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AutoRobot: A Multi-Agent Software Framework for Autonomous
Robots∗

Zhe LIU†a), Xinjun MAO†b), Nonmembers, and Shuo YANG†c), Student Member

SUMMARY Certain open issues challenge the software engineering of
autonomous robot software (ARS). One issue is to provide enabling soft-
ware technologies to support autonomous and rational behaviours of robots
operating in an open environment, and another issue is the development
of an effective engineering approach to manage the complexity of ARS
to simplify the development, deployment and evolution of ARS. We in-
troduce the software framework AutoRobot to address these issues. This
software provides abstraction and a model of accompanying behaviours to
formulate the behaviour patterns of autonomous robots and enrich the co-
herence between task behaviours and observation behaviours, thereby im-
proving the capabilities of obtaining and using the feedback regarding the
changes. A dual-loop control model is presented to support flexible inter-
actions among the control activities to support continuous adjustments of
the robot’s behaviours. A multi-agent software architecture is proposed to
encapsulate the fundamental software components. Unlike most existing
research, in AutoRobot, the ARS is designed as a multi-agent system in
which the software agents interact and cooperate with each other to accom-
plish the robot’s task. AutoRobot provides reusable software packages to
support the development of ARS and infrastructure integrated with ROS to
support the decentralized deployment and running of ARS. We develop an
ARS sample to illustrate how to use the framework and validate its effec-
tiveness.
key words: autonomous robot, multi-agent system, AutoRobot

1. Introduction

With the continuous integration of robotics and information
technologies, such as the Internet, artificial intelligence, big
data, and service computing, more robots are being devel-
oped to operate in open, unknown and unpredictable envi-
ronments (e.g., family, hospital, and battlefield) and are ex-
pected to autonomously behave without human intervention
to achieve assigned tasks [1]. Typically, we call such robots
autonomous robots. Essentially, an autonomous robot is
a system in which software plays an important role. Au-
tonomous robot software (ARS) typically operates to (1)
manage and control physical devices (e.g., arms, motors,
and legs) of robots and (2) decide and plan robot behaviours
and drive robots to act.

The complexity of ARS derives from its diversity
and integrity of software elements, the dynamic evolution
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of software structures and behaviours to adapt to various
changes occurring in the environment and itself, and spe-
cific requirements including high-level behaviour decisions,
flexible adjustments and adaptation, safety, and real-time
response [2]. With the rapid development of robot tech-
nologies and the increasing demands on robot applications,
the development of a complex software system for an au-
tonomous robot has become an open issue in the fields of
robotics and software engineering.

In the past years, substantial effort has been focused
on the research studies and practices of ARS. Many soft-
ware technologies have been proposed to support the devel-
opment of ARS, including programming languages [3], [4],
software architecture [5], [6], and design patterns. In the
academic and industry field, dozens of software frame-
works [4], [7], [8] have been proposed. According to the
technologies adopted, the existing software frameworks can
be roughly classified into two categories: component-based
approaches [9], [10] and agent-based approaches [11]–[14].
The component-based approach focuses on the construction
of software elements of ARS and their inter-operations and
aims to simplify the development and promote the reuse
of software component technologies. As all of the be-
haviour decisions are encapsulated into software compo-
nents, the component-based approach seldom considers the
autonomous decisions and flexible adjustment problems of
ARS. The agent-based approach focuses on improving au-
tonomy for robots, in which ARSs are modelled as au-
tonomous agents that interact with the environment and ex-
hibit autonomous behaviours. However, most previous stud-
ies have taken ARS as a single software agent exhibiting
coarse granularity, resulting in challenges to reuse and self-
management, and the proposed technologies have focused
on the agent hood and lack consideration of the integration
of robot technologies with mainstream software engineering
technologies.

In essence, as a domain-specific software, ARS poses
certain challenges. One issue is to provide enabling soft-
ware technologies to support autonomous and rational be-
haviours of robots operating in the open environment. An-
other issue is the development of an effective engineering
approach to manage the complexity of ARS, thereby simpli-
fying the development, deployment and evolution of ARS.
We propose the software framework AutoRobot to address
these issues. Several important software engineering tech-
nologies can be used to enhance the framework. (1) Cogni-
tion and abstraction: the use of accompanying behaviour as
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the model to describe the complex behaviour patterns and
robot interactions. (2) Control: the use of a dual control
loop as the control model to enrich the interactions, feed-
back, adjustment and adaption. (3) Development: the use
of a multi-agent system as a software architecture to support
the encapsulation, reuse, and deployment of software ele-
ments and implement autonomy and rationality functionali-
ties. The AutoRobot framework provides reusable packages
and infrastructure to support the development, deployment
and operation of the ARS.

The rest of this paper is organized as follows: Sect. 2
discusses the software engineering challenges of ARS based
on the analysis of its features with a motivating example.
Section 3 presents the design objectives for the ARS frame-
work and the critical software engineering technologies used
to support the framework. Section 4 provides an overview of
AutoRobot. Section 5 introduces the software development
and running supports provided by AutoRobot. Section 6 il-
lustrates our approach with a case study. Section 7 discusses
related works. Conclusions are drawn in Sect. 8.

2. Features and Software Engineering Challenges for
ARS

This section analyses the features of ARS and discusses the
software engineering challenges based on a motivated ex-
ample of autonomous robot application.

2.1 A Motivation Example

Let us consider a domestic service robot example to moti-
vate our research (see Fig. 1). The service robot operates in
an open home environment with several rooms and is de-
signed to care for elderly inhabitants by identifying whether
they have fallen and thereby providing the necessary infor-
mation services, e.g., calling an ambulance or notifying the
family. As the elderly person moves from one place to an-
other, the service robot should follow the person at a safe
distance to timely perceive her/his moving information, de-
termine her/his safety status, and accept her/his service re-
quests.

- Scenario 1 (searching for the elderly person): the robot
should search for the target by moving through the rooms

Fig. 1 The motivating example of an autonomous robot

and recognizing her/his body features. If the target is lost,
then the robot repeats the search for the target.

