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PAPER

Pain Intensity Estimation Using Deep Spatiotemporal and
Handcrafted Features

Jinwei WANG†, Member and Huazhi SUN†a), Nonmember

SUMMARY Automatically recognizing pain and estimating pain inten-
sity is an emerging research area that has promising applications in the
medical and healthcare field, and this task possesses a crucial role in the di-
agnosis and treatment of patients who have limited ability to communicate
verbally and remains a challenge in pattern recognition. Recently, deep
learning has achieved impressive results in many domains. However, deep
architectures require a significant amount of labeled data for training, and
they may fail to outperform conventional handcrafted features due to in-
sufficient data, which is also the problem faced by pain detection. Further-
more, the latest studies show that handcrafted features may provide com-
plementary information to deep-learned features; hence, combining these
features may result in improved performance. Motived by the above con-
siderations, in this paper, we propose an innovative method based on the
combination of deep spatiotemporal and handcrafted features for pain in-
tensity estimation. We use C3D, a deep 3-dimensional convolutional net-
work that takes a continuous sequence of video frames as input, to extract
spatiotemporal facial features. C3D models the appearance and motion
of videos simultaneously. For handcrafted features, we propose extracting
the geometric information by computing the distance between normalized
facial landmarks per frame and the ones of the mean face shape, and we
extract the appearance information using the histogram of oriented gradi-
ents (HOG) features around normalized facial landmarks per frame. Two
levels of SVRs are trained using spatiotemporal, geometric and appearance
features to obtain estimation results. We tested our proposed method on the
UNBC-McMaster shoulder pain expression archive database and obtained
experimental results that outperform the current state-of-the-art.
key words: pain intensity estimation, 3D convolutional network, histogram
of oriented gradients, feature fusion

1. Introduction

In the field of modern medicine and healthcare, monitor-
ing pain is essential for correct diagnosis and symptomatic
treatment. At present, the clinical assessment of pain is gen-
erally performed through patient’s self-report. Some pain
assessment scales have been developed to capture patient’s
self-report of pain intensity, e.g., the numerical rating scale
(NRS) [1] and the visual analogue scale (VAS) [2]. How-
ever, this method is limited because some pain sufferers can-
not communicate verbally or express their pain accurately,
such as infants, the elderly, patients in intensive care units
(ICUs) and patients with impaired cognitive function. Al-
ternatively, pain assessment through a manual examination
by a medical physician or nurse appears to be a better ap-
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proach. However, there are also some problems with such
an approach, as follows. 1) Manual assessment is subjec-
tive, either regarding the assessors or the assessed. 2) Man-
ual assessment cannot be performed continuously over time.
Therefore, it is difficult to observe whether the pain is in-
creasing, decreasing or spiking. 3) Due to the high workload
that medical staff in hospitals currently experience, manual
assessment of pain consistently and reliably has been diffi-
cult to achieve. Given the above problems, a reliable auto-
matic pain recognition and pain intensity estimation method
that implements a more objective, efficient and economical
solution for pain assessment is essential.

Many studies have explored automatic pain assessment
from pain indicators, such as physiological signals and cry-
ing sounds. Some researchers recognize pain using brain
activity data, i.e., functional magnetic resonance imaging
(fMRI) [3] and electroencephalography (EEG) [4]. Galvanic
skin response (GSR), electromyography (EMG) and elec-
trocardiogram (ECG) are also used for pain assessment [5].
However, these methods are generally highly invasive and
constraining to the patient. Studies on crying are most com-
mon in infants, whose primary expression is crying. The au-
thors of [6] conducted an acoustic analysis of babies’ cries
to distinguish between pain-induced and normal crying.

Another efficient and non-invasive solution is to use fa-
cial expressions. In the past, significant efforts have been
devoted to identifying reliable and valid facial indicators of
pain [7], [8]. These efforts revealed how to distinguish be-
tween pain and no pain through facial action units (AUs) de-
fined by the facial action coding system (FACS) [9], which
makes researchers aware of the possibility of automatic pain
recognition through facial expressions using computer vi-
sion and pattern recognition techniques. However, as with
most pattern recognition problems, an abundance of train-
ing and testing data that are representative of the target ap-
plication are needed to construct robust models with reliable
performance.

