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PAPER

Spectrum-Based Fault Localization Using Fault Triggering Model
to Refine Fault Ranking List

Yong WANG†,††a), Zhiqiu HUANG††, Rongcun WANG†††, Nonmembers, and Qiao YU†††, Member

SUMMARY Spectrum-based fault localization (SFL) is a lightweight
approach, which aims at helping debuggers to identity root causes of fail-
ures by measuring suspiciousness for each program component being a
fault, and generate a hypothetical fault ranking list. Although SFL tech-
niques have been shown to be effective, the fault component in a buggy
program cannot always be ranked at the top due to its complex fault trig-
gering models. However, it is extremely difficult to model the complex
triggering models for all buggy programs. To solve this issue, we propose
two simple fault triggering models (RIPRα and RIPRβ), and a refinement
technique to improve fault absolute ranking based on the two fault trigger-
ing models, through ruling out some higher ranked components according
to its fault triggering model. Intuitively, our approach is effective if a fault
component was ranked within top k in the two fault ranking lists outputted
by the two fault localization strategies. Experimental results show that our
approach can significantly improve the fault absolute ranking in the three
cases.
key words: fault localization, software debugging, testing

1. Introduction

Debugging play a key role in software life cycle to improve
software quality. A data from the Cambridge University
shows total estimated cost of debugging is $312 billion per
year in all the world, and programmers spent half of their
time in debugging [1]. A general debugging work includes
fault detect, localization and fixing. Therefore, a nice fault
localization technique can help development groups reduce
financial budgets and human resources. According to root
causes, faults can be classified into three disjoint types: Se-
mantic faults, Concurrency Faults, and Memory Faults [2].
Tan et al. perform a study for fault characteristics in open
source software, they found semantic faults are the domi-
nant root cause of failures. As software evolves, semantic
faults increase, and memory-related faults decrease. There-
fore, they called for more research effort to address semantic
bugs [2]. However, automatic fault localization for Sematic
Faults is difficult due to sematic faults are related with re-
quirements or programmers intentions.

Manuscript received December 1, 2017.
Manuscript revised May 22, 2018.
Manuscript publicized July 4, 2018.
†The author is with School of Computer and Information,

Anhui Polytechnic University, Wuhu, China.
††The authors are with the College of Computer Science and

Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing, China.
†††The authors are with School of Computer Science and Tech-

nology, China University of Mining and Technology, XuZhou,
China.

a) E-mail: yongwang@ahpu.edu.cn
DOI: 10.1587/transinf.2017EDP7386

Spectrum-based fault localization technique (SFL) is
the use of test results and various program spectra collected
from the testings to measure the likelihood of a program
entity being a fault [3]. SFL techniques have gained much
popular due to lower computational overhead and high scal-
ability. However, are SFL can really help programmers lo-
calize root cause of failures in reality? Recently, researchers
perform some empirical studies or survey researches to try
answer this questions, such as [4]–[7]. Despite their differ-
ences, they all highlight SFL should improve accuracy and
support fault understanding to improve its usefulness.

In previous studies, some researchers focused on
proposing different SFL techniques to improve accuracy of
fault localization with aid of relationship among compo-
nents. Zhang et al. [8] highlighted that a fault may propa-
gate a series of infected program states before triggering a
failure. They used edge profiles to model infected program
states, and by associating basic blocks with edges, the suspi-
ciousness scores for each component was calculated. Baah
et al. [9], [10] applied casual inference to fault localization,
and a linear model was built on program dependency graph
to estimate the causality of failures of a given program com-
ponent. Wang et al. [11] proposed a SFL approach combined
with fault context of program spectrum.

Different from previous works, we propose a SFL tech-
nique using fault triggering model to further refine fault
ranking list for a SFL technique. The above mentioned ap-
proaches are also easily combined into our approach. Our
idea behind this is that we can refine the fault ranking list
via ruling out some components ranked higher if we know
that they follow which fault triggering model. The fault trig-
gering model is discussed in detailed in Sect. 4. There exist
two fault triggering models, called RIPRα and RIPRβ. In-
formally, if a fault triggering model belongs to RIPRα, then
the root fault(s) is covered in all failed executions for a spec-
ify test suite, otherwise, it belongs to RIPRβ. Although our
idea seems to be obvious and simple, it is helpful to refine
the fault ranking list. For example, we assume a compo-
nent ci in a single-fault program, which the fault triggering
model clearly belongs to RIPRα, is ranked at the top in a list
of suspicious components generated by a SFL technique. If
we know ci is not covered in a failed execution, it is easily
to know that ci can view as a fault-free component based
on Reachability, Infection, Propagation, and Revealability
(RIPR) model [13]. Therefore, we could exclude ci from
the fault hypotheses set using this information. We summa-
rize explicitly the simple but essential idea into two different
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fault triggering models, which should be considered in guid-
ing programmers to localize fault. Based the characters of
the two fault triggering models, different fault localization
strategies were proposed.

In summary, this article makes the following contribu-
tions:

• two fault triggering models are proposed based on
RIPR.

• two strategies using fault triggering model to refine
fault ranking list were proposed.

