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PAPER

Nuclei Detection Based on Secant Normal Voting with Skipping
Ranges in Stained Histopathological Images

XueTing LIM†a), Nonmember, Kenjiro SUGIMOTO†b), and Sei-ichiro KAMATA†c), Members

SUMMARY Seed detection or sometimes known as nuclei detection
is a prerequisite step of nuclei segmentation which plays a critical role in
quantitative cell analysis. The detection result is considered as accurate
if each detected seed lies only in one nucleus and is close to the nucleus
center. In previous works, voting methods are employed to detect nucleus
center by extracting the nucleus saliency features. However, these methods
still encounter the risk of false seeding, especially for the heterogeneous
intensity images. To overcome the drawbacks of previous works, a novel
detection method is proposed, which is called secant normal voting. Se-
cant normal voting achieves good performance with the proposed skipping
range. Skipping range avoids over-segmentation by preventing false seed-
ing on the occlusion regions. Nucleus centers are obtained by mean-shift
clustering from clouds of voting points. In the experiments, we show that
our proposed method outperforms the comparison methods by achieving
high detection accuracy without sacrificing the computational efficiency.
key words: secant normal voting, skipping range, splitting point, nuclei
detection, Hematoxylin and Eosin (H&E) staining

1. Introduction

Effective cell analysis is important as it could potentially
help in the early detection of diseases. The traditional way
to analyze cell images is done manually by pathologists or
medical experts. However, the manual analysis could be la-
bor intensive, this is because a biological specimen or patho-
logical image usually involves a vast amount of cells.

In the past decades, researchers have been making an
utmost effort in digital pathology analysis to help pathol-
ogists to reduce their workload by replacing to semi-
automated or even fully automated methods. Computer
Aided Diagnosis assists professionals and doctors in med-
ical decision making by providing useful medical data inter-
pretation without heavy human workload [1]–[4]. However,
the major obstacle in constructing an effective automated
nuclei segmentation technique is a nuclei occlusion (nuclei
clump) problem. Besides this, detection results deteriorate
when this problem comes with several specimen-induced ar-
tifacts such as imperfect staining or dust.

To segment the nuclei clump, Kong et al. [5] de-
signed an integrated framework that comprises effective
cell splitting algorithm with the support of supervised fore-
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ground extraction. Veta et al. [6] reported a method of
cell clump splitting algorithm by fast radial symmetry trans-
form to mark the seeds based on regional minima extrac-
tion. Marker-controlled watershed algorithm undergoes in-
tensive study in clumps segmentation problem. One seed
per nucleus is required in this method to achieve accurate re-
sult. H-minima transform [12], high radial symmetry algo-
rithm [8], and multi-scale Laplacian of Gaussian (LoG) [9]
have been developed to detect the seeds. The LoG does not
take ellipse orientation information into account, and hence
it is hard to adapt all kinds of cell structures. To deal with
this problem, generalized LoG (gLoG) kernel [10], [11] is
proposed.

Despite the fact that the previous researches provide
good detection performance, they still encounter some unre-
solved problems. The reason is that the above methods are
sufficient only for solving homogeneous intensity cell im-
ages. Due to the cytological complexity or imperfect stain-
ing process, the intra-region intensity of nucleus is not al-
ways homogeneous. Texture information exists and multi-
ple seeds are recognized in a single nucleus. The overlap-
ping region of nuclei is often to be interpreted as a single
nucleus by these methods. The detection result is relatively
insufficient in high occlusion case.

In past decade, some researchers have found a new di-
rection in nuclei detection in reference to nuclei saliency
features motivated by symmetry, continuity [14] and clo-
sure information. These proposed methods are able to pro-
vide good detection performance for both homogeneous and
heterogenous intensity nuclei images by performing voting
methods. Parvin et al. [13] proposed an automatic nuclei in-
ferring method so-called Multi-pass voting (MPV). Nucleus
center is determined by iterative changing and adjusting the
voting direction based on optimization problems. Later, Qi
et al. [15] reduced the computational complexity of the
MPV by introducing Single-pass voting (SPV) method. Nu-
cleus center is detected by cone shape voting area. From the
detected seeds, nuclei clump are then segmented by mini-
mizing an iterative model based on repulsive level set. Xu et
al. [16] have performed some improvement and modifica-
tion based on the SPV method. The computation time is suc-
cessfully cut down and the accuracy is increased. However,
these methods still encounter the problems of false seeding
on overlapping and sharp corner regions.