To facilitate automatic pain assessment, researchers
from McMaster University and the University of Northern
British Columbia (UNBC) released the UNBC-McMaster
shoulder pain expression archive database [10]. Over the
past few years, many studies have used this database to val-
idate their methods for automatic pain assessment. Most
of the initial studies used appearance and geometric fea-
tures extracted using active appearance models (AAMs) [11]
to detect AUs and the PSPI for the presence of pain [12]–
[14]. With an in-depth study, many new handcrafted fea-
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tures are used for this purpose, such as DCT, LBP, Gabor,
and PHOG. In general, two or three features are used to-
gether [15]–[17]. Recently, deep learning has successfully
been applied to the computer vision domain and achieved
impressive results [18], [19]. Accordingly, two deep mod-
els, the convolutional neural network (CNN) and the recur-
rent convolutional neural network (RCNN) [20], have been
explored for automatic pain intensity estimation [21]. One
problem with deep learning is that deep structures typically
need large amounts of data for training to achieve good per-
formance. However, facial expression data of pain are par-
ticularly difficult to obtain. For example, the UNBC Mc-
Master shoulder pain database contains 48,398 frames, but
82.71% (40,029) of these frames are ’no-pain’ frames, and
only 17.29% (8,369) are ’pain’ frames. Consequently, deep
methods may fail to achieve desirable performance due to
insufficient data.

The latest studies (e.g., [22]) show that handcrafted fea-
tures may provide complementary information with deep
nets. Motivated by this finding, in this work, we use both
handcrafted and deep-learned features for continuous pain
intensity estimation when confronted with limited ’pain’
sample images. For handcrafted features, we use geomet-
ric and appearance features simultaneously. The geometric
features are extracted through calculating the distance be-
tween normalized facial landmarks tracked by an AAM on
each frame and the ones of the normalized mean face shape,
and the appearance features are the histogram of oriented
gradients (HOG) [23] around normalized facial landmarks
on each frame.

For deep features, frame-level static facial expression
features are not sufficient. Previous studies for expression
recognition [24], [25] show that sequence-level dynamic
spatiotemporal features of facial expressions significantly
improve the recognition performance. Therefore, we use
the deep 3-dimensional convolutional network (C3D) [26],
which takes a continuous sequence of video frames as input,
to extract spatiotemporal facial features. C3D has made out-
standing progress in handling various video analysis tasks,
particularly action recognition. C3D models appearance and
motion information simultaneously and achieves good per-
formance on different video benchmarks [26]. To the best of
our knowledge, our work is the first to use C3D structures
for continuous pain intensity estimation.

Our method is trained and evaluated on the UNBC-
McMaster shoulder pain database. The experimental results
show that for limited samples, the combination of deep-
learned features with handcrafted features yields a signif-
icant improvement relative to only one of these features.
Compared with previous works, our results reveal high per-
formance and outperform the current state-of-the-art.

The remainder of this paper is structured as follows. In
Sect. 2, we present a review of previous work in automatic
pain recognition and assessment. Section 3 describes our
proposed methodology based on the combination of hand-
crafted geometric, appearance and deep spatiotemporal fea-
tures. In Sect. 4, we describe the experiments on the UNBC-

McMaster shoulder pain database and compare the results to
previous studies. Section 5 concludes the paper and presents
directions for future work.

2. Related Work

Over the past decade, many studies have evaluated their pro-
posed approaches on the UNBC-McMaster shoulder pain
dataset. Early studies focused on distinguishing whether
the subject per frame is in pain. Initially, Ashraf et al. in
[12] released a baseline recognition accuracy using geo-
metric and appearance features named the S-PTS and the
C-APP extracted by active appearance models (AAMs).
They later [13] proposed a frame-by-frame pain detection
method by recognizing action units (AUs) and calculating
the Prkachin and Solomon pain intensity (PSPI) [12] score,
which is defined as

Pain = AU4 + max(AU6, AU7)

+ max(AU9, AU10) + AU43 (1)