- Scenario 2 (following the elderly person): when finding
the target, the robot follows the target when she/he moves.
The robot should follow the target closely to avoid losing
the target.

- Scenario 3 (lock on to the elderly person): when there is
someone else next to the target, the robot should lock on
to the target and avoid interference from others.

2.2 Features and Requirements of ARS

From this example, we find that autonomous robots are de-
signed to perform tasks independently or with limited ex-
ternal control [3]. We also find from this example that
autonomous robots are different from traditional industrial
robots and other cyber-physical systems. ARS is the core
of autonomous robots and provides support for the imple-
mentation of autonomous robot tasks. We list below distinct
features of the ARS that depend on the characteristics of au-
tonomous robots:

- Perform autonomous and rational behaviours. Au-
tonomous robots typically have limited resources and ex-
ternal control. Autonomous robots must achieve their ob-
jects via their own plans and must meet the demands of
the external and internal environments. Furthermore, au-
tonomous robots must interact with an unknown environ-
ment and sometimes with human beings, as in our ex-
ample. These behaviours raise the issue that autonomous
robots’ behaviours should be autonomous and rational, as
determined by the ARS.

- Support robots operating in an open environment. Au-
tonomous robots are generally situated in open environ-
ments that involve physical, social and cyber factors. The
environment is also diverse, evolving, unpredictable, and
even partially obscured. As in our example, the robot can-
not predict when obstacles will appear, and the environ-
ment around the robot can be expected to change with the
movement of the elderly inhabitants. To this end, the ARS
should provide support for autonomous robots to operate
in such environments.

- Increasing demands and complexity. The development
and popularization of autonomous robots results in in-
creasing demands for the ARS to satisfy various and per-
sonalized requirements of autonomous robot applications.
Furthermore, increasing expectations exist regarding soft-
ware (non-)functional features, such as intelligence and
autonomy, in the ARS. Based on these increasing de-
mands, the ARS integrates multiple software components
and software structures to satisfy various demands, mak-
ing the ARS more complex.

Because of the differences from traditional robotic software,
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Table 1 The requirements of autonomous robot software.

Levels
Functional

requirements
Non-functional
requirements

High-level:
Task&Application

plan, schedule,
allocate, decide,

execute, cooperate

real-time, adaptive,
autonomous, safe,
rational, friendly

Low-level:
Devices&Service

control, analyse,
sense, manage,

compute

real-time, secure,
self-management,
accurate, robust

ARS has relatively specific requirements based on its dis-
tinct features. Generally, ARS addresses two types of re-
quirements at different levels in Table 1.

2.3 Open Issues for ARS

Based on the features and requirements of ARS, open issues
exist in three levels of ARS:

- Abstraction. When autonomous robots perform a task,
multiple behaviours should be executed. For different
tasks, the required behaviours are also different. Cur-
rent development methods of ARS lack general cognitions
and abstractions, which depend on the behavioural char-
acteristics and divide behaviours into different categories.
Based on these cognitions and abstractions, the relation-
ship between the behaviours of an autonomous robot can
be intuitively described, and the complexity in planning
and performing behaviours is simplified. Thereby, ARS
can make decisions, adjust behaviours and control robots
in a relatively autonomous and rational manner.

- Control. As discussed in the last subsection, autonomous
robots are situated in an open and dynamic environment
and should obtain multi-feedback to perceive environmen-
tal changes timely. Moreover, the autonomous robot must
monitor self-changes, such as behaviour execution states
or electricity information. Based on these changes, ARS
can adjust and update robots’ behaviours in real-time to
adapt to the environment and to themselves to achieve
as many of their objectives as possible. This approach
requires the ARS to provide an effective control model,
which should include sensitive feedback and perception
methods. In addition, this model should support the be-
haviour patterns of autonomous robots.

- Development. In the last subsection, we proposed that the
ARS becomes more complex because of the increasing
demands. For example, when we design and develop an
ARS, the existence of many factors, such as the hetero-
geneity problem, tends to increase the process complex-
ity. Simplifying the design and development for the ARS
is a challenge that requires a general software engineer-
ing method. This method should provide an effective en-
capsulation (such as reusable software packages) and in-
tegration among software components; furthermore, the
method should support control models and provide effec-
tive mechanisms in ARS.

3. Design Objectives and Critical Technologies for Au-
tonomous Robot Software Framework

In this section, we present the design objectives for the
ARS framework and, based on these objectives, propose
three critical technologies: (1) the accompanying behaviour
provides an applicable cognition and abstraction for be-
haviours for ARS and provides support for the realization
of autonomy and rationality, (2) the D-SMPA control model
improves the reactivity of autonomous robots through en-
hancement of the feedback capability, and (3) multi-agent
software architecture abstracts different parts of the ARS
into agents and allows for better system integration.

3.1 Design Objectives for Autonomous Robot Software
Framework

We hypothesize that developing a suitable software develop-
ment framework for ARS is a satisfactory means to solve the
open issues. This framework should provide an effective and
convenient software development method to develop ARS
that meets the design requirements. In the development and
construction of this software framework, we suggest that the
following design objectives apply:

- Supporting the realization of autonomy and rationality
for robots. The autonomy and rationality of robots are
reflected primarily by the robotic behaviours. Unfor-
tunately, few proper theories of robot behavioural pat-
terns exist that provide appropriate abstractions of the be-
haviours and describe the intelligent cooperation of these
behaviours to achieve the purpose of autonomy and ratio-
nality. Therefore, we hypothesize that the development
of an ARS framework requires a proper behaviour pat-
tern to implement an improved description of autonomous
robot behaviours. Under this behaviour pattern, we can
design the decision and allocation mechanism in a top-
down fashion for ARS, thereby providing support for the
realization of autonomy and realization.

- Enhancing the reactive and flexible adjustment of be-
haviours. The capability to perceive changes is the ba-
sis for autonomous robots to achieve autonomy and ra-
tionality. Only by being more sensitive to changes, the
autonomous robots can better adapt to the environment
and make timely behaviour adjustments. For improving
the capability of perception, the ARS framework should
provide a robot control model with a universal feedback
mechanism to strength the connection between robots
and not only the environment but also the components in
robots.