In this paper, a novel nuclei detection method for
Hematoxylin and Eosin (H&E) stained breast cancer images
is proposed. The new method consists two major steps: se-
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Fig. 1 Illustration of voting method within a cone shape voting area ori-
ented from negative image gradient defined voting direction [15]. Green
box shows an inappropriate voting point falling on the sharp corner of nu-
cleus, which tends to generate false seeds.

cant normal voting and determination of skipping ranges to
overcome the drawbacks of previous work. We found that
employing image gradient as voting direction may cause
false seeding as shown in Fig. 1. Secant normal voting with
skipping ranges manages to avoid the over-segmentation
problem. The Skipping range is set to avoid voting on oc-
clusion region. Furthermore, our proposed method is unin-
fluenced by the region sharp corners. In the experiments,
we show that the proposed method can achieve good perfor-
mance on both detection accuracy and processing time. The
contributions of this paper are in the following:

1. We propose a novel nuclei detection framework that
can accurately detect the nucleus center based on nuclei
geometry information.

2. A skipping ranges scheme is introduced to avoid false
seeding on the nuclei occlusion region.

3. In the experiments, we show the proposed method can
achieve faster detection result for H&E stained breast
cancer images.

2. Voting Concept and Remaining Problems

In this section, background knowledge of voting method is
briefly reviewed first before going to the remaining prob-
lems of previous works.

2.1 Voting Method and Voting Direction

With prior knowledge of radial information, a nucleus center
can be automatically detected by a voting method. Figure 1
describes the voting method where a cone-shape voting area
is oriented from a voting direction. The voting direction
should be matched with the radial path to accurately detect
a nucleus center. For previous works [13], [15], [16], image
gradient is adopted as the voting direction. The voting di-
rection should not be affected by noise in order to guarantee
its effectiveness in detection. However, we found that em-
ploying image gradient as voting direction tends to generate
false seeds. This is because image gradient is sensitive to
the intensity variation inside the nuclei (intra-region).

2.2 Remaining Problems

Previous works often encounter sharp corner problem.
Green box in the Fig.1 reveals a voting direction at a
sharp corner, where it is far from the radial path (path to-
wards a nucleus center). This causes the false seeding
on the boundary nearby region. Moreover, for the meth-
ods [13], [15], [16], all boundary points along the tangential
direction are used to compute the voting points. Employ-
ing all the boundary points deteriorates the detection perfor-
mance. This is because the voting area may fall on occlusion
regions, especially nucleus regions with high intensity vari-
ation. However, secant normal voting and skipping range in
our proposed method are able to solve these problems.

3. Proposed Method

This section describes in detail how the proposed method
can detect the nucleus center precisely. The proposed
method consists of two major steps: secant normal voting
and determination of skipping range, to overcome the draw-
backs of previous works [13], [15], [16]. A list of parame-
ters and notation used in this paper is shown in Table 1.

3.1 Brief Overview

Initially, some foreground regions are extracted from a
histopathological image. These extracted regions are rep-
resented as a binary (black and white) mask and each region
is categorized into clump or single nucleus regions based
on some criteria. The extracted clumps are independently
processed by the proposed voting method.

Let B = {p1, p2, . . . , pM}, pm ∈ R2 be a sequence
of boundary points that encloses a clump region, where
M is the total number of boundary points. The bound-
ary is a cyclic curve traced in a clockwise direction. Our
proposed method aims at generating a set of voting points
C = {c1, c2, . . . , cN}, cn ∈ R2 from the sequence B based on
a new voting method, where N is the total number of vot-
ing points. We name this approach as secant normal voting
which will be described in Sect. 3.2. A voting point is ex-
pected to locate around a nucleus center.

Figure 2 illustrates a simple region mask and some of
the voting points allocated from the mask. From the figure,
two nuclei are partially occluded to each other. As will be
described in Sect. 3.3, we avoid voting on the occlusion re-
gion by our skipping range technique.