Any frame with a PSPI score greater than or equal to 1 is
considered to contain pain. An SVM followed by a linear
logistical regression (LLR) outputs pain scores from fusing
the best AUs together. Based on previous studies, paper [27]
extracted 3D information from an AAM to track the expres-
sion and head movement caused by pain. All of these stud-
ies have shown that using both geometric and appearance
features can significantly improve performance. Following
this direction, Khan et al. [16] also simultaneously used
pyramid histogram of oriented gradients (PHOG) and pyra-
mid local binary patterns (PLBP) as geometric and appear-
ance features for recognizing pain/no pain. Four classifiers
were tested: SVM, 2 nearest neighbor (2NN), decision tree
(DT) and random forest (RF), and the simplest 2NN pro-
vided excellent results. In [28], geometric features were
computed using 22 facial landmarks, and a k-NN classi-
fier was trained for classifying AUs to calculate the PSPI
score, which was used to recognize pain. Pedersen [29] pro-
posed a discriminative feature extractor based on an autoen-
coder that can learn discriminative pain-related appearance
features because it is trained using a loss function that can
adjust the trade-off between reconstruction error and classi-
fication error.

Recent studies have shifted the focus from distinguish-
ing between pain and no pain to estimating the intensity of
pain. Some studies categorize custom pain levels based on
PSPI scores. For example, Hammal et al. [30] classify the
PSPI score into four levels of pain intensity (none, trace,
weak, and strong) and use a combination of AAM, log-
normal filters, and SVMs to measure pain intensity. Rudovic
et al. [31] discretized the PSPI score into six pain levels
and proposed a heteroscedastic conditional ordinal random
field (CORF) model to recognize these levels. This model
can adapt to the variability of the pain expressions from dif-
ferent subjects. Later, Zhao et al. [17] proposed an algo-
rithm based on the alternating direction method of multi-
pliers (ADMM) to solve the optimization problem for the
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Table 1 Summary of previous studies.

Study Pain levels Features Classifier or Regressor Mode Validation
Ashraf et al.[12] 2 SPTS, SAPP, CAPP from AAM SVM Direct Leave one subject out
Lucey et al.[13] 2 SPTS, CAPP from AAM SVM+LLR Direct, AUs Leave one subject out
Lucey et al.[27] 2 SPTS, SAPP, CAPP from AAM SVM+LLR AUs Leave one subject out
Khan et al.[16] 2 PHOG, PLBP SVM, 2NN, DT, RF Direct 10-fold cross validation
Zafar et al.[28] 2 Custom features from 22 FCPs k-NN AUs Leave one subject out
Pedersen [29] 2 Features from Autoencoder SVM Direct Leave one subject out
Hammal et al.[30] 4 CAPP, Log-Normal filters SVM AUs Leave one subject out
Rudovic et al.[31] 6 LBP KCORF Direct Leave one subject out
Zhao et al.[17] 6 LBP, Gabor, PCA OSVR learning by ADMM Direct Leave one subject out
Irani et al.[32] 3 Spatiotemporal oriented energy Compute from features Direct Leave one subject out
Kaltwang et al.[15] 16 PTS, DCT, LBP RVR AUs, Direct Leave one subject out
Florea et al.[33] 16 HoT SVR Direct Leave one subject out
Neshov et al.[34] 16 SIFT, PCA Linear SVR Direct Leave one subject out
Hong et al.[35] 16 2Standmap SVM Direct Leave one subject out
Zhou et al.[21] 16 Features from RCNN Linear function of RCNN Direct Leave one subject out
This table is a summary of previous studies of automatic pain assessment on the UNBC-McMaster shoulder pain database. The 2nd column
is the level number of pain recognition or estimation. Two represents recognition of no pain (PSPI=0) and pain (PSPI>0). Four represents no
pain (PSPI=0), trace (PSPI=1), weak (PSPI=2), and strong (PSPI: 3-15). Six represents none (PSPI=0), mild (PSPI=1), discomforting (PSPI=2),
distressing (PSPI=3), intense (PSPI: 4-5), and excruciating (PSPI: 6-15). Three represents no pain (PSPI=0), weak (PSPI: 1-2) and strong (PSPI:
3-15). The 5th column is the mode of pain assessment. There are two types of modes: direct represents assessing pain directly from face images of
subjects, and AUs represents assessing pain through calculating the PSPI score from the intensity of AUs recognized from face images of subjects.

model of ordinal support vector regression (OSVR) learn-
ing, and they achieved competitive performance in the fully
supervised method for estimating pain. Irani et al. [32] di-
vided the PSPI score into three levels (no pain, weak and
strong) and proposed a method that uses steerable and sep-
arable filters that can measure the energies released by the
facial muscles to extract spatiotemporal features of pain.