- Integration and interaction. ARS is a type of hybrid soft-
ware system that is constructed with numbers of compo-
nents and systems. Determining how to integrate these
components and provide favourable interactions between
them is a critical problem that our framework should
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Fig. 2 Three phases in accompanying behaviour

solve. We might choose a layered software framework
that classifies various types of components or systems into
different layers according to their functions and a proper
software model for ARS to solve the distribution and in-
tegration of different components. In addition, the frame-
work must provide tools, middleware and mechanisms to
support the interaction between different layers and differ-
ent components.

3.2 Accompanying Behaviour for Autonomous Robot
Software

The behaviours taken by an autonomous robot are diverse in
responsibilities when accomplishing tasks. Some of the be-
haviours are responsible for observing the environment and
recording changes, whereas others are critical activities to
achieve tasks. Therefore, the behaviours of an autonomous
robot can be abstracted into two categories according to their
responsibilities: one category is task behaviour typically
performed by actuators, e.g., arms, legs, and motors; the
other category is observation behaviour typically performed
by sensors or probes, e.g., sonar and cameras. Although
the two categories of behaviours are typically performed in
an independent and autonomous manner, the ARS should
enhance their synergy when achieving tasks so that task be-
haviours can obtain on-demand feedback to adjust, optimize
and self-manage the planned behaviours.

We refer to this synergistic relationship between ob-
servation behaviours and task behaviours as accompanying
behaviour that appears as a behaviour pattern. The accom-
panying behaviour is a cognitive-level technology that pro-
vides abstractions of behaviours to support the realization of
autonomy and rationality. The accompanying behaviour de-
fines the occasions in which an accompanying relationship
must be established; these occasions can be summarized as
three phases (as illustrated in Fig. 2):

(i) Pre-execution phase: Before the execution of the
robotic tasks, the system should ensure that the envi-
ronment is suitable for the execution. For this pur-
pose, certain specific observation behaviours are exe-
cuted before the formal behaviours of the task to ob-
serve the surroundings and determine whether the re-
quired conditions are met as expected. In Fig. 2, the
observation behaviour O1 is in the pre-execution phase
of the task behaviour T. For example, in Searching Sce-

nario of our motivation example, before robot starts to
search for the target, the bumper sensor or cliff sen-
sor (observation behaviour) will help the power driv-
ing device (task behaviour) to determine whether the
surrounding states satisfy the moving conditinos.

(ii) In-execution phase: When the robot is performing a
task-oriented behaviour with a planned step, the ob-
servation behaviours should check the run-time safety
conditions during the execution of the task behaviours
and provide feedback to the robotic system and task be-
haviours. Furthermore, the task behaviours determine
which observation should be performed. In Fig. 2,
the observation behaviours O2 and O3 are in the in-
execution phase of the task behaviour T. For example
in Searching Scenario, when robot is searching for the
target, the RGB and depth sensors will help the robot
avoid the obstacles.

(iii) Post-execution phase: After execution of the task-
oriented behaviour, the expected effects of the plan
must be compared to the actual effects in a real-world
environment that result from the plan execution. In
that case, the corresponding observation behaviour is
invoked immediately after execution of the task be-
haviour to observe the related environmental informa-
tion and determine whether the expected effects have
been fully achieved. In Fig. 2, the observation be-
haviours O2 and O3 lie in the post-execution phase of
the task behaviour T. For example, after Searching Sce-
nario, the RGB sensor is responsible to ensure whether
the target is in robot’s view and the depth sensor is re-
sponsible to determine whethe there is obstacle in front
of the robot. Note that observation behaviours can be
in different phases of a task behaviour for different re-
sponsibilities.

Based on accompanying behaviour, we have identified a
set of behaviour patterns which describe the accompany-
ing relations between robot task-achieving and observing
activities and can be viewed as a type of running modes.
These behaviour patterns specify different coordination and
scheduling schemes between robot task and observation be-
haviors, each of which copes with different tasks or envi-
ronment situations. And the system-level behaviours can
deliver different behaviour patterns to task behaviours and
observation behavious to tell them how to accompany dur-
ing execution of tasks. At present, we have identified three
types of behavior patterns, including accident pattern, obser-
vation behaviors cooperation pattern, and priority pattern.

(i) Accident pattern: Accident pattern is designed for
some emergencies in runtime for ARS and it occurs
between one observation behaviour and one task be-
haviour. Under this pattern, for accident that may occur
in the environment, task behaviour will arrange cor-
responding observation behavior to detect it. When
accident occurs, the observation behaviour will send
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Fig. 3 The structure of D-SMPA control model

alarm message to task behaviour and task behaviour
will make self-adjustment to solve the accident.

(ii) Observation behavior: Observation behavior coopera-
tion pattern is designed for the interaction between ob-
servation behaviors in runtime between multiple obser-
vation behaviours and one task behaviour. The interac-
tion between observation behaviours can improve the
perception ability for ARS and assist task behaviour
execute robotic task more autonomously.

(iii) Priority pattern: Priority pattern is designed for the sit-
uation in which specific sensing information needs to
be handled first and it occurs between multiple obser-
vation behaviours with different processing priorities
and one task behaviour. Under this pattern, the pro-
cessing priority of observation behaviours will be pre-
defined and task behaviour will process sensing infor-
mation according to observation behaviours processing
priorities.

3.3 Dual-Loop Control Model

According to the design objectives, we present a dual-loop
control model called D-SMPA for autonomous robots as a
control level technology. In contrast to the traditional single
loop control model, this dual-loop control model can im-
prove the reactivity of robots via multi-source feedback and
provide a top-down control model in the high-level layer
to support the realization of autonomy and rationality of
autonomous robots via the supporting accompanying be-
haviour. The structure of D-SMPA is illustrated in Fig. 3.
The D-SMPA control model has the following properties:

- Separation of behaviours. In the D-SMPA control
model, we divide the ARS behaviours into two categories:

system-level behaviours and application-level behaviours.
The system-level behaviours include modelling, planning
and acting (scheduling) behaviours. The application-level
behaviours include task behaviours (Tb in Fig. 3) and ob-
servation behaviours (Ob in Fig. 3). Task behaviours are
executed by the various actuators (A in Fig. 3), and obser-
vation behaviours are executed by sensors (S in Fig. 3).