3.2 Secant Normal Voting

This subsection describes an alternative way to define vot-
ing direction by employing a normal line from a boundary
secant. For information, a secant is a line passing through
two points on an ellipse. The normal line of boundary se-
cant mimics the function of image gradient in the previous
works to infer a nucleus center without involving intensity
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Table 1 List of parameters and notations

Para. Description Value

rmin
Estimated minimum radius of

nucleus in the image
5

rmax
Estimated maximum radius of

nucleus in the image
10

d Distance threshold [rmin, rmax]
l Length threshold rmin

r
Minimum distance of a pair

of valid based vertices
6

α Tightness control of alpha shape 10

ρ
Threshold to decide

single nucleus or clump
0.95

Notation Description
B = {p1, p2, . . . , pM} A sequence of boundary points
C = {c1, c2, . . . , cN } A set of voting points
Q = {q1, q2, . . . , qK } A sequence of splitting points
V = {v1, v2, . . . , vJ} A sequence of base vertices

A A sequence of alpha shape points
S A set of subsequences

S qa ,qb

A subsequence begins with
splitting point qa and ends with qb

Uk A skipping range in reference to splitting point qk

βm
A Boolean flag value attached

to boundary element pm

Fig. 2 Secant normal voting points c1, c2, . . . , c5 are generated from se-
quence B in a foreground region. Voting on the occlusion region is avoided
by splitting point (green cross). Notice that each red dot is actually adjacent
to each other.

information. The proposed method allocates voting points
around the nucleus center using the secant normal line gen-
erated from the elements of sequence B.

Figure 2 demonstrates a simple clump case where two
nuclei are partially occluded to each other. The occluded nu-
clei can be imagined as two partially overlapped circles with
two intersection points (the green crosses). Each intersec-
tion point locates at a boundary concave curve and touches
to the lens-shaped intersection region. We call these inter-
section points as splitting points. This is because the lens-
shaped intersection region is actually an occlusion region
where two occluded nuclei should be split.

Let Q = {q1, q2, . . . , qK} ⊂ B be a sequence of splitting
points and K is the total number of points. The sequence
of splitting points Q is useful to avoid voting on occlusion
regions. They are skipped from constructing secant lines
and allocating voting points. The detail of splitting points
will be described in Sect. 3.3.

The sequence of splitting points Q partitions B into
K number of subsequences S. Let S qa,qb be one of the
subsequences of B, where qa and qb are the start point
and end point respectively. Therefore, we get S =

{S q1,q2 , S q2,q3 , . . . , S qK ,q1 }. For example, Fig. 2 shows that
the sequence B is partitioned into two subsequences by two
splitting points q1 and q2.

For each subsequence S , two boundary points pa ∈ S
and pb ∈ S are selected to compute the secant. We compute
a voting point c by:

c=
pa + pb

2
+ l
(
R90◦

pb − pa

∥pb − pa∥2
)
, (1)

Fig. 3 Examples of secant normal voting with d = 10 and l = 5: red box
shows how d value selection can deal with the sharp corner on a boundary;
red line: normal line from midpoint with length l; blue line: secant linked
by two boundary points; green cross: splitting point; green dot: voting
point.

where

Rθ =
[
cos θ − sin θ
sin θ cos θ

]
, (2)

is a rotation matrix, ∥ · ∥2 indicates the ℓ2-norm of a vector,
while length l is the shortest distance from a voting point c
to a secant line. If pa is fixed, then pb is selected as the first
succeeding boundary point that satisfies the relation ∥pb −
pa∥2 ≥ d. As d approaches to zero, a secant converges to
a boundary tangent. The computation of secant normal is
repeated by sequentially taking next two points: pa+1 and
pb+1 until it reaches the final point in subsequence S . The
procedure is then iterated for the following subsequences
until S qK ,q1 is selected.

The threshold d should be selected carefully. Large d
can well tackle the problem of sharp corners in a region.
This is because a voting point c is avoided to assign on the
shape corner regions. In contrast, small d is sensitive to
these sharp corners. In the experiments, we will show that
the higher detection rate can be achieved when both d and l
are selected between a range of minimum to maximum ra-
dius of nucleus. Figure 3 illustrates the process of secant
normal voting and how the threshold d can handle the sharp
corner of a region.

3.3 Determination of Skipping Range

This subsection discusses how to determine a sequence of



526
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

Fig. 4 The slipping ranges (green line) and splitting points (green cross) are extracted from a pair of
valid base vertices (yellow plus). Green cyclic curve is the α-shape curve,Awith α = 10, and red cyclic
curve is the boundary curve.

splitting points Q and its corresponding skipping ranges.
The motivation of splitting point and skipping range initi-
ated by the area difference between a region enclosed by
both boundary and alpha shape. Alpha shape (α-shape) is
a linear approximation of the original shape [20]. In Fig. 4,
we draw an α-shape as the green cyclic curve which en-
closes the foreground region. The tightness of α-shape is
controlled by a non-negative parameter- alpha radius, α =
[0,∞]. If α → ∞, it converges to a convex hull. The reason
for choosing α-shape is that α-shape allows users to con-
trol the tightness of the curve. It is more suitable than con-
vex hull to “tie” a donuts-shaped clump region (as shown in
Fig. 6) for determining the sequence Q.