• an empirical evaluation of our approach on 129 pro-
gram versions from the SIR dataset for three different
fault localization scenario, and the results are promis-
ing.

This paper is organized as follows: In Sect. 2 gives a
motivation example to illustrate our idea. Section 3 de-
scribes some preliminaries for our approach. Section 4
presents fault triggering model and two fault localization
strategies, followed by an empirical evaluation in Sect. 5 and
related works in Sect. 6. Section 7 concludes this paper and
give some future works.

2. Motivation Example

In this section, we illustrate our research motivation with an
example shown in Fig. 1, which is a program segment ex-
cerpted from program schedule v2 [14]. The program sec-
tion manages a process queue. It first calculates the index of
the target process and then moves the target process in the
priority queue. The buggy program segment contained a bug
in line 2, which should get the index of the target process
which is accidentally written as count = block queue− >
men count + 1. Columns 1 to 3 shows the statement num-
bers, program segment, and the corresponding number of
basic blocks. Columns 4 to 11 represents t1 − t8, respec-
tively. The program spectrum is represented in the column,
and indicates whether the corresponding block is executed
in the test case (‘1’ for executed, ‘0’ for not executed). The
result of the test is given in the bottom row, where ‘1’ indi-
cates failure and ‘0’ indicates success.

As we know, SFL techniques, such as Dstar, focus on
independently calculating the suspiciousness of each com-
ponent and ranking all components based on their suspicious
scores. In our example, b3 has the highest suspiciousness
among the four basic blocks, which is higher than the actual
fault b2. In this case, it is difficult to lower the ranking for b3

or improve the ranking for b2 underlying the assumptions for
those SFL techniques. Due to the example only contains a
single fault, we are easily to know the fault triggering model
is RIPRα, in which the fault(s) triggers failures in all failed
tests.

We find that b3 is not executed in failed test t6. Hence, it
is easily to infer b3 is non-fault component which can be ex-
cluded from the fault ranking list. So, b2, which is the root
cause of failures, is the highest ranking. The characteris-
tics for RIPRα and RIPRβ are different, therefore, we adopt

Fig. 1 Fault program segment for schedule v2 and fault localization com-
parison

different fault localization strategies mentioned as Sect. 4 to
perform fault localization.

3. Preliminary

3.1 Definitions

Definition 1: P= (c1, c2, . . . , cn) is a program, which con-
tains n components. Components can be statements, blocks,
or functions, etc.

Definition 2: T = (t1, t2, . . . , tm) is a test suite, which con-
tains m test cases. We divided T into two groups, T f for all
failed test cases and T f for all successful test cases.

There are many types of mistakes that occur dur-
ing software development. The following three terms are
adopted by IEEE conventions [15].

Definition 3: Fault/Bug is a static defect in the software.

Definition 4: Failure, which can be observed, is an exter-
nal, incorrect behavior which does not meet with the soft-
ware requirements.

Definition 5: Error, is an incorrect internal state and can
not be observed directly, which is the manifestation of
faults/bugs in program execution.

3.2 Spectrum-Based Fault Localization

SFL techniques exploit program spectrum, which includes
information about component coverage information in a
program executions [16]. Collection of program spectra
is a lightweight program analysis approach, and program
spectrum provides a dynamic view on behavior of the
program [3].

A program spectra can be represented as a binary N×M
Coverage Matrix A. In matrix A, N is the number of success-
ful executions and M is the number of program component
which is be instrumented. The result of each program run-
ning be collected and stores in a N-length error detection
vector, which also called Result Vector e. In the result vec-
tor e, ‘0’ indicates successful and ‘1’ indicates failed. The
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Fig. 2 Program spectrum and error detection vector

Coverage Matrix and Result vector show as Fig. 2. The key
for a SFL technique is measurement of suspiciousness based
on Coverage matrix and Result vector. There exists several
similarity metric may use to compute suspiciousness [17].
Given an input (A, e), the coverage information as blow be
calculated.

• n00(s) is the number of successful runs that do not cover
a component s.

• n01(s) is the number of failed runs that do not cover a
component s.

• n10(s) is the number of successful runs that cover a
component s.

• n11(s) is the number of failed runs that cover a compo-
nent s.

• n1∗(s) is total number of test cases that cover a compo-
nent s.

• n∗0(s) is total number of successful test cases.
• n∗1(s) is total number of failed test cases.

Four similarity metrics of well-known fault localization
techniques: Jaccard [18], Tarantula [19], Ochiai [18], and
Dstar [20], are defined as below:

Jaccard(s) =
n11(s)

n01(s) + n1∗(s)
(1)

Tarantula(s) =
n∗0(s) × n11(s)

n∗1(s) × n10(s) + n1∗(s) × n11(s)
(2)

Ochiai(s) =
n11(s)√

(n∗1(s) × (n1∗(s))
(3)

Dstar(s) =
(n11(s))2

n01(s) + n10(s)
(4)

3.3 Spectra-Based Fault Reasoning

Abreu et al. [21] proposed a multiple-fault localization tech-
nique, named BARINEL. The technique used a Bayesian In-
ference framework to debugging with intermittent faults. A
parameter hi was introduced to represent the likelihood of a
component i showing a health behavior.