- Dual-loop for different behaviours. According to the de-
sign objectives, we have designed two main control loops
in D-SMPA, namely, the task loop and the observation
loop, which are illustrated in Fig. 3 and are designed for
improving the perception capability of the robots. In D-
SMPA, the system-level behaviours are shared by these
two main control loops; the difference between these two
loops is that each loop has different actuators, behaviours
and feedback loops. In each loop, the acting behaviour
dispatches a related task sequence to its actuators (sen-
sors), and these tasks are executed in a decentralized man-
ner by different actuators (sensors). During the task ex-
ecution, actuators (sensors) send feedback of the execu-
tion status (sensing data) to describe the system-level be-
haviours on-demand.

- Multi-source feedbacks. In the D-SMPA control model,
three types of feedback exist: the feedback between actu-
ators and system-level behaviours, the feedback between
sensors and system-level behaviours, and the feedback be-
tween actuators and sensors. In the first type of feedback,
actuators send their execution status to the planning or act-
ing behaviours on-demand. In the second type of feed-
back, sensors send sensing data describing system-level
behaviours. The last type of feedback is referred to as ac-
companying behaviours.

- Accompanying behaviour. As mentioned, in the D-SMPA
control model, the coordination between task behaviours
and observation behaviours is defined as the accompany-
ing behaviour. In general, the execution of one task be-
haviour must be accompanied by one or more sensors il-
lustrated in Fig. 3. The accompanying behaviour is im-
plemented by exchanging the sensing data or status of be-
haviours directly between the task behaviours and obser-
vation behaviours.

3.4 Multi-Agent Software Architecture

The paradigm and technology of MAS that originate from
artificial intelligence and recent software engineering fields
provide an effective solution to address the development is-
sues of high-level ARS for both modelling and implementa-
tion aspects. MAS represents a new method to solve the dis-
tributed problem regarding a number of autonomous agents.
An autonomous robot is a complex system composed of a
number of diverse and interacting components. All of these
components work together to achieve the robot’s design ob-
jectives. Therefore, an autonomous robot can be decom-
posed and organized as multiple autonomous entities mod-
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Fig. 4 Multi-agent software architecture for autonomous robot software
framework

elled as agents.
MAS also presents some important theories and tech-

nologies to support the development and implementation
of complex software systems [15], ranging from BDI ar-
chitecture and theory, agent-oriented methodology and the
modelling language to the programming language [16] and
framework. Such technologies enable developers to con-
struct software that is capable of perceiving the environ-
ment, taking autonomous or even pro-active behaviours, and
interacting with other systems.

According to the above analysis, MAS implies a novel
epistemology and methodology to analyse, design and im-
plement complex software systems. In this study, we in-
tend to model and design high-level ARS as MAS. Each
agent in ARS plays different roles, takes distinct behaviours,
and cooperates with each other to support the operation of
the autonomous robot. In fact, ARS represents a domain-
specific application and problem-solving approach that typ-
ically consists of several specific agents, such as sensors, ac-
tuators, planners, modellers, and schedulers. These agents
coordinate with each other to exchange information and ac-
cess situations and services.

Based on our control model and design objectives, we
design a multi-agent software architecture for our frame-
work in Fig. 4 as a development level technology. This
multi-agent software architecture can solve the integration
and interaction problems in the high-level layer and provide
support for accompanying behaviour and multi-source feed-
backs. For the integration and interaction between the high-
level layer and the low-level layer, we will provide methods
to solve these problems in later section.

4. Overview of AutoRobot

We have developed the agent-based software development
framework AutoRobot for ARS based on the critical soft-
ware technologies that we proposed in the last section. As
shown in Fig. 5, the architecture of AutoRobot consists of
four layers: the infrastructure layer, running layer, develop-
ment layer and application layer. AutoRobot separates the
high-level decision making and control and low-level be-
haviour execution for ARS. Each layer of AutoRobot has its

Fig. 5 The architecture of AutoRobot

own responsibility in the development and operation of the
ARS.

- Infrastructure layer. This layer provides fundamental
robot functionality abstraction to encapsulate ROS node
programs constructed in C++ or Python language and
their communications via ROS [17] middleware. ROS is
a collection of tools, libraries, and conventions for simpli-
fying the task of creating complex and robust behaviour
across a wide variety of robotic platforms. Currently, this
layer has implemented several aspects of basic robotic
functionalities into 25 ROS controllers (approximately
2000 lines of code), including the navigation, manipula-
tion, and object recognition functionalities. In the frame-
work, the interior communication of infrastructure relies
on the mechanism of ROS. The nodes encapsulate robot
basic functionalities in robotic platforms and directly con-
trol robot actuators.

- Running layer. This layer provides running supports for
the ARS at run-time. The running layer implements the
dual-loop control models and corresponding mechanisms
to achieve the accompanying behaviour and feedback be-
tween software agents and changes in self or the environ-
ment. This layer acts as the medium between the devel-
opment layer and the infrastructure layer. The running
and lifecycle management of individual agents are based
on the JADE framework [18]. In addition, the connection
and interaction between the agents and the ROS nodes are
based on the RosBridge middleware.

- Development layer. This layer mainly supports the de-
velopers who construct and implement ARS by provid-
ing reusable software packages and software development
tools. The package implements elementary functionali-
ties of MAS into Java-based agent templates, including 5
types of agent templates and 1000 lines of code. Develop-
ers of ARS can extend the reusable agents to construct the
software systems for autonomous robots.

- Application layer. Using the application layer, users or de-
velopers construct multi-agent software system for ARS
by extending or instancing reusable software packages
provided by AutoRobot. Various software agents can be
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designed and implemented according to the requirements
of ARS. The codes are to be complied and executed under
the AutoRobot framework.

5. Development and Running Supports of AutoRobot

This section introduces the software development and run-
ning supports provided by AutoRobot framework in four as-
pects: reusable software packages as development support,
integration with ROS, deployment architecture and manage-
ment toolkits as running supports.