Based on our observation, a nearby region of a bound-
ary concave curve has high possibility to be treated as an
occlusion region. The boundary points of the boundary con-
cave curve is a subsequence of B that cannot be touched by
an α-shape. Therefore, to find the boundary concave curve,
we extract two points where the boundary and α-shape start
to branch away and merge together from each other (sim-
ply speaking, we want to find the starting and end points of
some subsequences of B where these subsequences do not
touch the α-shape). We named these two points as base ver-
tices. As shown in Fig. 4, the boundary concave curve can
be drawn as a graph with some concave-up regions. The lo-
cal minima of the graph are then taken as the splitting points
and they should split the occluded nuclei into three.

Let A ⊆ B be a sequence of the α-shape points that
encloses a clump region where A is traced in a clockwise
direction as a green cyclic curve as shown in Fig. 4. Before
estimating the sequence Q, we attach a Boolean flag value
to each boundary point in B by:

βm=

1, if pm ∈ A
0, otherwise.

(3)

We use the element of B satisfying (βm =1) ∩ (βm−1 ,βm+1)
as a base vertex. Hence, we can obtain a sequence of base
vertices V = {v1, v2, . . . , vJ}, V ⊂ B, v j ∈ R2, where J is the
total number of base vertices.

Let us focus on one splitting point qk. From V , if we
set v j = pα, v j+1 = pβ and j is an odd number, then pγ is any

boundary point in between pα and pβ that satisfies α < γ <
β. Two consecutive base vertices must satisfy the relation
∥v j, v j+1∥2 ≥ r, where ∥ · ∥ indicates the Euclidean distance
from v j to v j+1. Threshold r has to be fixed large because
qk is unlikely to present within a small concave region that
mostly leads to imperfect extraction.

Let pα = (xα, yα), pβ = (xβ, yβ), and pγ = (xγ, yγ). We
find the minimum distance of point pγ to line pαpβ by the
following equation:

hpγ =
|(yβ − yα)xγ − (xβ − xα)yγ + xβyα − yβxα|

∥pβ − pα∥2
. (4)

Hence, we obtain H = {hpα , . . . , hpγ , . . . , hpβ }. Then, the
point pγ with local maxima distance value inH is extracted
as qk. If multiple local minima are obtained, the next split-
ting points will be qk+1, qk+2, and so on.

To make our detection method more robust to noise,
we skip some parts of boundary points, that is skipping
range. One skipping range is computed in reference to
one splitting point and we get the skipping range Uk =

{pγ−⌜ d
2 ⌝
, . . . , qk, . . . , pγ+⌜ d

2 ⌝
} ⊂ B, where qk = pγ and ⌜·⌝ is

the ceil function. The computation of skipping range from
splitting point is repeated until pβ = vJ . Single or multiple
splitting points can be estimated between a pair of valid base
vertices in Fig.4.

4. Nuclei Detection

In this section, we describe the overall framework of nuclei
detection. Initially, all regions of foreground mask are clas-
sified into single nucleus or nuclei clumps. We only imple-
ment the proposed method on clump regions. Then, seed
point decision from clouds of voting points is explained.
Figure 5 shows an overview of proposed nuclei detection
framework that will be discussed shortly.

4.1 Single Nucleus and Nuclei Clumps Classification

Nuclei detection of a single nucleus is an easy task by sim-
ply taking the region centroid. Implementing clump split-
ting method in single nucleus is redundant and unnecessary.
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Fig. 5 Overview of proposed nuclei detection method.

Fig. 6 Nuclei boundary and convex hull delineation. (a) Original
histopathological image. (b) Foreground mask where region boundary
shown by green line, convex hull shown by red line.

Thus, the single nucleus and nuclei clump must be treated
separately. Let R = {R1,R2, . . .Rg, . . . ,RG} be a set of con-
nected regions in a foreground mask. All regions are then
classified into single nucleus, SN or nuclei clump, NC.

To determine which class a region Rg belongs to, we
draw a boundary and its corresponding convex hull for each
connected region. A convex hull is the smallest convex that
encloses a set of points. Single nucleus often tends to be
nearly perfect ellipse shape, hence its boundary is fitted well
with the convex hull. Figure 6(b) shows several connected
regions in a foreground mask which are enclosed by bound-
ary curve and convex hull.

