound of O(G VnT Inn).

Online gambling: The problem is (O(Inn), O(nlnn))-
decomposable and thus has a regret bound of
O(G /nT(Inn)3).

Online collaborative filtering: The problem is (Vm+n, 27)-
decomposable and thus has a regret bound of

O(G /7T Vm+nIn(m+n)), which is O(G /7T Vnlnn)
if we assume without loss of generality that n > m.

Christiano provides another technique of reduction
from a special type of OMP problems to a special type
of online SDP problems, and apply the FTRL with the
log-determinant regularizer [18]. He then improves the re-
gret bound for the online max-cut problem to O(G VnT),
which matches a lower bound up to a constant factor. How-
ever, the regret bound for online gambling is much worse
(O(Gn? \T)) and his reduction cannot be applied to online
collaborative filtering. It is worth noting that the loss matri-
ces obtained by his reduction are not just sparse but block-
wise sparse, by which we mean non-zero entries forming at
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most two block matrices, and seemingly his regret analysis
depends on this fact.

5. Main Results

Motivated by the sparse online SDP problem reduced from
an OMP problem, we consider a specific problem (K, £),
where

K = (X e SVY Xl < 7, Vi € [N], Xi; <),
L ={Les":|vecL)l; < g1}

and give a regret bound of the FTRL with the log-
determinant regularizer. Note that % is the same as the one
obtained by the reduction and £ is much larger if g; = 4G.
By Proposition 4.1 the regret bound immediately yields a
regret bound for the OMP problem (‘W,G) for a (B, 7)-
decomposable decision space ‘W, which turns out to be
tighter than the one using the entropic regularizer shown in
Theorem 4.1.

Our analysis partly follows that of [18] with some gen-
eralizations. In particular, we figure out a general method
for deriving regret bounds by using a new notion of strong
convexity of regularizers, which is implicitly used in [18].
First we state the general theory.

5.1 A General Theory

We begin with an intermediate bound known as the FTL-
BTL (Follow-The-Leader-Be-The-Leader) Lemma.

Lemma 5.1 (Hazan [12]). The FTRL with the regularizer
R : K — R for an online SDP problem (K, L) achieves

T
Reg(T. %K. L) < 20+ 3L 0 (X, = X,00), ©)
n

=1
where Hy = maxx xex(R(X) — R(X")).

Thanks to this lemma, all we need to do is to bound H
and L; o (X; — X;11).

Now we define the new notion of strong convexity. In-
tuitively, this is an integration of the strong convexity of reg-
ularizers with respect to a norm and the Lipschitzness of loss
functions with respect to the norm.

Definition 5.1. For a decision space K and a real number
s > 0, a regularizer R : K — R is said to be s-strongly
convex with respect to a loss space L if for any a € [0, 1],
any X,Y € K, and any L € L,
R(eX + (1 -ao)Y)
<aRX)+ (1 —a)R(Y) - %a(l —a)Le(X-Y)".
(N

The condition (7) is equivalent to the following condi-
tion: forany X,Y e KandL € £,
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R(X) > R(Y)+ VR(Y) e (X -Y) + %|L e X-Y)P (8

Note that the condition (8) has the same form as the con-
dition of s-strong convexity given in Lemma 3.1 except
|IX — Y]| is replaced by |L e (X — Y)|. Thus, the equivalence
above is analogous to that in the standard strong convex-
ity [22].

The following lemma gives a bound of the term L,
(X; — X,+1) in inequality (6) in terms of the strong convexity
of the regularizer. The lemma is implicitly stated in [13]
and hence is not essentially new. But we give a proof for
completeness since it is not very straightforward to show.

Lemma 5.2 (Main lemma). Let R : K — R be s-strongly
convex with respect to L for K. Then, the FTRL with the
regularizer R applied to (K, L) achieves

Reg(T, %, L) < 21| 2oL
R)

for an appropriate choice of n.

Proof. By Lemma 5.1, it suffices to show that
n
Lie(X;—Xi1) < g,

since the theorem follows by setting n = v'sHy/T. In what
follows, we prove the inequality. First observe that any s-
strongly convex function F with respect to L satisfies

F(X) - F(Y) > SILe (X - Y) ©)

forany X € K and any L € £ for Y = arg mingex F(Z). To
see this, we use (8) (with replacement of R by F') due to the
strong convexity of F and VF(Y)e(X—-Y) > 0 (otherwise Y
would not be the minimizer since we can make a small step
in the direction X — Y and decrease the value of F.) See the
proof of Lemma 2.8 of [13] for more detail.