We assume there exist a hypotheses set D = < d1, . . . ,
dk >, which can be computed by Minimum Hitting Set al-
gorithm, such as STACCTO [22]. Each element in D is a
subset of the program components that, when at program
failure, can explain the faulty behavior.

After program testing, similarly as SFL, Coverage Ma-
trix A and Result vector e were collected. Each element di in
D are ranked based on their likelihood of being the correct
diagnosis. This probability is defined as Formula (5):

P(dk |obs) = p(dk) ·
∏

obsi∈obs

p(obsi|dk)
p(obsi)

(5)

where obsi is the row Ai∗, which represent a program spec-
trum collected by running test ti, and obsi ∈ obs. The
p(dk) is a priori probability of the element dk, defined as
Formula (6):

P(dk) = p|dk | · (1 − p)M−|dk | (6)

where p is a priori probability of a component being a fault,
and P(obsi|dk) represents the probability of obsi if the com-
ponent dk was the actual fault, and is given by Formula (7):

p(obsi|dk) =

{
0, i f obsi, ei, and dk are inconsistent
ξ, otherwise

(7)

where ξ is defined as Formula (8):

ξ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − ∏

j∈dk∧ai j=1
h j, i f ei = 1

∏
j∈dk∧ai j=1

h j, otherwise
(8)

The denominator p(obsi) is a normalizing term that is
equal for all dk ∈ D needs not to be computed for ranking
purposes.

3.4 Assumptions

Assumption 1. The output of a program P is deterministic.
Namely, the program P always produces the same re-

sult in different executions given the same input value.
Assumption 2. A program failure occurred always meet
with RIPR model.

SFL techniques are characterised by measuring suspi-
ciousness based on coverage vector of component and its
Result vector. Therefore, a SFL does not typically find fault
if the fault can not be reached in program executions, such
as Missing code faults, variable declaration faults and et al.,
which have no faults be reached during program executions,
although those cases can still be interpreted by RIPR model.
Assumption 3. There exists a test oracle that determines the
status of a test execution for program P, i.e., “successful” or
“failed”.

Constructing the test oracle is a difficult, independent
research problem. Assumption 3 is made to simplify the
approach. Given a test oracle, our approach may be fully
automated to collect Coverage Matrix and Result Vector.
Assumption 4. There exist many failed test cases in
testings.

In our approach, we require many different failed pro-
gram spectra to rule out some components ranked highly
iteratively. Our approach can not refine fault ranking list if
there exist only one failed program spectrum.

4. Our Approach

4.1 RIPR Model

Offutt and Morell propose independently Fault&Failure
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Fig. 3 RIPR model

Model in which they point a failure to be observed must fol-
low three necessary conditions, which published as differ-
ent notations [23], [24]. Recently, Li and Offutt [13] extend
the Fault&Failure Model, and they highlight there exist four
necessary conditions, namely Reachability, Infection, Prop-
agation and Revealability (called RIPR model). In Fig. 3, the
RIPR model was shown. The four conditions are defined as
follows:

• Reachability: The program component containing the
fault(s) must be reached.

• Infection: The components must infect the internal
state of the program.

• Propagation: The infected state must propagate, caus-
ing some output to be incorrect.

• Revealability: The tester must observe part of the in-
correct portion of the program state.

We though an example, which was shown in Fig. 4, to
illustrate the RIPR model. The buggy program contains a
single fault, and the fault is that it should start searching at
index 0 instead of index 1, as is the necessary for arrays in
Java language. In software testing community, the purpose
is choosing input data to trigger fault and cause failure. In
the example, for inputting array [1,2,0] correctly get result
1, while inputting array [0,2,3] incorrectly get result 0. In
the two cases the fault is both reached. Although both of
these cases result in some errors, only the second case the
fault triggers a failure. To understand those error, we need
to identify the state for the program, which can represent
as {(x,count,i),PC}, where PC is program execution counter.
Inputting array([1,2,0]), {(x=[1,2,0],count=0),PC=if} rep-
resents the program state where the program executes at
if statement on the first iteration of the loop. Notice that
this state is an error due to the value of count correct co-
incidentally. Therefore, the error does not propagate to

Fig. 4 RIPR example

the program output. For inputting array[0,1,2], similarly,
the state at if statement on the first iteration of the loop
is {(x=[0,1,2],count=0),PC=if}. The error propagate to the
output and a failure is revealed by the Test Oracle Strategies.

Due to our purpose of fault localization, we can eas-
ily infer the fault location(s) and fix it if we know the RIPR
model. However, it is difficult to model error state and de-
termine whether it is error, and the propagation of infected
error for the complex program dependency. Therefore, we
only focus on measuring the suspiciousness for each pro-
gram component in SFL techniques. According to RIPR
model, for failed spectra, root cause(s) of failures must be
triggered and revealed. Considering the two necessary con-
ditions, we can define two different fault triggering model:
RIPRα model and RIPRβ model.

4.2 Fault Localization Strategy for RIPRα Model

As mentioned in the above section, a failed running for a
buggy program must be satisfied with RIPR model. There-
fore, a failed execution for a buggy program must be reached
the root fault, infected states, propagated the error states,
and revealed by test oracle strategies. That is to say, a failed
program spectrum must be contained the root fault(s), and a
successful execution may possibly covered the root fault(s),
but not satisfied the other necessary conditions which make
it correct coincidentally [25].