Let |PB| and |PC | be total number of pixels within a re-
gion which is enclosed by the boundary and convex hull re-
spectively. We get the region area ratio Φ by

Φ=
|PB|
|PC |
. (5)

Table 2 shows |PB|, |PC | and Φ of regions marked a, b, c, d,
and e in Fig.6 (b). From the table, we found that single nu-
cleus often has a higher Φ than a clump. However, a region
with low Φ ratio but small area should be classified as SN as
well, for example region e. These small connected regions
with imperfect elliptical shape are the outcomes of imperfect
extraction results. They are usually occluded by background
region with highly similar intensity information.

Thus, an extracted region can be classified as SN if it
satisfies the condition (Φ≥ ρ) ∩ (|PB|≤ AR). The remaining
regions are belonging to class NC. In our work, we assign ρ
to 0.95. AR is the mean area of all connected regions R in
an image. For each SN region, final seed location is selected
as the centroid location (µx1 , µx2 ), where µx1 and µx2 are the

Table 2 PB, PC and ratio Φ of five connected regions in Fig.6(b).

Region a b c d e
|PB| 5869 884 118 158 70
|PC | 8799 1026 123 165 116
Φ 0.67 0.86 0.96 0.96 0.60

Fig. 7 Seed decision from voting points by mean-shift clustering. (a)
voting points (green) and splitting points (red); (b) detected seeds: clump
(green) and single nucleus (blue).

mean of x1 and x2 coordinates of the region respectively. For
all the NC regions, our proposed voting method is applied
to get C.

4.2 Seed Decision

A set of seed points is then selected from voting points set
C by mean-shift clustering. The complete match between
radial path and gradient direction addressed by [13] can be
ignored by using mean-shift clustering. The voting points do
not require to be placed at the exact location of nucleus cen-
ter. As long as all the voting points are assembled near the
center, a finalized seed point can be correctly determined.

We assign the cluster bandwidth to nucleus diameter
in this case. Left image in Fig.7 shows the detected split-
ting points (red asterisk) as well as the voting points (green
cross). Right image in Fig.7 illustrates some final detected
seeds after mean-shift clustering. The detection of seeds in
clumps and single nucleus are carried out separately to re-
duce the computational time. The whole procedure of voting
based nuclei detection is expressed in Algorithm 1.

Algorithm 1: Proposed nuclei detection algorithm
Input: N nuclei clump regions of a foreground mask
Initialize parameters:
Set d = [rmin, rmax], l = rmin, r = 6, α = 10.

for i = 1, . . . , N -th clump do
1, Obtains boundary points sequence B
2, Gets α-shape points sequenceA from B and α
3, Extracts splitting points sequence Q from B andA by Eq. (4).
4, Partitions B into K subsequences S by Q
for k = 1, . . . ,K -th subsequence do

Constructs secant line from two boundary points with
minimum d apart and gets the voting point c by Eq. (1).

5, Gets final decision seed points from set of voting points C
by mean-shift clustering.
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5. Experimental Results and Discussions

The UCSB Bio-Segmentation Benchmark [19] dataset is
employed for evaluation purpose in this study. The dataset
is a set of 58 H&E stained breast cancer images with two
different sizes: 896x768 and 768x512. For each image,
the dataset provides a small region of ground truth mask
with approx. 250x250 size (in range of 30 to 100 nuclei).
The proposed nuclei detection algorithm is implemented by
MATLAB on a Intel Core i5-6200U CPU 2.30 GHz envi-
ronment.

5.1 Parameters Selection

All parameters involved in the proposed algorithm are listed
in Table 1. These parameters are tuned carefully and re-
peatedly in the experiment to achieve an optimal result for
USCB Bio-Segmentation Benchmark dataset.

In this experiment, the minimum and maximum of nu-
cleus radius are chosen as 5 and 10 respectively. Both esti-
mated radius values should be adjusted based on the input
image. Threshold d is selected to be the average value of
rmin and rmax while length l is assigned to be rmin as shown
in Table 1. Value α can be set as infinity (convex hull). How-
ever, we found that α = 10 can increase detection accuracy
as we have explained in Sect. 3.3. Parameter r and ρ can
keep constant throughout the experiment. Parameter r is
used for eliminating unlikely concave region. Setting r to
very small value does not influence the detection result but
extends execution time. Since the processor speed is fast,
the time lagging due by small r is negligible.