5.1 Software Package

In AutoRobot, we provide development support by a series
of reusable software packages in the development, running
and infrastructure layers. Figure 6 shows the software pack-
ages of AutoRobot. The multi-agent system package encap-
sulates a variety of agent abstractions and it corresponds to
the Reusable Package in the Development layer in Fig. 5.
The interaction mechanism package provides multiple com-
munication methods for the interaction between agents and
it corresponds to the ARS Running Engine in the Running
layer in Fig. 5. The data sharing package is responsible for
sharing multimedia data from the sensing information to
the visualized monitor tools and accommodating the struc-
tured data from the infrastructure layer. The tools package
provides PC-based and Android-based visualized monitor
tools. The data sharing package and the tools package cor-
respond to the Running Tools in the Running layer in Fig. 5.
RosBridge is an open-source software package is responsi-
ble for providing methods for the interaction between MAS
and ROS and it corresponds to the RosBridge Middleware
in the Running layer in Fig. 5. The ROS package is de-
veloped under ROS and is used for execution of low-level
behaviours. The ROS package corresponds to the Infras-
tructure layer in Fig. 5. The main reusable packages we pro-
vided are the multi-agent system package and the interaction
mechanism package.

- Multi-agent system package. The class diagram of the

Fig. 6 Software packages of AutoRobot

multi-agent system package is illustrated in Fig. 7. This
package provides agent abstractions, including ModelA-
gent, PlannerAgent, ScheduleAgent, ActuatorAgent and
SensorAgent. In the ARS, we can design agents to in-
herit the properties and methods of these agent abstrac-
tions. The role of each agent in ARS in specific appli-
cation will be introduced in our case study. These agent
abstractions provide the implementation elements for the
D-SMPA control model and accompanying behavior.

- Interaction mechanism package. Under the JADE frame-
work, a communication model for agents operates via
asynchronous message exchange [18]. To communicate,
an agent only needs to send a message to a destination.
However, this single interaction method cannot satisfy
the requirements of agents for tight and diverse interac-
tion. Therefore, we designed an interaction mechanism
package in AutoRobot that can provide a topics-based and
services-based communication mechanism to meet the
needs of synchronous and asynchronous interaction be-
tween agents. Figure 8 shows the class diagram of the in-

Fig. 7 Multi-agent system design model

Fig. 8 Class diagram of interaction mechanism package
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Fig. 9 The integration with ROS in AutoRobot

teraction mechanism package. This package implements
two new communication mechanisms among agents and
improves the interaction and feedback mechanisms be-
tween agents.

5.2 Integration with ROS

In AutoRobot, agents are implemented in Java under JADE,
and the infrastructure robotic control nodes are implemented
in C++ or Python under ROS. We choose the open-source
software package RosBridge (shown in Fig. 6) for the com-
munication between agents and ROS nodes to integrate
ROS for AutoRobot. RosBridge provides a JSON API to
ROS functionality for non-ROS programs. In autonomous
robot applications, we create special Java nodes for each
ROS node and obtain the data or messages from the ROS
nodes via calling methods provided by RosBridge. Next,
Java nodes deliver these messages to agents under ACL on-
demand. Although this approach increases the amount of
the complexity of the system, it is an effective method to
solve the communication between agents and infrastructure
and provide a convenient means of integration with ROS for
AutoRobot. Figure 9 illustrates the integration with ROS in
AutoRobot

5.3 Deployment Architecture

The four parts of the deployment architecture for AutoRobot
are shown in Fig. 10: the AutoRobot front end, ROS server
end, robot hardware platforms and management toolkits.
These different parts are deployed in different software
frameworks and can be distributed in different platforms.

- AutoRobot front end. The AutoRobot front end is deployed
in JADE and provides reusable software packages for
ARS using Java. Autonomous applications can construct
the high-level multi-agent systems in the AutoRobot front
end by inheriting the agent models from reusable software
packages. The interaction between the AutoRobot front
end and the ROS server end is implemented by Java nodes
based on RosBridge in the AutoRobot front end. The in-
teraction between the AutoRobot front end and the man-
agement toolkits is implemented by the topics-based and

Fig. 10 Deployment architecture of AutoRobot

services-based communication mechanisms that we have
provided.

- ROS server end. The ROS server end is deployed in the
ROS robotic software framework and includes a series of
ROS nodes for different robots. These ROS nodes are used
to implement basic robotic functionalities. The interac-
tion between the ROS server end and the robot hardware
platforms is implemented by the control mechanisms pro-
vided by ROS. The interaction between the ROS server
end and the management toolkits is implemented in the
same manner.

- Robot hardware platform. At present, our robot hardware
platforms are the humanoid robot NAO and the mobile
robot Turtlebot2. These two robots can be controlled by
ROS nodes in the ROS server end. AutoRobot can support
multi-robot cooperation. Moreover, robots can directly re-
port their self-state information (such as electricity infor-
mation) to management toolkits.

- Management toolkits. Two visualized monitors based on
PC and Android Mobile serve as the management toolkits
in AutoRobot. These management toolkits are introduced
in the next subsection.

5.4 Management Toolkits for ARS

In AutoRobot, we designed and implemented two visualized
monitor tools as management toolkits based on PC and An-
droid Mobile platforms to provide support for information
visualization and management of autonomous robots. These
tools display four types of information: (1) task-planning in-
formation (such as a behaviours list of robot-oriented tasks);
(2) the execution state of tasks; (3) real-time sensing infor-
mation, including multimedia data (such as video informa-
tion and audio information) and numerical data or structured
data (such as pressure values or distance values after pro-
cessing and calculation from depth data); and (4) the basic
robotic information (such as electricity information).

These two monitors gather multimedia information and
numerical sensing data from the ROS nodes via ROS topics
and services, and they obtain task-planning information, the
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Fig. 11 User interface in the PC-based monitor and Android-based mon-
itor

execution state of tasks and certain structured data by com-
municating with agents via the proposed agent interaction
mechanisms. Figure 11 shows the user interface in the PC-
based monitor and the Android-based monitor.