Based on RIPR model, each component in each failed
program spectrum is probably root fault. Therefore, for a
failed test case ti, we can defined suspicious components as
Formula (9).

suspicious(T fi ) = {c j|c j ∈ getSpectrum(T fi )} (9)

where T fi is a failed test case, getSpectrum(T fi ) get a set
of components which covered by a program spectrum by
running a failed test case T fi .

For a failed test suite, we define suspicious components
set which covered by all failed test cases as Formula (10).
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Algorithm 1 Fault Localization for RIPRα
Input: Spectrum Matrix A, test result e, suspiciousness metric ρb;
Output: fault ranking list Dα;
1: A f ← f ilterPassA(A, e)
2: for each i in |e f | do
3: Suspiciousi ← getComponent(A fi )
4: end for
5: Suspiciousα =

⋂
i∈|e f |

suspiciousi

6: Aα, eα ← f ilter(A, e, suspiciousα)
7: for j = 0 to |Suspiciousα | do
8: setValues(n00(i), n01(i), n10(i), n11(i));
9: S[i]← ρb(n00( j), n01( j), n10( j), n11( j));

10: end for
11: Dα ← sort(S);
12: return Dα;

Table 1 Spectra gathered when running test-suite for RIPRα

T c1,4 c2 c3,5 c6 e
t1 1 1 0 1 pass
t2 1 0 0 0 pass
t3 1 1 1 1 fail
t4 1 0 0 1 pass
t5 1 1 0 1 pass
t6 1 1 0 1 fail
t7 1 0 0 1 pass

Table 2 Filtered spectra for RIPRα

T c1,4 c2 c6 e
t3 1 1 1 fail
t6 1 1 1 fail

Suspicousα(T f ) =
⋂
ti∈T f

suspicious(ti) (10)

In RIPRα model, the components covered in all failed
tests can be viewed as suspicious fault(s). The fault localiza-
tion strategy for RIPRα is described in Algorithm 1. Table 1
shows an example program spectrum collected by some test
executions. Considering some components have same cov-
erage information, we group them such as c1,4. In the fol-
lowing, we illustrate our approach using the example.

Based on RIPRα model, we firstly generate failed
spectra by filtering successful program spectra, which was
shown as Table 2. Then we get components belonging to
fault triggering model RIPRα. In the example, {c1,4, c2, c6}
that are all triggered in all failed tests belong to RIPRα. Al-
though those components belong to the same fault trigger-
ing model, their suspiciousness are different. We can use
SFL techniques directly to compute suspiciousness for each
component and rank them.

4.3 Fault Localization Strategy for RIPRβ Model

Based on RIPR model, each component in each failed pro-
gram spectrum is probably root fault. The suspicious com-
ponents for single-fault programs defined as above sec-
tion. However, for some programs contained multi-faults,
all fault(s) are not triggered in every failed test case. In this
scenario, we should exclude two groups in the suspicious

Table 3 Spectra gathered when running test-suite for RIPRβ

T c1 c2 c3 c4 e
t1 0 1 1 0 fail
t2 1 0 1 0 fail
t3 0 1 1 0 fail
t4 1 0 1 0 pass
t5 1 1 1 1 pass

Table 4 Filter spectra filtered for RIPRβ

T c1 c2 e
t1 0 1 fail
t2 1 0 fail
t3 0 1 fail

set: components that all be covered in all failed spectra and
all components that are never covered by all failed spectra.

In practice, components that all be covered in all failed
spectra belong to fault triggering model RIPRα, which be
defined as Formula (9). Components that are never cov-
ered by all failed spectra can be defined as Formula (11),
(12). We define components belonged to fault triggering
fault RIPRβ as Formula (13).

C0(T fi ) = {c j|c j � getSpectrum(T fi )} (11)

C0 =
⋂
ti∈T f

C0(ti) (12)

Suspicousβ(T f ) = C \C0 \
⋂
ti∈T f

suspicious(ti) (13)

In RIPRβ model, those components which are not cov-
ered by all failed tests can be viewed as suspicious fault(s).
Table 3 depicts an example program spectrum collected by
the test runs. Table 4 give the result of filtering spectra for
RIPRβ. Based on RIPRβ model, from the first row it easily
know c1 could be one of the faults due to the failure can only
be caused by at least one faulty component. Similarly, com-
ponent c2 also can be inferred it is probably be among the
bug components. Therefore, {c1, c2} is only possible fault
diagnosis. In practice, there exist a lot of diagnosis candi-
dates such as {c1, c2} can explain program failures. We can
use STACCATO algorithm to generate minimal candidates,
i,e., candidates that can not be subsumed by any other lower
cardinality candidate [22]. Furthermore, we sort those can-
didates based on their probability of being the correct diag-
nosis. Therefore, we can use Spectra-based fault Reasoning
technique directly to perform fault localization for RIPRβ
scenario. Fault localization framework for RIPRβ model is
described in Algorithm 2.