5.2 Secant Normal Voting Based Nuclei Detection Perfor-
mance

The performance of proposed nuclei detection framework
is evaluated by comparing with some existing works:
gLoG [11], MPV [13] and improved SPV [16]. The detec-
tion results are then evaluated by calculating the precision P
and recall R percentages [21] as follows:

P=
NT P

NDS
× 100% , R=

NT P

NGT
× 100% , (6)

where NDS is the number of detected seeds, NGT is the num-
ber of manually annotated seeds from ground truth image,
while NT P is the number of true positive seeds. A detected
seed is considered as true positive if and only if it is within
5 pixels distance from a ground truth annotated seed.

To evaluate the detection efficiency of all methods,
we modified the dataset images. We remove all remaining
stains and dusts on the background region based on the pro-
vided ground truth masks. Hence, no pre-processing is re-
quired and none of the methods will be influenced by the
background noises or unwanted particles. Table 3 illustrates
the detection performances of four methods. From the ta-
ble, the proposed method shows its effectiveness in achiev-
ing more accurate and faster detection results by recording

highest recall and precision percentages. From Table 3, the
improved SPV requires at least 5 times more the execution
time than the other methods. This is because clustering vast
of voting points from cone-shaped voting area is time con-
suming.

Figure 8 visually shows the nuclei detection and seg-
mentation results of four methods on a set of breast can-
cer tissue images. Generalized LoG tends to generate false
seeds for non-homogeneous images. For high heteroge-
neous images, seeds are inaccurately assigned on nucleoli
(the small dark dot that appears within a nucleus) or dark
overlapping regions. In the fourth column of Fig. 8, at first
glance, MPV presents a better detection results. However,
we notice that multiple seeds are detected in single nucleus
even though they are adjacent to each other. For more ac-
curate detection, an additional clustering step is required.
MPV’s detection results are strongly affected by the param-
eters selection. Furthermore, MPV fails to detect most the
seeds in a high occluded image.

For improved SPV, the deficiency of voting direction
selection results in false detection of nuclei. The voting di-
rection deviates from pointing towards the nucleus center if
the boundary does not have significant concavity. In contrast
to all the methods above, the proposed method increases
the detection accuracy by employing secants and skipping
ranges. Voting on the overlapping region is avoided. More-
over, selecting suitable alpha radius value prevents over-
segmentation on red bean-shaped nucleus as shown in the
right-hand side of third-row images. The proposed method
also successfully reduces the computation time as it only in-
volves simple point-based voting scheme.

Figure 9 shows the precision and recall results of pro-
posed method with various threshold d values (4 to 8) and
length l (4 to 9) on a set of randomly selected breast cancer
images. We found that the recall percentage starts to de-
crease when length l increases from rmin. Setting l → rmax

can only detect large radius nuclei in the image. However,
selecting l → rmin is more suitable to detect both small and
large radius nuclei. This is because small l value still allows
voting points to be accumulated near to the nucleus center.
In contrast, large l may accidentally assign voting points be-
yond the nucleus boundary. The recall result does not de-
viate much for each l value by altering the threshold value
d. It shows the robustness of our proposed method towards
threshold d.

Table 3 Nuclei detection performance of proposed method and the com-
parison methods [11], [13], [16] in the UCSB Bio-Segmentation Bench-
mark dataset.

Method Precision, P Recall, R Average time, t(s)
Proposed Method 93.46% 90.92% 1.13

gLoG [11] 86.57% 83.60% 1.69
MPV [13] 77.13% 73.92% <1

Improved SPV [16] 89.71% 88.00% 6.47
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Fig. 8 H&E breast cancer nuclei detection result comparisons. First column is a set of color images.
From second column to last column are the proposed method, gLoG [11], MPV [13], and improved
SPV [16] respectively.

Fig. 9 Precision and recall for d = 4, 5, 6, 7, 8 and l = 4, 5, 6, 7, 8, 9

6. Conclusions and Future Work

In this paper, we propose a novel nuclei detection method.
The problem of voting on a sharp corner area is solved by
employing secant in the voting scheme. We named the new
voting method as secant normal voting. The detection accu-
racy is strengthened by the predetermined skipping range.
Skipping range reduces the chance of over-segmentation by
avoiding the false seeding on occlusion regions. In the ex-
periments, we show that the proposed method be able to
provide more accurate detection result. At the same time,
computation time is reduced.

In future work, we will mainly focus on the multi-scale

problem of cell nuclei. Besides this, we hope to construct a
more efficient segmentation algorithm based on the detected
seeds and splitting points.
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