6. Case Study

In this section, we implement the example described in
Sect. 2 and validate the effectiveness and applicability of
our framework. The hardware platform we adopted in the
case study is the Turtlebot2 mobile robot, including a mo-
bile base and Kinect modules, each of which consists of an
RGB camera and a depth camera. The software infrastruc-
ture consists of the AutoRobot server, the ROS server and the
visualized monitor tools. The AutoRobot server provides the
essential run-time containers for the agent entities. The ROS
server provides the infrastructure for the node programs to
communicate with each other. The visualized monitor tools
are designed to inspect the plan execution status and visual-
ize the sensor data.

6.1 Implementation Architecture

The case study for the aforementioned example is imple-
mented using a multi-agent system prototype that is embed-
ded in the AutoRobot framework, and the concrete architec-
ture for the case study is illustrated in Fig. 12. We divide this
implementation architecture into tow parts, one is high-level
agent programs and the other is low-level ROS controllers.
In high-level agent program, the description of the role that
each agent plays in this multi-agent system is as follows:

- The PlannerAgent performs modelling and planning jobs,
including activities of establishing world models and plan-
ning over a specific problem domain.

- The ScheduleAgent acts as a mediator that dispatches the
generated plans to a specific actuator agent capable of the
corresponding action.

- The ModelAgent establishes the word model on the basis
of the sensor inputs gathered by the sensor agents and then
offers the specifications of planning domain and problem
to the planner agent for task planning.

- An ActuatorAgent is implemented as the abstraction over

Fig. 12 The multi-agent implementation architecture of the case study

the robot physical actuator and maintains a simple reac-
tive structure, effectively managing the individual robot
actuator and translating the plan into primitive actions.

- A SensorAgent controls an independent sensor device
of the robot and is implemented to perform a stimulus-
response behaviour aimed towards external state changes.

For this specific example and the Turtlebot2 capabil-
ity, we designed the following: (1) a walk agent to drive
the mobile base to move around, (2) an RGB sensor agent
and depth sensor agent to obtain the RGB and depth images
from the RGB and depth cameras, and (3) the bumper agent
to obtain the pressure measurement from the bumper sensor.
These agent entities extended the super class of the actuator
agent and the sensor agent to implement concrete capabili-
ties of the robot hardware.

Moreover, we implement the low-level robot con-
trollers into ROS nodes that offer the fundamental robot
functionalities. Each of the ROS node programs corre-
sponds to a high-level agent entity used to fulfil the agent’s
capability. The ROS nodes communicate with the high-
level agent programs through the Java nodes implemented
by RosBridge middleware according to the topics or ser-
vices communication mechanisms.

6.2 Design Details and Running Results in Scenarios

Under the implementation architecture, we implemented the
service scenarios of searching, following and locking on the
elderly inhabitants. We explain the design details of the ser-
vice scenarios as follows:
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Fig. 13 The running results of scenarios in real world

Fig. 14 The sequence diagram of agent collaboration in the Searching
scenario

- Searching scenario. In this scenario, the robot must search
for a target in the environment with obstacles. The agent
roles involved in the scenario are the following: walk
agent, RGB sensor agent, depth sensor agent, planner
agent and schedule agent. Through collaboration and in-
teraction, these agents help the robot avoid obstacles and
find the target. Figure 14 illustrates the collaboration and
interaction behaviours of agents via the sequence diagram.

- Following scenario. In this scenario, the robot finds the
target and follows the target in an open and complex envi-
ronment. The involved agents in this scenario are the walk
agent, the RGB sensor agent and the depth sensor agent.
Figure 13 shows the real-world environment in a messy
laboratory and the real implementation of this scenario.

- Lock-on scenario. In this scenario, the robot locks on to
a target when it is following the target person in the pres-
ence of obstacles in the environment, such as other, irrele-
vant persons. The agent roles involved in this scenario are
the same as in the following scenario described above. As
shown in Fig. 15, we present the sequence diagram to de-
pict the concrete collaboration and interaction behaviours
of agents in the following scenario and the lock-on sce-
nario. Figure 13 shows the actual effect of the implemen-
tation of the lock-on scenario.

As noted above, in each scenario, the collaboration and
interaction behaviours among agent roles have been imple-
mented under the accompanying behaviour pattern in the
D-SMPA control model. In addition, we conclude that the

Fig. 15 The sequence diagram of agent collaboration in the Following
and Lock-on scenario

implementation of these scenarios in AutoRobot indicates
that AutoRobot has achieved our design objectives. More-
over, we consider the following scenario and the lock-on
scenario to present the concrete collaboration and interac-
tion behaviours of the agents and the implementation of the
objectives.

- Support for realization of autonomy and rationality. As
shown in Fig. 14, we present snapshots of the imple-
mented service scenario to depict the following process
of the robot in a dynamic environment. A complete video
demonstration is available at the project website†. In these
scenarios, from the results, the robot can follow and lock
on the target person in an open environment smoothly
without external control. Examining the process, the ac-
companying behaviour appearing through the complete
implementation of the scenario supports the realization
of autonomy and rationality. The concrete accompany-
ing behaviour is achieved by the collaboration between
the walk agent and the agents of the RGB and depth sen-
sors (Fig. 15). More specifically, the RGB and depth sen-
sor agents run in synergy with the walk agent to provide
the necessary observation results for plan execution. Be-
fore the walk agent (task behaviour) starts to execute the
move plan, the sensor agents (observation behaviours) ex-
pect to observe whether the target is detected to guarantee
the applicability of the plan and this is the pre-execution
phase of accompanying behaviour. While the robot is fol-
lowing the target, the depth sensor agent (observation be-
haviour) is observing whether there are unexpected obsta-
cles through the depth measurement to ensure the safety
of the plan execution, and this is the in-execution phase
of accompanying behaviour. To ensure the actual result
of the move plan, the RGB sensor agent (observation be-
haviour) can check if the target person is still in the robot
vision, and the depth sensor agent (observation behaviour)
checks whether the distance between the target person and
the robot is within the expected limit, this is the post-
†https://www.trustie.net/projects/3261/files
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execution phase of accompanying behaviour.