At present, most of the pain intensity estimation studies
identify 16 pain levels (0-15) of PSPI scores using classifi-
cation or regression. Kaltwang et al. [15] proposed a con-
tinuous pain intensity estimation method through fusing ge-
ometric (facial landmarks) and appearance (DCT and LBP)
features. A relevance vector regression (RVR) is trained for
classification. The paper shows that direct pain estimation
from the image can be more accurate than the calculation
from the AUs. Florea et al. [33] introduced the histogram
of topographic features (HoT) that is composed of Hessian
and gradient-based histograms to identify pain intensity lev-
els. Neshov et al. [34] first utilized the supervised descent
method (SDM) to detect facial landmarks and then capture
local scale-invariant feature transform (SIFT) features to de-
scribe facial muscle deformation. Finally, a linear SVR was
trained for the estimation of pain level. Hong et al. [35] ap-
plied the second-order standardized moment average pool-
ing (2Standmap) technique to pain intensity estimation and
found that the result is better than all approaches that only
rely on a single descriptor. Zhou et al. [21] used a regression
RCNN that can extract contextual information from image
sequences to conduct pain intensity estimation. A method
based on VGG-face features [36] and SVR was also pro-
posed as the baseline. With the input of AAM-warped facial
images, the RCNN achieves competitive performance.

Table 1 presents a summary of previous studies of au-
tomatic pain assessment on the UNBC-McMaster shoulder
pain dataset. This table consists of three parts: recognition
of pain and on pain, estimation of custom pain level and

estimation of PSPI score. Each part indicates the feature
descriptors, the classifier or regressor, the number of pain
levels, the assessment mode and the validation method.

3. Methodology

In this section, we will describe our proposed method for
pain intensity estimation in detail, which is based on the
combination of handcrafted geometric, appearance and deep
spatiotemporal features. Figure 1 summarizes the pipeline
of our method, which consists of the extraction process of
three features. In the following subsections, first, we de-
scribe the pre-processing. Next, we explain the properties of
the C3D network, which can be directly used as the model
to extract spatiotemporal features. Then, we present the de-
tails of extracting geometric and appearance features. Fi-
nally, we introduce the regression model of pain intensity
based on SVR and the fusion strategy of three features. In
this work, we perform pain intensity estimation using the
16-level PSPI scores.

3.1 Preprocessing

When calculating the facial features, the position and size
of the face in different videos or even the same video will
change due to the movement of the human body and the
change in the focal length of the camera. To enhance the
robustness of the pain intensity estimation algorithm, we
preprocess the original image to achieve invariance to dif-
ferent face poses. In the first step, we compute the mean
facial shape using the 66 facial landmarks extracted by the
AAM and provided by the database. The mean facial shape
is scaled to a 64x64 pixel image. In the second step, we per-
form Delaunay triangulation on the mean facial shape and
the facial shape in each frame. Finally, based on the Delau-
nay triangular mesh, the facial pixels in each frame are pro-
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Fig. 1 The pipeline of our proposed method for pain intensity estimation.

jected onto the mean facial shape by piecewise affine trans-
formation (see Fig. 1). After preprocessing, all images have
a size of 64x64 pixels and will be used as the input of the
following C3D network and to obtain HOG features. We ex-
perimented with many image sizes, but the 64x64 pixel size
is ideal for training and testing the C3D network, with the
best results in both efficiency and performance.

3.2 C3D Networks

C3D is a straightforward and efficient approach for spa-
tiotemporal feature learning using deep 3-dimensional con-
volutional networks (3D ConvNets). It performs convolu-
tion on three channels. In this way, the outputs of C3D can
be used as features for serving multiple tasks.

2D ConvNets apply convolution and pooling opera-
tions spatially only to 2D static images. The 2D convolution
with an image as input will output an image. The 2D con-
volution with multiple images as input will also output an
image. Thus, 2D ConvNets will lose temporal information
after each convolution operation. 3D convolution will pre-
serve the temporal information of the input signals, resulting
in an output volume. In C3D, the operations are performed
spatiotemporally by adding the time dimension. The 2D and
3D convolutional frameworks are shown in Fig. 2.

The C3D network takes a sequence of frames with
fixed length as the input video volume and outputs spa-
tiotemporal features with the specified length. Internally, the
C3D network captures appearance for the first few frames
and tracks the salient motion in the subsequent frames. Thus
C3D differs from standard 2D ConvNets in that it selectively
attends to both motion and appearance. After being trained,
C3D can be used as a feature extractor for video analysis
tasks.