According definition of fault triggering model RIPRβ,
multi-fault programs can be divided three cases:

• Case 1: all faults are covered in all failed program
spectra, which can be viewed as RIPRα.

• Case 2: some faults are covered in all failed program
spectra, others are not, which can be viewed as combi-
nation of RIPRα and RIPRβ. In this, we can combine
the two strategies to perform fault localization.

• Case 3: all fault(s) are not triggered in every failed test
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Algorithm 2 Fault Localization for RIPRβ
Input: Spectrum Matrix A, test result e;
Output: fault ranking list Dβ;
1: A f ← f ilterPassA(A, e)
2: for each i in |A f | do
3: Suspiciousi ← getComponent(A fi )
4: C0i ← C \ Suspiciousi
5: end for
6: C0 =

⋂
i∈T f

C0i

7: Suspiciousβ = C \C0 \ ⋂
i∈|e f |

suspiciousi

8: Aβ, eβ ← f ilter(A, e, suspiciousβ)
9: Dβ ← BARINEL(Aβ, eβ);

10: return Dβ;

case, which belongs to RIPRβ.

4.4 Discussion

In this section, we discuss the two fault localization strate-
gies respectively. RIPRα strategy would lead to the best for
single-fault programs. We use the following theorem to ver-
ify this conclusion.

Theorem 1: For single-fault programs, given Coverage
Matrix A and Result vector e, the suspicious compo-
nent ranking list outputted by RIPRα is the most superior
theoretically.

Proof 1: For a single-fault program, the single fault com-
ponent must be covered in all failed tests. On the contrary,
if a component which do not covered once in a failed execu-
tion, the component can be viewed as non-fault component
due to those components can not explain all program fail-
ures. This can imply that for a remaind component e, n11(e)
is equal to n∗1, and n01(e) is equal to 0. Therefore, Dstar can
be written as:

ρDstar
b (e) =

1
n10(e)

(14)

As we have already ruled out all components whose n11 <
n∗1, the rank list outputted by our approach is optimal.

If a buggy program belongs to RIPRβ, there have no
fault be covered in all failures. Therefore, a single suspi-
cious component can not explain all failures. In this sce-
nario, a minimal-hit set that can explain all failures is better
choose than single component.

As mentioned above, if a program is single-fault pro-
gram, we could use RIPRα strategy to perform fault local-
ization, and get an optimal solution. However, Although
single-fault programs are the majority, there are still multi-
ple fault programs in practice [27]. But above all, we don’t
know if a program is a single-failure or multiple-failure pro-
gram, and not to mention what kind of fault trigger model
it belongs to. Thence, we could not apply the two strate-
gies directly for a buggy program. Let us look closer at the
ranking list outputted by the two strategies, the two ranking
lists are disjoined. Therefore, we can combine the two fault

Table 5 Subjects used for empirical studies

Program LOC BBs Vers Testcases Description
print token 478 122 5 4130 Lexical analyzer
print token2 399 135 9 4115 Lexical analyzer

replace 512 153 26 5542 Pattern matcher
schedule 292 73 8 2650 Priority scheduler
schedule2 301 77 8 2710 Priority scheduler

tcas 141 23 36 1608 Aircraft control
tot inf 440 74 19 1052 Info measure

ranking list to perform fault localization.
Recently, Kochhar et al. pointed that 98% of practition-

ers consider a SFL technique is useful only if it outputted
fault component(s) within the top-10 in fault ranking list [5].
Inspired by this view, there exist many heuristic methods to
guide the combination of the two strategies. For example,
we could first check top 5 outputted by RIPRα strategy, if we
can not find the root fault, then we find next top 5 outputted
by RIPRβ strategy. If we cannot find fault component(s) in
the two strategies, we recommend that programmers switch
to other fault localization techniques for debugging.

In short, if fault component(s) is ranked within the top
k in any two ranking lists, it is very meaningful to our ap-
proach. Additionally, if we find a fault component in the
ranking list outputted by RIPRβ strategy, we easily to infer
that this is a multi-fault program, which is very important to
programmers. This information can guide programmers to
perform their next work.

5. Empirical Evaluation

We built a SFL prototype tool, called TRiGGER, based on
fault triggering model to refine fault ranking list, and we
present an empirical evaluation for TRiGGER. In particu-
lar, we search for answers to the following three research
questions:

• RQ1 What is the effectiveness of TRiGGER on
RIPRα?

• RQ2 What is the effectiveness of TRiGGER on
RIPRβ?

• RQ3 What is the effectiveness of TRiGGER on uncer-
tain fault triggering model?

5.1 Subject Programs

In our experiments, we used 7 C programs from SIR as ex-
periment objects [14]. Those programs contain tcas, tokens,
tokens2, replace, tot inf, schedule, and schedule2. Ta-
ble 5 shows the detailed characteristics of these programs.
To meet Assumption 3, we created a fault-free version for
each program and constructed a test oracle to determine the
testing result of program versions. Columns 2 to 3 shows
the number of uncommented code lines and basic blocks for
these programs the 4th column gives the number of buggy
versions for each program, the 5th column gives the number
of test cases for each program, and the last column describes
detailed information for each program.
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There exist 132 versions in the suites, and there ex-
ist program versions that are seeded with bugs in variable
declarations, which do not meet Assumption 2. Due to the
instrumentation can not reach these declarations, we de-
note the directly infected block or an adjacent executable
block as the location of fault to reflect the effectiveness
of our approach. We excluded the two program versions
print tokens4, print tokens6 due to they are identical to the
bug-free version. We ignored schedule2 9, because their test
results are all successful, namely, they have no failed test
case. In total, the subjects of our experiment included 129
versions of the Siemens suite from SIR [14].