- Enhancing the reactive and flexible adjustment of be-
haviours. In our case, we implement the D-SMPA con-
trol model, which provides a multi-source and multi-loop
feedback mechanism for ARS to enhance the reactive and
flexible adjustment. As shown in Fig. 15, two types of
feedback are involved in the scenario, namely, the actu-
ator feedback and the sensor feedback. For the actuator
feedback, as the robot is moving towards the target person,
possible run-time contingencies (such as moveable obsta-
cles) may hinder the normal moving process and result in
execution failure; in this case, the walk agent provides the
feedback of the run-time execution status to the schedule
agent for task re-scheduling and the planner agent for task
re-planning. For the sensor feedback, the RGB and depth
sensors remain activated to observe the desired surround-
ing information, such as the features of the target person
and the distance with the robot. The feature and distance
information are provided as feedback to the walk agent
for run-time awareness and the planner agent to update
the planning domains.

- Integration and interaction. In this case, various software
components exist, such as agents, Java nodes and ROS
nodes; these are developed and running in different plat-
forms and different programming languages. However,
through the architecture of AutoRobot and the communi-
cation mechanisms in AutoRobot, these components are
well integrated as a hierarchical pattern and interact and
cooperate with each other in the expected manner.

7. Related Work and Discussion

The software architecture of a robot plays an important role
in developing robot applications [19]. The implementation
of software architecture is represented via software frame-
works.

Current frameworks of robotic software development
are based primarily on two types of approaches: one type in-
cludes the component-based approaches, and the other type
includes the agent-based approaches. The AutoRobot frame-
work represents our approach to solve development issues
in the implementation of ARS and applications under an
agent-based architecture. Many other well-known robotic
software frameworks exist. In this section, we introduce
selected frameworks and compare them with AutoRobot to
discuss the strengths and weaknesses of our approach.

- Component-based framework. The component-based
framework is the most popular approach for robotic
software development because this framework is essen-
tial to any engineering discipline when complexity dic-
tates methodologies that leverage reuse and correct-by-
construction approaches [1]. Modularization, encompass-
ing heterogeneity, achieving constructivity and simplify-
ing the development process compose the strengths of the

component-based framework. However, the largest draw-
back of the component-based framework is the lack of
support for autonomy. YARP (Yet Another Robot Plat-
form) [20], ArmarX [21], Player/stage [22], Webots [23],
ORCA [24], MARIA (Mobile and Autonomous Robotics
Integration Environment) [25], ROS [17], and V-REP
(Virtual Robot Experimentation Platform) [26] are com-
mon component-based frameworks for robotic software.

- Agent-based framework. Relative to the component-based
framework, the agent-based framework can provide more
support for autonomy of ARS. Based on the sociologi-
cal feature of MAS, in an agent-based framework, ev-
ery component or robot can appear as an agent, and
each agent can interact or cooperate with each other rel-
atively flexibly and autonomously. AutoRobot is a type
of agent-based framework. VOMAS (Virtual Operator
Multi-Agent System) [27] and COROS [13] are common
agent-based frameworks for robotic software.

To discuss the strengths and weaknesses of our frame-
work AutoRobot, we establish a conceptual framework to
compare AutoRobot and the other software frameworks
mentioned above [28]. In the context of a robotic software
framework, here, a platform for the implementation of ARS
via an integral and concrete production of software engi-
neering methodologies, tools and libraries, we present three
categories of criteria for comparison that cover support for
ARS, software engineering characteristics and platform sup-
ports.

- Support for ARS:

• Support for autonomy. This is one of our design ob-
jects addressed in Sect. 2 and is important for an ARS
framework. Autonomy and rationality are the funda-
mental elements to distinguish an autonomous robot
from a traditional industrial robot.
• Promotion of reactivity. This is also one of our de-

sign objects addressed in Sect. 2. Robot software re-
activity depends on whether the software architecture
implements basic sensor-effector reacting loops and
executes reactive strategies in response to emergent
situations.
• Robustness. As the environment becomes increas-

ingly open and the system becomes increasingly
complex, robustness is becoming increasingly im-
portant for autonomous robots. Satisfactory robust-
ness can greatly improve the capability of fault-
tolerance and adaptability to the environment for au-
tonomous robots.
• Multi-robot cooperation. Multi-robot applications

are a major trend of development of autonomous
robots. The development of software for a multi-
robot software application generally requires that the
robotic software framework offers convenient facili-
ties to solve coordination issues of robot teams, such
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Table 2 Comparison of robotic software frameworks. Letter codes are as follows: P=Python, J=Java.

Criteria
Frameworks

Support for
autonomy

Promotion
of reactive Robustness

Multi-robot
cooperation Reusability Modularity Maintenance

Programming
language

Management
toolkits

Integration
with ROS

Reusable
packages

YARP
√

-
√
+

√
-

√
-

√
+

√
+

√
+ C++ × × √

+

ArmarX
√
+

√
-

√
+ × √

+
√
+

√
- C++, P, J

√
+ × √

+

Player\stage × × √
-

√
+

√
-

√
-

√
- C++, P, J

√
- × √

-
Webots × × √

-
√
+

√
-

√
-

√
- C++, J

√
- × √

-
ORCA × × √

- × √
+

√
-

√
+ C++ × × √

+

MARIA
√

-
√

-
√

-
√

-
√
+

√
+

√
+ C++ × × √

+

ROS
√

-
√

-
√

- × √
+

√
-

√
- C++, P × √

+
√
+

V-REP × √
-

√
- × × √

- × Lua
√
+

√
-

√
+

VOMAS
√
+

√
+

√
+

√
+

√
-

√
+

√
+ J × × √

-
COROS

√
-

√
-

√
+

√
+

√
+

√
-

√
- C++, P × √

+
√
+

AutoRobot
√
+

√
+

√
+

√
-

√
+

√
+

√
+ C++, P, J

√
+

√
+

√
-

as distributed communication protocols, sensor net-
works, and knowledge bases.