In this work, we use C3D to model the appearance and

Fig. 2 2D and 3D convolution operations. a) 2D convolution applied on
an image results in an image. b) 2D convolution applied on a video volume
also results in an image. c) 3D convolution applied on a video volume
results in another volume, preserving the temporal information of the input
data.

motion of the face simultaneously. As shown in the upper
part of Fig. 1, we use preprocessed consecutive facial im-
ages of size 64x64 pixels as the input to train the C3D net-
work and use the output of the network as the spatiotemporal
facial features to train the regression model for pain inten-
sity estimation.

If C3D is trained with a large-scale dataset, its network
structure can be designed as deep as possible, but the depth
is limited by the GPU memory capacity. Therefore, with the
memory capacity (8 GB) of our GPU, we select the C3D net-
work structure similar to [26] which has 8 convolutional, 5
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Fig. 3 C3D network architecture. The C3D network has 8 convolutional, 5 max-pooling, and 2 fully
connected layers, followed by a softmax output layer. All 3D convolution kernels are 3x3x3 with a stride
of 1 in both the spatial and temporal dimensions. The number of filters is denoted in each rectangle.
The pooling layers are denoted from Pool 1 to Pool 5. Each pooling kernel is 2x2x2, except that Pool 1
is 1x2x2. All fully connected layers have 2048 output units.

pooling, and 2 fully connected layers, followed by a softmax
output layer. The structure is presented in Fig. 3. Where
Conv1a to Conv5b denote 8 convolutional layers. The num-
ber of filters is denoted under the name of each convolu-
tional layer. All 3D convolution filter kernels are 3x3x3
with stride 1x1x1, which means that the kernel temporal
depth and spatial size are both 3, and the spatial and tem-
poral stride are both 1. The authors of [26] had proved by
experiments that 3x3x3 with stride 1x1x1 is the best kernel
choice for the C3D network. The pooling layers are denoted
from Pool 1 to Pool 5. All pooling layers are max pooling.
Each pooling kernel is 2x2x2, except that Pool 1 is 1x2x2
with the intention of not to merge the temporal signal too
early. Fc6 and fc7 denote fully connected layers. Each of
them has 2048 output units, which can produce a 2048D
vector for use as spatiotemporal facial features.

3.3 Extraction of Geometric and Appearance Features

Geometric and appearance features have been successfully
applied to automatic pain recognition, particularly when
used in combination, because they separately represent the
unique facial features and complement each other. Geo-
metric features describe changes in the position and shape
of facial components, such as the mouth, eyes and eye-
brows. Appearance features represent small facial deforma-
tions caused by pain, such as nasolabial furrow and frown.

To extract geometric features, we normalize the facial
shape in each frame image by aligning facial landmarks to
the mean facial shape using the affine transformation of the
facial points corresponding the eye corners and nose tip.
Then, we take the difference between the normalized and
the mean facial shape and use the result as the geometric
facial features. We call this feature the delta of facial geo-
metric shape or DFGS for short (see Fig. 1). Here, the 49
landmarks around the eyes, eyebrows, nose, and mouth are
selected to perform the difference operation, thereby gener-
ating a 98D feature vector.

For extracting appearance features, we first preprocess
each image according to the method in Sect. 3.1. Then,
HOG features are extracted based on the 49 landmarks as
mentioned above in the preprocessed images (see Fig. 1).
We extract a block of 16x16 pixels around each facial land-
mark. This block contains 2x2 cells with a size of 8x8 pix-
els. The number of overlapping cells between neighboring
blocks is 8 pixels. The number of orientation histogram bins
is 9. In this way, we obtain a 1404D feature vector for the 49
facial landmarks. The block size of 16x16 pixels provided
better results for the input image size than the other block

sizes that we investigated.

