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PAPER

Active Contours Driven by Local Rayleigh Distribution Fitting
Energy for Ultrasound Image Segmentation

Hui BI†a), Student Member, Yibo JIANG††b), Hui LI††, Xuan SHA†††, and Yi WANG††††, Nonmembers

SUMMARY The ultrasound image segmentation is a crucial task in
many clinical applications. However, the ultrasound image is difficult to
segment due to image inhomogeneity caused by the ultrasound imaging
technique. In this paper, to deal with image inhomogeneity with consid-
ering ultrasound image properties the Local Rayleigh Distribution Fitting
(LRDF) energy term is introduced into the traditional level set method
newly. While the curve evolution equation is derived for energy minimiza-
tion, and self-driven uterus contour is achieved on the ultrasound images.
The experimental segmentation results on synthetic images and in-vivo ul-
trasound images present that the proposed approach is effective and accu-
rate, with the Dice Score Coefficient (DSC) of 0.95 ± 0.02.
key words: ultrasound image segmentation, Rayleigh mixture model, level
set, neighbor information

1. Introduction

The uterus fibroid is commonly occurring benign tumors
that annoy females and segmentation of uterus fibroid is
a crucial target in clinical applications. However, precise
segmentation is a challenge to achieve since intensity in-
homogeneity [1]. Intensity inhomogeneity occurs in med-
ical images due to technical limitations or artifacts intro-
duced by the organ being imaged [2]–[4]. The active con-
tour models have been used as image segmentation meth-
ods widely [5]–[7]. It can be categorized into two classes as
edge-based and region-based models. Chan and Vese pro-
posed several classic region-based models likes CV model
and Piece-Smooth (PS) model [8]. The region-based mod-
els perform better than edge-based for weak object bound-
aries images, attribute to non-utilizing of the image gradient.
Furthermore, it is less sensitive to the location of initial con-
tours. To deal with intensity inhomogeneity of image, au-
thors proposed some energy fitting term into active contours
method [9], [10]. Li proposed a Local Binary Fitting (LBF)
energy in a region-based model for more accuracy and ef-
ficient segmentation for MRI images [11]. While Wang
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proposed a local Gaussian Distribution Fitting (LGDF) en-
ergy to distinguish regions with same intensity mean and
different intensity variances [12]. Yu also proposed an effi-
cient level set model for medical image segmentation [13].
However, these methods are not suitable for the medical
ultrasound images segmentation, because the whole ultra-
sound image information is mainly composed of speckle
patterns that be specific to each tissue as well as the micro
in-homogeneities.

Some researchers have utilized statistics distribution to
characterize the observed tissue, and demonstrated that the
statistics of one tissue follow the Rayleigh distribution for
the ultrasound images [14], [15]. In this paper, we proposed
a method incorporated the local information into a region-
based active contour model for uterus ultrasound image seg-
mentation. The local intensity information, which is pro-
posed as the Local Rayleigh Distribution Fitting (LRDF) en-
ergy, is introduced into region-based active contour model.
The local energy is integrated over the whole image do-
main by double integral function. The curve evolution con-
strained by minimizing the energy function is used for vari-
ance computation and guide the contour motion. The re-
mainder of this paper is organized as follows. Section 2 in-
troduces the proposed LRDF model. Section 3 presents and
discusses experiments on a set of synthetic and in-vivo ul-
trasound images. Finally, we conclude the paper in Sect. 4.

2. Local Rayleigh Distribution Fitting

In this section, an implicit active contour model based on lo-
cal information is proposed for ultrasound image segmenta-
tion. Considering ultrasound image properties the Rayleigh
distribution rather than Gaussian Distribution is utilized to
demonstrate local information. The Local Rayleigh Distri-
bution Fitting (LRDF) energy term is defined and the LRDF
energy is incorporated into a level set method. With min-
imizating energy the curve evolution processes to achieve
self-driven tissues contour in ultrasound images. The model
is described in detail as follows.

2.1 Local Rayleigh Distribution Fitting Energy Term

The Fig. 1 is gray histogram analysis for ultrasound image.
Because of the speckle its intensity distribution is revealed
to be the Rayleigh distributions. As Fig. 2 shown, the Ω
and x ∈ Ω denote image domain and this image consists of
two regions: Ω1 and Ω2. Each point in the image, a neigh-
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Fig. 1 Histogram of ultrasound image: (a) ROI of original ultrasound
image; (b) Histogram of ROI.