Recall that the update rule of the FTRL is X;,; =
arg mingex F,(X) where F(X) = Z?:l nL; e X + R(X). Note
that F; is s-strongly convex with respect to £ due to the lin-
earity of L; ¢ X. Applying (9) to F; and F,_; with L = L,
we get

Fi(X) > Fi(Xeu) + 3 1Li o (X = Xeu)P,

Fioi(Xeen) 2 Frog (X)) + §|L, o (Xpu1 = X%
Summing up these two inequalities we get

Ly @ (X; = Xp41) > s|Ly @ (X, = X))

Dividing both sides by L; e (X; — X,;1) we get the desired
result. O

Note that Lemma 5.2 gives a more general method
of deriving regret bounds than the standard one given by
Lemma 3.1. To see this, assume that the two conditions of
Lemma 3.1 hold. Then, Cauchy-Schwarz inequality says
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that [L e (X — Y)| < |IL|l.]IX = Y]] < glIX - Y]|| for every
L € Land X,Y € K, where the second inequality is from
the second condition. Thus, the first condition implies the
condition of Lemma 5.2 with s replaced by s/g* as

R(X) > R(Y)+VRe(X-Y) + %IIX -Y|?

> R(Y) + VR e (X = Y) + =IL o (X - Y)P.
29

Another advantage of using Lemma 5.2 is that we can avoid
looking for appropriate norms to obtain good regret bounds.

5.2 Strong Convexity of the Log-Determinant Regularizer

Now we prove the strong convexity of the log-determinant
for our problem (K, £) defined in the beginning of this sec-
tion. The following lemma provides a sufficient condition
that turns out to be useful.

Lemma 5.3 (Christiano [18]). Let X, Y € S¥*N be such that

G, j) € INI X [N X j=Yijl 2 6(Xi; + X+ Y+ Y, ).

Then the following inequality holds:

—Indet(aX + (1 — @)Y)
a(l —a) 62
2 T2+

The proof of this lemma is given in Appendix. Note
that the original proof by Christiano only gives the order of
the lower bound of the last term of Q(6?). So we give the
proof with a constant factor.

The next lemma shows that the sufficient condition ac-
tually holds for our problem (7~( ,L) for 6 = O(L e (X —
Y)|), which establishes the strong convexity of the log-
determinant regularizer. The lemma is a slight generaliza-
tion of [18] in that loss matrices are not necessarily block-
wise sparse.

< —alndet(X) — (1 — @) Indet(Y) —

Lemma 5.4. Let X, Y € SV be such that Xi; < B’ and
Y;; < foreveryi € [N]. Then, for any L € L, there exists
(i, j) € [N] X [N] such that

ILeX-Y)

X, - Y >
| i,j 1J| 4g1ﬁ

Xii+X;j+Y,;+Y;)).

Proof. By Cauchy-Schwarz inequality,
ILe(X-Y)
< [lvee@)lhllvee(X = Y)lleo < g1 max 1Xij = Yijl.

Thus the lemma follows since X;;+X; ;+Y;;+Y;; <46’. O

Applying Lemma 5.4 to X+¢E and Y+€E for X, Y € K
and 8 = B + €, and then applying Lemma 5.3, we immedi-
ately get the following proposition.

Proposition 5.1. The log-determinant regularizer R(X) =
—Indet(X + €E) is s-strongly convex with respect to L for K
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with s = 1/(1152 \eg? (B + €)%).

Combining this proposition with Lemma 5.2, we can
derive a regret bound.

Theorem 5.1 (Main theorem). For the online SDP prob-
lem (K, L), the FTRL with the log-determinant regularizer
R(X) = —Indet(X + €E) achieves

Reg(T, K, L) < 1759, 7T
for appropriate choices of n and €.

Proof. By Proposition 5.1 we know that R is s-strongly con-
vex for s = 1/(1152 Veg}(B+¢€)?). It remains to give a bound
on Hy = R(Xy) — R(X;), where X and X; be the maximizer
and the minimizer of R in %, respectively. Let 2;(X) be the
i-th eigenvalue of X. Then,

R(XO) - R(X;) = —Indet(Xp + €E) + Indet(X; + €E)

(X)) + € y Ai(Xy)
Zl ;111(—6 + 1)

L(Xo) + €

X)) _ TrXy) X e
< Z e €

-
< —
i1 €
Note that we use the inequality In(x + 1) < x for -1 <
x. Applying Lemma 5.2 with ¢ = S and the fact that

4 /1152 +/e < 175, we get the theorem. O

Since the OMP problem (W,G) for a (B,7)-
decomposable decision space ‘W can be reduced to the on-
line SDP problem (%X, L) with g; = 4G, Proposition 4.1
implies the following regret bound for the OMP problem.