3.4 Pain Intensity Estimation

We use regression models to perform continuous pain in-
tensity estimation. In this work, support vector regres-
sion (SVR) is used to map the features to the correspond-
ing pain intensity. We select SVR because it can handle
large representation spaces, is easy to train, and generalizes
well. SVR has been applied in various fields. The idea
of SVR is based on calculating linear regression functions
in high-dimensional feature space, where the input data are
mapped to nonlinear functions. We use L2-regularized L2-
loss SVR, which means that given a set of feature-label pairs
(xi, yi), i = 1, . . . , l, xi ∈ Rn, yi ∈ R, the SVR solves the fol-
lowing unconstrained optimization problem:

min
ω

1
2
ωTω +C

l∑
i=1

(max(0,
∣∣∣yi − ωT xi

∣∣∣ − ϵ))2 (2)

where (max(0,
∣∣∣yi − ωT xi

∣∣∣ − ϵ))2 is the loss function, C > 0
is a penalty parameter, and ϵ is a parameter to specify the
sensitivity of the loss.

For feature fusion, there are two general strategies:
early fusion and late fusion [37]. Early fusion is performed
at the feature level by concatenating different feature vec-
tors into a high-dimensional vector, which is then used for
classification or regression. Late fusion is performed at the
score level, combining different scores obtained through su-
pervised learning on different features into one vector and
then used for classification or regression. In this work, we
tried both early and late fusion strategies. For the early fu-
sion, we concatenate the C3D, geometric and HOG features
into a feature vector, and use it to train an SVR model. For
the late fusion, we use a two-level SVRs model. First, we
train an SVR model separately on each type of feature (C3D,
geometric and HOG features). The PSPI scores of the input
frames are the labels for training three SVR models. Second,
we combine the prediction score fi output from each SVR
model with feature set F and utilize it to train a second-level
SVR model, where F is [ f1, f2, . . . fn] and n is the number of
the first-level SVRs to be combined. Since the PSPI scores
output by the SVR can be less than the minimum pain level
0 or above the maximum pain level 15, we set all predic-
tions below 0 to 0 and above 15 to 15. When comparing
the results of early and late fusion strategies, we find that
late fusion performs better than early fusion. Therefore in
our method, we choose late feature fusion strategy, the two-
level SVRs model (see Fig. 1). We use linear SVRs in both
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early and late fusion strategies. The detailed results will be
analyzed in Sect. 4.4.

4. Experiments and Results

4.1 Database Description

We conducted experiments on the UNBC-McMaster shoul-
der pain expression archive database [10] to evaluate our
proposed methodology. This database is the most common
data set for assessing pain detection or pain intensity estima-
tion methods. It contains 200 face videos of 25 adult patients
with rotator cuff and other shoulder injuries. The resolution
of each video is 320x240 pixels. Spontaneous expression of
pain from these subjects is recorded using digital cameras in
a laboratory room during performing range-of-motion tests
of their affected and unaffected shoulder. Active (the sub-
ject moves the arm himself) and passive (a physiotherapist
moves the subject’s arm) movements are recorded. The
FACS code and PSPI score (from 0 to 15) are provided for
all frames. The dataset also provides 66 facial landmarks
tracked by the AAM for each frame. It is a very challenging
database, and in some videos, distinguishing between pain
and no pain becomes a difficult task, even for clinical profes-
sionals. The database is also imbalanced because it contains
a total of 48,398 frames, but 82.71% (40,029) are ’no-pain’
frames, and only 17.29% (8,369) are ’pain’ frames. Because
of the lack of pain frames, any model is likely to become bi-
ased toward the prediction of no pain.

4.2 Sample Strategy

To overcome the problem of the imbalanced data distri-
bution, we combine class-aware sampling [38] with under-
sampling during training our models. The class-aware sam-
pling strategy has been successfully applied to image clas-
sification and obtained an approximately 0.6% accuracy im-
provement. Specifically, we use two types of lists: one is
the PSPI score list, and the other is the list of frames for
each PSPI score. For every training iteration, we first ran-
domly sample a score (e.g., 3) in the PSPI score list, then
randomly sample a frame in this score, and finally sample
another score and its frame. When the end of a frame list
for PSPI score is reached, a shuffle operation is performed.
A shuffle operation is also performed at the end of the PSPI
score list. In this work, the class-aware sampling strategy
reduces the average RMSE by approximately 1% and in-
creases the average PCC by approximately 0.8%. When per-
forming class-aware sampling, we under-sample the no-pain
class (PSPI=0) such that both pain and no-pain categories
have the same probability of being sampled by this strategy.
We find that the combination of class-aware sampling and
under-sampling is effective in both preserving intensity pat-
tern and reducing redundant samples, particularly the ones
with a PSPI score of 0.