Fig. 2 Graphical representation of Ωi ∩ Nx. The outer square denotes
the whole image and the inner square denotes the neighbor region Nx of
point x. According to representation of the Ω1 and Ω2, Nx is divided into
sub-regions Ω1 ∩ Nx and Ω2 ∩ Nx.

borhood region is defined as Nx � {y : |x − y| ≤ ρ}. The ρ
denotes the radius of the region. Let

{
ΩN

i=1

}
be a set of dis-

joint regions of the whole image, such that Ω =
⋃N

i=1Ωi and
Ωi ∩ Ω j = ∅, ∀i � j, where the N refers to the number of
regions. The region Nx � {y : |x − y| ≤ ρ} is divided into
two sub-regions as Ω1 ∩ Nx and Ω2 ∩ Nx.

Based on maximum a posteriori probability (MAP), the
segmentation of this neighborhood Nx � {y : |x − y| ≤ ρ}
is reconsidered as follows. Let p (y ∈ Ωi ∩ Nx|I (y)) be the
posteriori probability of the sub-regions Ωi ∩ Nx, by given
the neighborhood gray values I (y). As Wang mentioned
in [12], p (I (y) |y ∈ Ωi ∩ Nx) is modeled by a Gaussian dis-
tribution. While in our approach the probability densities
p (I (y) |y ∈ Ωi ∩ Nx) is modeled by a Rayleigh distribution
for uterus ultrasound images. The variance of the local
Rayleigh distribution is spatially varying parameters.

p(I(y)|y ∈ Ωi ∩ Nx) =
I(y)

σ2
i (x)

exp(− I(y)2

2σ2
i (x)

) (1)

where σi(x) denotes the standard deviations in the region
Ωi ∩ Nx. We introduce an energy term based on Rayleigh
distributions and converted it to the logarithm form for sim-
plified calculation.

ELRDF
x =−

N∑
i=1

∫
Ωi∩Nx

log p(I(y)|Ωi ∩ Nx)dy

=−
N∑

i=1

∫
Ωi∩Nx

[log I(y)+logσ2
i (x)− I(y)2

2σ2
i (x)

]dy

(2)

Fig. 3 Gaussian Kernel function.

ELRDF
x = −

N∑
i=1

∫
Ωi∩Nx

ω(y − x)[log I(y) + logσ2
i (x)

− I(y)2

2σ2
i (x)

]dy

(3)

Here a weighting function ω (‖•‖) is introduced by the
truncated Gaussian function also, to improve Eq. (2) into
Eq. (3). The shape of Gaussian kernel function on the as-
sumption that the center x = 25 and σ2

g = 25 is showed in
Fig. 3.

2.2 Level Set Formulation

It is assumed that the uterus ultrasound image domain can be
partitioned into two regions as uterine fibroid and the other.
These two regions Ω1 and Ω2 represented the regions out-
side and inside the zero level set of φ : Ω1 = {φ > 0} and
Ω2 = {φ < 0}, respectively. While the energy function of the
image defined by Eq. (4) could be expressed in terms of φ
and σ2

i as follows.

ELRDF
x (φ , σ2

1(x), σ2
2(x)) =

−
∫
ω(y−x)log p(I(y)|y ∈ Ω1∩Nx)H(φ)dy

−
∫
ω(y−x)log p(I(y)|y ∈ Ω2∩Nx)[1−H(φ)]dy

(4)

where H(φ) is Heaviside fuction, H(φ) = 1 if φ > 0, while
H(φ) = 0 if φ < 0. Thus, the energy of the whole image can
be expressed as

ELRDF =

∫
Ω

ELRDF
x (φ, σ2

1(x), σ2
2(x)) dx (5)

To avoid re-initialization in level set evolution, a
penalty term have been proposed by Li [11]:

P(φ) =
∫

1
2

(|∇φ (x)| − 1)2dx (6)

Meanwhile, the curve length penalty term also needs to
be considered as

L(φ) =
∫
|∇H(φ(x))|dx (7)
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Therefore, the entire energy function can be expressed
as

F (φ ,σ2
1(x), σ2

2(x)) = ELRDF(φ ,σ2
1(x), σ2

2(x))

+ νL(φ) + μP(φ)
(8)

where both ν > 0 and μ > 0 are weighting constants. In
practice, a smoothing function Hε is adopted to approximate
the Heaviside function H and the derivative of Hε is demon-
strated by

δε(x) = H
′
ε(x) =

1
π

ε

ε 2 + x2
(9)

The energy function Fε(φ, σ2
1(x), σ2

2(x)) in Eq. (8) is
approximated by

Fε(φ, σ2
1(x), σ2

2(x)) = ELRDF
ε (φ, σ2

1(x), σ2
2(x))

+ υLε(φ) + μP(φ)
(10)

2.3 Gradient Descent Flow

To minimize the energy function described in Eq. (10), the
gradient descent flow is adopted to obtain the parameters
σ2

1 and σ2
2. For a fix φ the σ2

1 satisfies the Euler-Lagrange
equations as follows [11].