5.2 Effectiveness Metric

Effectiveness metrics are an important way to perform ac-
curate and objective comparisons. There are two main
metrics: PDG-based metric [32], and Ranking-based met-
ric [20], which used to measure fault localization quality in
the field.

Parnin and Orso suggested that SFL techniques should
focus on improving absolute ranking rather than percentage
rank. Recently, Wang et al. proposed a improvement metric
to measure the absolute ranking improvement [11]. Let B
be the fault absolute ranking outputted by a SFL technique
for a buggy version, and A be the fault absolute ranking out-
putted by our approach for the same program version. The
effectiveness metric can be defined as Formula (15):

ImprSFL
TRi (A, B) =

{
0, i f B = 0
B−A

B × 100%, Otherwise
(15)

In our experiment, we adopt the Effectiveness metric
as our evaluation metric. In this research, our goal is to im-
prove the fault absolute ranking. Therefore, if B=0, we have
no room to improve because it has been ranked at the top.
In this case, we believe the improvement is 0%. We assume
that our approach is 100% improved to compare with a SFL
technique if fault component is ranked at the top. There-
fore, we assign the index of fault ranking list beginning at 0
( k−0

k ×100% = 100%). For example, if a SFL ranked the root
cause at 20 for a buggy program and our approach ranked it
17, we can say our improvement is 19−16

19 × 100% = 15.8%.

5.3 Empirical Results

To study the effectiveness of our approach, we answer our
research questions by performing a set of experiments. Pear-
son et al. highlight that all SFL techniques are equally good
for real faults. Therefore, we choose Dstar as a benchmark,
and we have reasons to believe that, our approach is effec-
tive compared with other SFL techniques if our approach is
effective compared with Dstar. We divide the subject pro-
grams into two groups by fault triggering model: RIPRα
and RIPRβ. For RQ1, we use programs which fault trigger-
ing model belong to RIPRα as the experimental subject and
perform RIPRα fault localization strategy to locate the fault.

Fig. 5 Comparing the effectiveness of TRiGGER with Dstar for RIPRα
programs

For RQ2, we use programs which fault triggering model be-
long to RIPRβ as the experimental subject and perform our
RIPRβ fault localization strategy to locate fault. Due to there
exist fewer programs to meet RIPRβ in the Siemens pro-
grams, we add an additional experiment for RIPRβ. How-
ever, in real programs, we do not know which fault trigger-
ing model belong to in a buggy program. Therefore, for
RQ3, we use all the Siemens programs as experimental sub-
jects and combined the two strategies to locate fault(s).

5.3.1 RQ1: RIPRα Programs

In this section, our goal is to compare the effectiveness of
our RIPRα with Dstar. We first investigate programs where
fault triggering model belong to RIPRα, and there exist 122
program versions including 117 single-fault programs and 5
multi-fault programs. We run Dstar and our approach using
RIPRα fault localization approach independently and collect
the two fault ranking lists.

We use the Effectiveness metric mentioned above to es-
timate the effectiveness for our approach. We calculate the
Effectiveness metric based on the two fault ranking list out-
putted by our approach and Dstar. Figure 5 shows the exper-
iment results. In the 122 fault versions, 10 faults of program
versions are ranked at the top in fault ranking list outputted
by Dstar technique, and our approach performs better than
Dstar tool on 69 versions. The results show that no program
versions perform worse than Dstar. In those 69 versions, the
average improvement is 49.5%, and it is worth mentioning
that the fault component of 8 buggy program versions are
ranked highest in the fault ranking list.

5.3.2 RQ2: RIPRβ Programs

In this section, we firstly use 7 multi-fault programs which
fault triggering model belonged to RIPRβ to evaluate our
approach effectiveness. Our objective is to compare RIPRβ
with Dstar. In our RIPRβ context, we wish the Effective-
ness evaluation is independent for the number of faults Fn

in the buggy programs to perform an unbiased effective-
ness evaluation for the effect of Fn. To do this, we rank
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Table 6 Comparing the effectiveness of TRiGGER with Dstar for RIPRβ