4.3 Measurement

In our experiments, we evaluate the proposed method using
the same strategy as previous studies (such as [15], [33]–
[35] and [21]), namely the leave-one-subject-out 25-fold
cross-validation strategy. We leave all sequences of one cho-
sen subject as the testing set and the remaining sequences of
24 subjects as the training set at the same time. We use the
average Pearson correlation coefficient (PCC) and the av-
erage root mean square error (RMSE) as evaluation metrics.
PCC measures how well the prediction can capture the trend
of pain intensity change. PCC is calculated as follows:

PCC =

∑n
i=1(ŷi − ¯̂y)(yi − ȳ)√∑n

i=1(ŷ − ¯̂y)2
√∑n

i=1(yi − ȳ)2
(3)

and RMSE is calculated as follows:

RMS E =

√√
1
n

n∑
i=1

(ŷi − yi)2 (4)

where n is the total number of frames of testing sequences.
ŷi and yi are the pain intensity estimation and the ground
truth of the ith frame, respectively. ¯̂y = 1

n

∑n
i=1 ŷi (the sample

mean), and analogously for ȳ.

4.4 Experimental Details

For C3D networks, we try to use different lengths of prepro-
cessed face image sequences as input to find the optimum
length that obtains the best performance. Due to the limi-
tations of memory capacity and computing affordability of
our GPU, we select four lengths of the image sequence for
testing, namely 4, 8, 16 and 32. We adopt 25-fold cross-
validation and use the average RMSE and average PCC as
evaluation metrics. Figure 4 presents experimental results of
training and testing the C3D network using different lengths

Fig. 4 Experimental results of training and testing the C3D network us-
ing different lengths of image sequences. The results are measured by the
average RMSE and average PCC obtained by 25-fold cross-validation. The
blue line denotes the average RMSE and the orange line denotes the aver-
age PCC. C3D performs best when the length of the input image sequence
is 16.
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Fig. 5 Experimental results of using early and late feature fusion. The
results are measured by the average RMSE and average PCC obtained by
25-fold cross-validation. The orange bar denotes early fusion (one-level
SVR), and the blue bar denotes late fusion (two-level SVRs). Late fusion
performs better than early fusion.

of image sequences, where the blue line denotes the aver-
age RMSE and the orange line denotes the average PCC. As
shown in this figure, when using image sequences of length
16, we obtained the best performance, which is the lowest
RMSE and the highest PCC. Therefore, we choose 16 as
the length of the image sequence that is input to the C3D
network.

To allow each frame to be processed by the C3D net-
work, we copy the first frame of each video 15 times, and
then we place the copied image in front of the first frame and
renumber them such that the original first frame becomes the
sixteenth frame. For each fold validation, we sample 20,000
sequences of 16 frames as the training set according to the
strategy presented in Sect. 4.2. We train the C3D networks
from scratch. When training the networks, we set the initial
learning rate as 0.001, the momentum as 0.9, the attenua-
tion coefficient of the learning rate as 0.1, and set decreas-
ing learning rate strategy as ’step’, which means that when
executed a certain number of steps, the learning rate will be
decreased to its 1/10.

For feature fusion, we used early and late fusion strate-
gies described in Sect. 3.4 to experiment on the UNBC-
McMaster database and compare the results. The results are
measured by the average RMSE and PCC obtained by 25-
fold cross-validation. Figure 5 presents the results, where
the orange bar denotes early fusion (one-level SVR), and
the blue bar denotes late fusion (two-level SVRs). Obvi-
ously, late fusion performs better than early fusion, because
the PCC of late fusion is higher than that of early fusion,
while the RMSE of late fusion is lower than that of early
fusion. Therefore, in our method, we choose late feature fu-
sion strategy (the two-level SVRs model). All the results
analyzed in Sect. 4.5 are based on the late feature fusion
strategy.

Our experiments were performed on a workstation with
two 2.10 GHz Intel(R) Xeon(R) E5-2620v4 CPUs, 16 GB of
RAM, and two NVIDIA GTX1080 GPUs. Each GPU has
8GB memory. The computation time of the our proposed
method is 23ms per frame, that is, about 43 frames per sec-
ond.

Table 2 Comparison of different features and combinations of features.
The results for pain intensity estimation, measured by RMSE and PCC. The
best results are given in bold letters.