∂Fε(φ, σ2
1(x), σ2

2(x))

∂σ2
1(x)

= 0 (11)

From Eq. (11), we obtain

σ2
1(x) =

1
2

∫
ω(y − x)I(y)2M1(φ)dy∫
ω(y − x)M1(φ)dy

(12)

where M1(φ) = H(φ), M2(φ) = 1 − H(φ). While w(y − x)
denotes Gaussian function window. Its value will be close
to 1 if the y is close to x. Similarly, parameter σ2

2 is obtained
by the following equation.

∂Fε(φ, σ2
1(x), σ2

2(x))

∂σ2
2(x)

= 0 (13)

σ2
2(x) =

1
2

∫
ω(y − x)I(y)2M2(φ)dy∫
ω(y − x)M2(φ)dy

(14)

It is noticeable that the formulas of σ2
2(x) is similar to

Ref. [12]. The reason is that the Rayleigh density formula
is similar to the Gaussian density formula with the mean
ui(x) = 0. The energy function Fε(φ, σ2

1(x), σ2
2(x)) with the

φ is minimized through solving the gradient descent flow
equation as follows.

∂φ

∂t
= − δε(e1 − e2) + υδε(φ)div

( ∇φ
|∇φ|

)

+ μ

(
∇2φ − div

(∇φ
|∇φ|

)) (15)

where

e1(x) =
∫
Ω

ω(y − x)

⎛⎜⎜⎜⎜⎝logσ2
1(x) +

I2(y)

2σ2
1(x)
− log I(y)

⎞⎟⎟⎟⎟⎠dx (16)

e2(x) =
∫
Ω

ω(y − x)

⎛⎜⎜⎜⎜⎝logσ2
2(x) +

I2(y)

2σ2
2(x)
− log I(y)

⎞⎟⎟⎟⎟⎠dx (17)

3. The Synthetic and In-Vivo Medical Images Experi-
ments

In this section, the experiments on synthetic and in-vivo
medical images are showed and discussed in detail. Firstly,
the experiments on synthetic images with anatomical real-
ism carry out as shown in Fig. 4. The Fig. 4 (a) is com-
posed of an elliptically-shaped region within a background
region. The simulated method predicts the appearance and
the properties of a B-Scan ultrasound image from a probe
model with a C2-5 circular ultrasound scanning 3.5 MHz.
The size of the synthetic image is 1352 × 1149. The initial
contour of the ultrasound image is shown in Fig. 4 (b). After
60 iterations the final segmentation result is obtained by our
approach as shown in Fig. 4 (c). It is indicated that the con-
tour of the ellipse is achieved through the curve evolution
after 60 iterations by the proposed method.

In the experiments on in-vivo images, our proposed
method is compared with two methds such as conventional
level set method and LBP method proposed by Li [11] on
uterine ultrasound images segmentation. As shown in Fig. 5,
there are eight images from different patients numbered
from #1 to #8. The red, yellow and green lines denote
LRDF, LBF and conventional level set results, respectively.
It is obvious that the LRDF results present more accurate
uterine contours, attribute to that the ultrasound image prop-
erties are taken into account and a local distribution fitting
as an energy term into the level set formulation. Further-
more, a quantitative accuracy analyses between our self-
driven method and specialist manual segmentation are sum-

Fig. 4 Results of LRDF for the synthetic image. (a) Synthetic image. (b)
The initial contour of the level set. (c) Object contour.



1936
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.7 JULY 2018

Fig. 5 The segmentation results for uterus images. The red, yellow and green lines denote LRDF,
LBF and conventional level set results, respectively.

Table 1 The accuracy summary of the Levet set, LBF and LRDF.

Level set LBF LRDG
#1 0.78 0.90 0.95
#2 0.76 0.87 0.96
#3 0.72 0.88 0.89
#4 0.82 0.86 0.96
#5 0.79 0.89 0.90
#6 0.76 0.82 0.89
#7 0.76 0.79 0.91
#8 0.82 0.85 0.88
#9 0.82 0.89 0.91

marized based on the Dice Similarity Coefficient (DSC).
The DSC is an evaluating standards defined in Ref. [16] as

DS C(S S , S R) =
2Area(S S ∩ S R)

Area(S S ) + Area(S R)
(18)

where S S and S R denote segmentation results and ground
truth, respectively. The value of DSC is closer to 1, the seg-
mentation result is better. As shown in Table 1 it is indicated
that the LRDF is the most accurate quantificationally.

4. Conclusion

In this paper, for ultrasound image segmentation we pro-
posed a novel method of active contours driven by local
Rayleigh distribution fitting energy. To deal with image
inhomogeneity the LRDF is introduced as an additive en-
ergy term to level set method. Through our approach the
uteruscan can be self-driven segmented in the medical im-
age. Moreover, the segmentation experiments on synthetic
and in-vivo images demonstrated that the proposed method
achieve accuracy segmentation results than the state of the
art methods, with the DSC can reach 0.95 ± 0.02.
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