- Software engineering characteristics:

• Reusability. Reusability depends on whether the
software architecture or middleware provides care-
fully designed program interfaces and suitable porta-
bility of successful robotic software products among
heterogeneous robot platforms.
• Modularity. A modular robotic software architecture

consists of several components of high cohesion and
low coupling, with the dependences among compo-
nents being kept at a minimum to obtain a maintain-
able and scalable software.
• Maintenance. A robotic software being satisfacto-

rily maintained allows flexible and straightforward
modification of a certain robotic functionality, such
as task-planning algorithms and off-the-shelf knowl-
edge reasoning engines.

- Platform supports:

• Programming language. The programming language
used for development is also an important aspect.
The greater the number of supported languages, the
more flexibility is contributed to the development.
• Management toolkits. Management toolkits can help

the developer and application users to identify the ex-
ecution states of tasks and robotic sensing informa-
tion more intuitively. These toolkits can facilitate the
development and management of autonomous robot
application.
• Integration with ROS. ROS, one of the most com-

monly used robotic frameworks, provides support for
the development of the vast majority of autonomous
robots. Integration with ROS can improve the exten-
sibility of frameworks.
• Reusable packages. The framework must establish

well-structured abstractions over basic robotic func-
tionalities and implement them as reusable packages
to ease development efforts for programmers.

The results of the comparison are shown in Table 2. For

each framework, a value has been assigned for the criteria
based on the publications and user experiences. In addition,
two types of assignments are made in the comparison: (1)
a designation of “×” for not supported, “

√
-” for partially

supported, “
√
+” for well supported, and (2) brief text de-

scriptions.
Table 2 indicates that AutoRobot outperforms most of

other robotic software frameworks in following aspects: (1)
AutoRobot supports the autonomy, perfect reactivity and
favourable robustness of the ARS by providing an explicit
behaviour pattern, control model, architectural structures
and interaction mechanisms; (2) AutoRobot satisfies good
software engineering practices; and (3) AutoRobot supports
users to manage the states of robots and task execution, and
AutoRobot favourably integrates ROS for robotic control.

However, certain limitations exist with AutoRobot.

- First, AutoRobot cannot provide sufficient development
and running support for multi-robot applications. Al-
though we have designed the communication and inter-
action mechanisms between robots in AutoRobot, we are
still developing a single robot at the present stage.

- Second, as shown in Table 2, AutoRobot does not provide
a sufficient extent of reusable packages for development
of ARS because AutoRobot is still in the early stage of
development; we are currently developing more software
packages in AutoRobot.

- Third, although AutoRobot provides satisfactory support
for the autonomy and reactivity of ARS, we suggest that
certain aspects remain to be improved. For example, we
can improve the autonomy by providing an autonomous
decision mechanism or a task allocation mechanism.

- Finally, programmers must use C++ or Python to design
ROS nodes and use Java to design agents; this approach is
not user-friendly for new programmers.

8. Conclusion

Autonomous robots are software-driven, cyber-physical and
social eco-systems that operate in an open environment;
software plays an important role in such robots. The re-
quirements of ARS challenge the existing robot software
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architecture, framework and resultant implementation ap-
proaches from software engineering perspectives. We have
provided the ARS framework AutoRobot for ARS develop-
ment and implementation. The contributions of this study
are as follows:

1. New perspectives on ARS. Through an analysis of the
features and requirements of ARS, we conclude that
the software development of ARS must satisfy three
design objectives: (1) provide support for realizing au-
tonomy and rationality, (2) improve reactivity, and (3)
enable improved integration and interaction.

2. Enabling software technologies. Based on the design
objectives, we have presented three enabling technolo-
gies: (1) accompanying behaviours as a behaviour pat-
tern to better realize autonomy and rationality, (2) a
dual-loop control model to improve the capability of
feedback, and (3) an agent-based software model to im-
plement better integration and interaction.

3. AutoRobot multi-agent software development frame-
work. AutoRobot achieves our design objectives via
the enabling technologies that we have presented. Au-
toRobot provides a series of reusable software pack-
ages as software development supports; in addition,
AutoRobot provides a deployment architecture and vi-
sualized monitor tools based on PC and Android Mo-
bile as deployment and management supports.

We have successfully developed several ARS scenar-
ios to validate the effectiveness and applicability of our pro-
posed framework. Our future research studies include the
following: (1) providing various reusable packages for the
development of additional ARS and autonomous robot ap-
plications; (2) designing additional mechanisms to support
autonomous decision and task allocation; and (3) develop-
ing additional autonomous robot applications to validate and
improve the control model and software framework.
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[14] J. Lacouture, V. Noël, J.-P. Arcangeli, and M.-P. Gleizes, “Engineer-
ing agent frameworks: An application in multi-robot systems,” Ad-
vances on Practical Applications of Agents and Multiagent Systems,
vol.88, pp.79–85, Springer, Berlin, Heidelberg, 2011.

[15] N.R. Jennings, “An agent-based approach for building complex
software systems,” Communications of the ACM, vol.44, no.4,
pp.35–41, 2001.

[16] M.B. van Riemsdijk, “20 years of agent-oriented programming in
distributed AI: history and outlook,” Proceedings of the 2nd edition
on Programming systems, languages and applications based on ac-
tors, agents, and decentralized control abstractions, pp.7–10, ACM,
Oct. 2012.

[17] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R.
Wheeler, and Ng, Y. Andrew, “ROS: an open-source Robot Oper-
ating System,” ICRA Workshop on Open Source Software, vol.3,
no.3.2, p.5, 2009.

[18] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa, “JADE:
A software framework for developing multi-agent applications.
Lessons learned,” Information and Software Technology, vol.50,
no.1, pp.10–21, 2008.

[19] L. Natale, A. Paikan, M. Randazzo, and D.E. Domenichelli, “The
icub software architecture: evolution and lessons learned,” Frontiers
in Robotics and AI, vol.3, 24, 2016.

[20] G. Metta, P. Fitzpatrick, and L. Natale, “YARP: yet another robot
platform,” International Journal of Advanced Robotic Systems,
vol.3, no.1, p.8, 2006.
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