Program # bugs RDstar RTRiGGER improvement
tcasv10 2 4 2 50.0%
tcasv11 3 4 2 50.0%
tcasv31 3 1 0 100%
tcasv32 3 2 0 100%
tcasv40 2 9 0 100%

schedule2v7 4 0 0 0.0%
replacev21 3 37 8 78.3%

Table 7 Additional program versions for RIPRβ empirical studies

C=2 C=3 C=4
Program N NRIPRβ N NRIPRβ N NRIPRβ

print token 5 2 5 1 5 1
print token2 9 3 9 3 9 3

replace 26 9 26 8 26 8
schedule 8 2 8 2 8 2

schedule2 8 3 8 2 8 2
tcas 36 11 36 8 36 9

tot inf 19 6 19 4 19 11

for each component in candidate diagnosis di, outputted by
TRiGGER, which contained multi-components based on
suspiciousness metric Dstar. For example, consider a buggy
program contained 5 components with the following fault
report D =< d1 = {c2, c5}, d2 = {c3, c1, c4}, while c2 and c3

are root faults. To better compare with Dstar, we rank each
component in d1 and d2, and get a ranking list similarly as
Dstar, such as < c5, c2, c1, c3, c4 >. In the ranking list, we
use highest absolute ranking among the multi-fault compo-
nents as the fault absolute ranking to compare with Dstar. In
the example, the fault absolute ranking is 1 (due to absolute
ranking begin with 0).

Table 6 shows the effectiveness improvement in fault
absolute ranking for the 7 program versions which fault trig-
gering model belong to RIPRβ model. For example, for
tcas-v10, which contains 2-faults, our approach ranks the
fault component at top-3, while Dstar ranks the fault com-
ponent at top-5 (Attention here, the index of fault ranking
list starts from 0). Therefore, for our Effectiveness metric,
the improvement is 50%.

From Table 6, except for schedule2v7, we find that our
approach is effective to improve the fault absolute ranking
compared with Dstar. And for schedule2v7, one of faults
was ranked at the highest by Dstar technique, hence, there
is no room for improvement. It is worth mentioning that
fault ranking of the three program versions is improved to
the highest ranking.

Considering there exists fewer buggy programs which
belong to RIPRβ, we add an additional experiment for
RIPRβ. We extend the subject programs with program ver-
sions where we can activate arbitrary combinations of multi-
ple faults. We limit the scope to a selection of 83 faults from
the 129 program versions, which the selection criteria is that
the fault being attributable to a basic block, to enable unam-
biguous evaluation. We select fault combinations randomly,
and the detailed information is shown in Table 7.

In Table 7, C is the number of injected faults

Fig. 6 Comparing the effectiveness of TRiGGER with Dstar for RIPRβ
programs

(cardinality), N is the number of program versions which are
randomly injected with C faults which were combined from
the 83 faults, and NRIPRβ is the number of program versions
belonged to RIPRβ. As mentioned as above Sect. 4.3, for
those multi-fault programs, we exclude programs that be-
long to Case 1 and Case 2. There are total (100) program
versions that belong to RIPRβ.

We compare the fault absolute ranking outputted by our
approach with Dstar in terms of Effectiveness metric. The
result was shown in Fig. 6. Experimental results show that
there exist 65 versions perform better than Dstar (65%), 9
versions perform worse than Dstar (9%), and 26 versions
have no improvement (26%). In total 100 versions, the av-
erage improvement is 38.37%. Considering we adopt differ-
ent suspiciousness metrics for those program versions, there
exist a few versions are worse than Dstar. The result recon-
firm our approach for RIPRβ is more effective than traditions
Dstar to improve absolute ranking.

5.3.3 RQ3: Uncertain Type Programs

In practice, we do not know which fault triggering model
a program belong to. Therefore, we cannot apply directly
the RIPRα strategy or RIPRβ strategy. We are easy to find
that the set of the fault ranking lists outputted by RIPRα
and RIPRβ are disjoined. Hence, we could combine the two
fault localization strategies to perform fault localization for
the program which do not know its type of fault trigger-
ing model. Specifically, we run the two fault localization
strategies independently and obtain two suspicious regions:
one for RIPRα strategy and the other for RIPRβ strategy.
Then, we compute the suspiciousness score for each com-
ponent in the two suspicious set and ranking the two suspi-
cious set in descending order by their suspiciousness scores
independently.

In this section, our goal is to compare the effectiveness
of our approach for programs contained uncertain number
faults. We run our approach based on the following local-
ization strategy: We check top 7 outputted by RIPRα strat-
egy firstly, then try to check the top 3 outputted by RIPRβ
strategy if they can not find root cause of failures.
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Table 8 Comparing the effectiveness of Dstar and TRiGGER

Absolute Ranking NDstar NTRiGGER Impre
top 0 15 25 66.7%
top 1 43 56 30.2%
top 2 56 65 13.8%
top 9 76 99 30.2%

In order to compare our results, we take the highest
fault absolute ranking as the result of our approach. For ex-
ample, program tcas-v10 contains two faults, a fault ranked
at top-3 in a fault ranking list, another ranked at top-4 in the
other fault ranking list. We take 3 as our absolute ranking.