Corollary 5.1. For the OMP problem (‘W,G) where ‘W C
[—1, 17" is (B, T)-decomposable, there exists an algorithm
that achieves

Regoup(T, W) = O(G B7T).

Note that the bound does not depend on the size (m or
n) of matrices and improves by a factor of O(vm + n) from
Corollary 4.1. Accordingly, we get O( VIn n) improvements
for the three application problems:

Online max-cut has a regret bound of O(G VnT).
Online gambling has a regret bound of O(G Inn VnT).
Online collaborative filtering has a regret bound of

O(G /7T \/n) for n > m.

All these bounds match the lower bounds given in [11] up
to constant factors.

5.3 The Vector Case
We can apply the results obtained above to the vector case

by just restricting the decision and loss spaces to diagonal
matrices. That is, our problem (%, £) is now rewritten as
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K = {diag(x) : x € RY, |Ixllo <8, llx]l; < 7}, and
I = (diag(€) : € € RV, ||l < g1},

and the log-determinant is a variant of the Burg entropy
R(diag(x)) = =YY, In(x; + €). Applying Theorem 5.1 to
the problem, we have O(g; v/87T) regret bound.

Curiously, unlike the matrix case, we can also apply
the standard technique, namely, Theorem 3.1 (with a slight
modification), to get the same regret bound. To see this,
observe that [|diag(x)llsp = [|I¥|lc < B for every diag(x) € K,
and ||diag(®)|l: = ||€ll; < g for every diag(f) € L. These
imply that X C K., with o = Band £ C £, withy, = g;.
Moreover, as shown in the proof of Theorem 5.1, we have
maxy e (R(X) — R(X")) < 7/€. So, NIn2 in Theorem 3.1
can be replaced by 7/e, and hence we get a regret bound of

4g1 \/ﬁTT.

6. Conclusion

In this paper, we consider the online symmetric positive
semi-definite matrix prediction problem. We proposed an
FTRL-based algorithm with the log-determinant regulariza-
tion. We tighten and generalize existing analyses. As a re-
sult, we show that the log-determinant regularizer is effec-
tive when loss matrices are sparse. Reducing online collab-
orative filtering task to the online SDP tasks with sparse loss
matrices, our algorithms obtain optimal regret bounds.

Our future work includes (i) improving a constant fac-
tor in the regret bound, (ii) applying our method to other
online prediction tasks with sparse loss settings including
the “vector” case, (iii) developing a fast implementation of
our algorithm.
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Appendix: Proof of Lemma 5.3
In this appendix we give a proof of Lemma 5.3 by showing
a series of definitions and technical lemmas.

The negative entropy function over the set of prob-
ability distributions P over RM is defined as H(P) =
Ey-p[ln P(x)]. The total variation distance between proba-
bility distributions P and Q over RY is defined as % fx |P(x)—
QO(x)ldx. The characteristic function of a probability distri-
bution P over RY is defined as ¢(u) = E,_p[e™ *], where i
is the imaginary unit.

The following lemma shows that the difference of the
characteristic functions gives a lower bound of the total vari-
ation distance.
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Lemma A.1. Ler P and Q be probability distribution over
RN and ¢p(w), do(u) be their characteristic functions, re-
spectively. Then,

max [¢p(u) = o) < fIP(x) — O(x)ldx.

Proof.

max [¢p(u) = ¢o()
= max

ax f ¢ * P(x)dx — f e’"’xQ(x)dx'

max f le™ || P(x) — O(x)|dx
ueRy Jy

IA

A

< f [P(x) — O(x)ldx

where we use the fact that Iei”TxI =1foreveryu e RY. O

The negative entropy function is strongly convex with
respect to the total variation distance.

Lemma A.2 (Christiano [18]). Let P and Q be probability
distributions over RN with total variation distance 6. Then,

H@P+(1-a)Q) < eH(P)+ (1 -@)H(Q) - a(l — )8

Proof. In [18], the proof was given for only discrete en-
tropies and the differential entropies are regarded as the
limit of the discrete entropies, but this assertion is incor-
rect [23]. We fix the problem by considering the limit of the
“difference” of discrete entropies as described below. First
we fix a discretization interval A. As in Sect. 8.3 of [23],
for a continuous distribution P we consider its discretiza-
tion. Let we divide RY be “tiles” with width A, namely
Sj={x eRN:Vie[N],x €A, (ji+1)A]} where j € NV,
By the mean-value theorem, there exists x; € S; such that
P(x j)AN = fs,« P(x)dx. Then we define the discretized dis-

tribution P® over NV as following:

P;= f P(x)dx = P(xj)A".