Feature RMSE PCC
HOG 1.270 0.564
C3D 1.167 0.555
DFGS 0.990 0.595
C3D+HOG 1.071 0.599
DFGS+HOG 1.028 0.626
C3D+DFGS 0.955 0.626
C3D+DFGS+HOG 0.942 0.676

4.5 Experimental Results

We compare the performance of different individual features
and combined features. Table 2 shows the result of this com-
parison. As shown in this table, if the PCC value is used as
the performance measure, among the individual features, the
geometric feature DFGS performs better than all the others,
followed by the HOG feature, and the C3D feature has the
lowest performance. For the RMSE, the best is also DFGS,
followed by C3D, and the lowest is HOG. For the hand-
crafted features, the geometric features perform better than
the appearance features. A possible reason for these results
is that the position change of the facial feature points caused
by pain intensity can more effectively capture the charac-
teristics of pain and is more easily distinguished by the fol-
lowed regressor or classifier than the other features. This
result also shows that common handcrafted features (e.g.,
DFGS and HOG) are still very efficient for specific prob-
lems and that the deep-learned features do not perform well
on small data sets.

Table 2 also shows that combined features perform
considerably better than individual features. Specifically,
the combination of any two individual features is better than
each of these two individual features. The combination of
deep-learned (e.g., C3D) and handcrafted (e.g., DFGS) fea-
tures performs better than the combination of two hand-
crafted features (e.g., DFGS+HOG). The combination of all
three features (C3D+DFGS+HOG) is better than the com-
bination of any two individual features and performs the
best. This means that all features have contributed to the
improved performance. The results show that although the
C3D feature does not perform well by itself, it can provide
helpful information that can complement the handcrafted
features. Additionally, handcrafted features are high-level
abstractions of original face images and are likely to sim-
plify critical information. However, deep-learned features
are obtained directly from the image pixels; thus, they have
less information loss. Figure 6 presents an example of the
pain intensity estimation from one subject image sequence
using our best model, i.e., C3D+DFGS+HOG two-level
SVRs. As shown, the continuous estimation value of pain
intensity is close to the ground truth in most frames.

In our experiments, we also compared our method with
the state-of-the-art in the literature on the UNBC-McMaster
shoulder pain archive database. The results are shown in
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Fig. 6 An example of pain intensity estimation using C3D+DFGS+HOG and two-level SVRs.

Table 3 Comparison of the proposed method with the state-of-the-art in
the literature. The results for pain intensity estimation measured by RMSE
and PCC. The best results are presented in bold.

Method RMSE PCC
DCT+LBP / RVR [15] 1.18 0.59
HoT / SVR [33] 1.08 0.49
SIFT+PCA / SVR [34] 1.13 0.59
2Standmap / SVM [35] 1.19 0.55
RCNN / Regression [21] 1.24 0.65
C3D+DFGS+HOG / SVR 0.94 0.68

Table 3. We obtain promising results in that the RMSE
of our method is 0.94 and lower than that of other meth-
ods. Moreover, the PCC of our method is 0.68 and higher
than that of the other methods. This result indicates that our
method is more effective than current methods. By compar-
ison, the methods from [15] to [35] use only static features,
whereas our approach integrates deep dynamic features into
the learning process. The method of [21] also uses deep
dynamic features, but our method combines static and deep
dynamic features and achieves better results. It again proves
that combining handcrafted features with deep spatiotempo-
ral features can improve the performance of pain intensity
estimation.

5. Conclusion

In this paper, we propose a frame-level automatic pain inten-
sity estimation method based on the combination of hand-
crafted features and deep-learned spatiotemporal features.
First, we project the facial pixels obtained by the AAM in
each frame onto the mean facial shape through a piecewise
affine transformation to achieve face frontalization. Then,
we input consecutive preprocessed images into a C3D net-
work to learn and extract spatiotemporal features. More-
over, the difference between the normalized and the mean
facial shapes is computed as the facial geometric feature,
and the HOG extracted around the landmarks of the mean
facial shape on preprocessed images is used as the facial ap-
pearance feature. Finally, we use late feature fusion strategy.
We train an SVR on each feature separately and combine the
outputs of these three SVRs as the input to train the second-
level SVR to predict pain intensity. The experimental re-
sults show that our proposed method achieves a higher PCC
and lower RMSE than previous studies and outperforms the

state-of-the-art. Our future work is to extend the proposed
framework for estimating AU intensity.
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