Table 8 presents the effectiveness comparison of Dstar
and our TRiGGER. Columns NDstar and NTRiGGER show the
number of programs for which the root cause was ranked
at top X based on Dstar and TRiGGER. The column Im-
pre shows the improvement between Dstar with TRiGGER,
which can be calculated as:

Impre =
NDstar − NTRiGGER

NDstar
∗ 100% (16)

Let us look closely at Table 8. One observation is that
the improvement in the number of programs for which the
root cause is ranked within top k. Specifically, for Dstar,
15 fault components were ranked at the top, while 25 fault
components were ranked at the top by our approach, which
improvement is 66.7%. Recently, Xie et al. found that the
accuracy of SFL still matters, and an inaccurate SFL result
would mislead programmers and is not helpful in terms of
improving the efficiency of debugging [6]. Therefore, the
result of our approach makes sense to improve the absolute
ranking at the top. Additionally, our approach does not show
a significant improvement as X increases. For example, the
improvements for the absolute ranking at top-2, top-4 and
top-9 are 30.2%, 13.8%, and 30.2%, respectively. We con-
jectured that this result is due to the characteristics of SFL,
which suggests that some programs can further improve the
absolute ranking if the SFL is effective for those programs.
This observation inspires further research to improve auto-
mated fault localization techniques.

5.4 Threats to Validity

We make four assumptions in Sect. 3.4 for our approach. In
Assumptions 3, we assume there exists a test oracle that de-
termines the status of a test execution for programs. Test
oracle is easy to understand, and it is only made to simplify
our approach. Therefore, we only consider the rest three
Assumptions of threats to validity.

In Assumption 1, we assume the output of a program
is deterministic. In practice, if a program is concurrent, the
program would produce different results in different execu-
tions given the same input value. Therefore, if a program
does not meet Assumption 1, it is difficult to reproduce soft-
ware failure and localize the fault.

Despite RIPR model can interpret all failures, some
failures are not indeed satisfied, such as missing code,

variable declaration faults. For those variable declaration
faults, the instrumentation can not reach these fault loca-
tions in program executions. We use directly infected block
or an adjacent executable block as the location of the faults
to evaluate the effectiveness of our approach. However, for
missing code faults, we have no good idea to perform test-
ing and fault localization, which is opening questions in our
community.

In Assumption 4, we assume there exist many failed
test cases in program testings. Considering cost of testing,
there are not always a large number of failed test cases in
reality. If there exist one failed tests, our approach have not
chance to improve the fault absolute ranking. However, the
Assumption 1 is easily checked. If there exist one single
fault tests, we can switch to other fault localization to per-
form fault localization continuously.

6. Related Works

Several SFL approaches have been proposed, such as
Tarantula [19], Ochiai [18], Dstar [20], SOBER [28] and
others (e,g, [33]–[36]). Experimental results shown that
SFL techniques can help programmers to perform program
debugging [29].

However, are SFL actually helping programmers? To
answer this question, some user studies have been per-
formed. Their experimental results indicated a SFL tool is
useful only if the fault component(s) is ranked within top
k [5], [7], [26]. Especially, Pearson et al. highlighted that
SFL results on programs seeded by artificial faults is not
predictive for real faults and there do not exist a SFL tech-
nique outperform other SFL techniques in all buggy pro-
grams [12]. Wang et al. [11] pointed out a SFL technique
can further improve the fault absolute ranking if the SFL
technique is effective for a buggy program. We believe that
further improving a fault absolute ranking is essential to im-
prove the usefulness of the SFL techniques.

Abreu et al. [30] proposed a fault localization frame-
work, called DEPUTO, which framework is also used to
refine the fault ranking list by filtering out the components
which can not explain the observed failures. They combined
SFL with a model-based debugging approach based on ab-
stract interpretation. Different their approach, our approach
only use a SFL technique based fault triggering models.

Xie et al. proposed a refinement approach to improve
the accuracy of SFL techniques [31]. They divided program
statement into two groups: unsuspicious group and suspi-
cious group. The suspicious group contains the statements
which have shown up at least once in failed spectra. On the
contrary, the unsuspicious group contained the statements
have not shown up in any failed program spectra. Although
their approach is similar to our approach, their approach is
different from ours. We propose the two fault localization
strategies which is based on different fault triggering mod-
els, and not the two groups. heir suspicious group also can
be apply the two fault localization strategies to refine the
fault absolute ranking list.
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Our approach is also different from Set-union and Set-
intersection [32]. They use a single failed spectrum and
all successful program spectra as an input in the two ap-
proaches. For Set-union method, they focused on the pro-
gram component that is executed by the failed test but not
by any of the successful tests. For Set-intersection method,
they excluded the component that is executed by all success-
ful tests but not by the failed test. Obviously, if there exist a
single failed spectrum, it does not satisfy Assumption 4. In
this scenario, our approach does not improve fault absolute
ranking. On the contrary, if there exist many different failed
spectra, we can not apply the two approach directly.

7. Conclusion and Future Works

In this paper, we proposes a SFL technique using fault trig-
gering model to refine fault absolute ranking list. The intu-
ition is that a fault ranking list outputted by a SFL technique
would be confounded by different fault triggering models.
The two fault triggering models, called RIPRα and RIPRβ,
were proposed. For the two triggering models, we propose
different fault localization strategies to perform fault local-
ization. Experiments were performed to evaluate our ap-
proach, and the results are promising.

In our future work, we plan to perform more empirical
studies to further evaluate the effectiveness of our approach.
Moreover, we plan to perform user study to evaluate the ef-
fectiveness for our approach. In the next step, we also plan
to apply our approach to program slice spectra to refine the
fault absolute ranking list.
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