J

We can define the discrete entropy H(P”) and we have
HPY) = ' PiinP;
JENN

Z AVP(xj)In P(xj) + NInA.

JENN

Thus for two continuous distributions P and O,
lima_o(H(P®) — H(Q")) = H(P) — H(Q). Next we con-
sider the total variation distance 6* = § 3’ jcv |P; — Q| then
we get

250 = Z IP; - Qjl = Z AV|P(x;) — Q(x})l,

JeNN JjENN

thus limy_06® = &. Using these equalities, we can prove
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this lemma. O

The following lemma connects the entropy and the log-
determinant.

Lemma A.3 (Cover and Thomas [23]). For any probabil-
ity distribution P over RN with zero mean and covariance
matrix X, its entropy is bounded by the log-determinant of
covariance matrix. That is,

—H(P) < % In(det(Z)(2re)™),

where the equality holds if and only if P is a Gaussian.

We need the following technical lemma.

1-x —1/4

LemmaAd. ez —¢ 2 > S~ (1-2x)for0<x<1/2

Proof. Since the function f(x) = e/ — ¢=179/2 is convex
on 0 < x < 1/2, its tangent at x = 1/2 always gives a lower
bound of f(x). Hence we get f(x) > f'(1/2)(x — 1/2) +
f(1/2) = e V41 - 2x)/2. O

The following lemma provides us a relation between
covariance matrices and the total variation distance.

Lemma A.5 (Christiano [18]). Let G| and G, are zero-mean
Gaussian distributions with covariance matrix X and ©, re-
spectively. If there exists (i, j) € [N] X [N] such that

[Zij = Oijl =2 6(Zii + O + X + 0)),

then the total variation distance between G| and G, is at
1

least 57 6.

The original proof by Christiano gives an asymptotic
bound of the form of Q(5). Now we give the proof with a
constant factor.

Proof. By Lemma A.l, it is sufficient to derive a lower
bound of the maximum of difference between characteristic
functions. In this case, the characteristic functions of G; and
G» are ¢1(u) = e~ 34" gnd do(u) = e‘%”TG", respectively.

Let ) = v'2v,a; = v Ov,u = —~—. Then,
o +a,
o
max |¢1(u) — ¢2(u)| > max|e2@ite) — g2ertar)
ueRN veRN

1 o —012|
2el/4 a) +ap '

I\

veRN

Note that we use Lemma A.4 in the last inequality.
By the assumption, we have for some (i, j) that

5(2,"1' + ®i,i + Zj,j + @j,j) < |2,‘,]‘ - @,’,j|
1
=5 |ei+e)" - 0)e; +e)-( - ©);;~(Z - 0);]
This implies that one of (¢;+e,)"(Z—0©)(e; +e;), e] (E—O)e;,
and e}(Z—@)e j has absolute value greater than ?((ZH Q)i+

(Z + @) J j)'
On the other hand,
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(ei+e) (Z+0O)e +e;)
= (E + ®)i,i + (E + ®)j,j + 2(2 + ®)i,j
< 2(2 + ®)i,i + 2(2 + ®)j,j-
In the last inequality we use X + ® € SY*V and the fact that

X;; < 3(Xi; + X;) for symmetric semi-definite matrix X.
So,

Vo € {e;,ej,e;+e;}, 0" (Z+O) < 2(Z+0);;+2(X+0);
and thus we have

max |¢;(u) — ¢o(u)|

ucRN

Ty —
1 v @)v> 1

> max > .
vele;.ej.ei+e)) 261/4 UT(E + @)l) 661/4

Now we are ready to give a proof of Lemma 5.3.

Proof. Let G,,G, are zero-mean Gaussian distributions
with covariance matrix ¥ = X,0 = Y, respectively. In
the matrix case, by the assumption and Lemma A.5, total
variation distance between G, and G, is at least T;m. For
simplicity of notation, let § = 152r7. Consider the entropy
of the following probability distribution of v; with probabil-
ity @, v ~ G|, with remaining probability 1 — a, v ~ G,. Its
covariance matrix is X+ (1 —a)®. By Lemma A.2 and A.3,

—Indet(aXZ + (1 — @)®)

< 2H(aGi + (1 — @)G») + InQre)N
20H(G)+2(1-@)H(G>) +In2re)N —a(1—a)d?
—alndet(X) — (1 — @) Indet(®) — a(1 — a')fiz.
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