
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018
2773

PAPER

Accelerating a Lloyd-Type k-Means Clustering Algorithm with
Summable Lower Bounds in a Lower-Dimensional Space

Kazuo AOYAMA†a), Kazumi SAITO††, and Tetsuo IKEDA†††, Members

SUMMARY This paper presents an efficient acceleration algorithm for
Lloyd-type k-means clustering, which is suitable to a large-scale and high-
dimensional data set with potentially numerous classes. The algorithm em-
ploys a novel projection-based filter (PRJ) to avoid unnecessary distance
calculations, resulting in high-speed performance keeping the same results
as a standard Lloyd’s algorithm. The PRJ exploits a summable lower bound
on a squared distance defined in a lower-dimensional space to which data
points are projected. The summable lower bound can make the bound
tighter dynamically by incremental addition of components in the lower-
dimensional space within each iteration although the existing lower bounds
used in other acceleration algorithms work only once as a fixed filter. Ex-
perimental results on large-scale and high-dimensional real image data sets
demonstrate that the proposed algorithm works at high speed and with low
memory consumption when large k values are given, compared with the
state-of-the-art algorithms.
key words: algorithm, clustering, k-means, lower bound, singular value
decomposition, principal component analysis, dimensionality reduction,
performance

1. Introduction

A k-means clustering problem is a problem of partitioning a
given object set into k subsets (clusters) with a given posi-
tive integer of k so that an objective function is minimized.
Since a data object is typically represented as a point in a
Euclidean space of a feature space, the objective function
is defined by the sum of squared Euclidean distances be-
tween all pairs of a point and a specified centroid that is
a mean of points of the cluster to which the point is as-
signed. In general, exactly solving the problem for prac-
tically used data object sets requires a lot of computational
costs. This leads to research topics of identifying a com-
plexity class of the problem [1], [2] and developing efficient
exact algorithms [3], [4], approximate algorithms with some
constraints [5]–[7], and heuristic algorithms [8]–[10].

In these algorithms, a well-known iterative heuristic al-
gorithm [8], [9], which is called Lloyd’s algorithm, has been
widely used because of its simplicity and empirical success.
Lloyd’s algorithm starts with given k centroids as seeds for
k clusters, and repeats two steps of an assignment and a
mean-update step until its convergence. In order to analyze

Manuscript received December 4, 2017.
Manuscript publicized August 2, 2018.
†The author is with NTT Communication Science Laborato-

ries, Kyoto-fu, 619–0237 Japan.
††The author is with Kanagawa University, Hiratsuka-shi, 259–

1293 Japan.
†††The author is with University of Shizuoka, Shizuoka-shi,

422–8526 Japan.
a) E-mail: aoyama.kazuo@lab.ntt.co.jp

DOI: 10.1587/transinf.2017EDP7392

the algorithm and improve the performance, various topics
closely related to each other have been studied, such as the
bounds on the number of iterations [11], [12], clustering ac-
curacy to the optimal solution with seeding methods [13]–
[16], and acceleration or speed-up of the algorithm for prac-
tical use [14], [17].

Acceleration algorithms keep the same results as
Lloyd’s algorithm if they start with the same initial cen-
troids. Lloyd’s algorithm incurs a high computational cost
of distance calculations between a point and all k centroids
at the assignment step. The key of the acceleration is to
reduce the number of the distance calculations by avoiding
unnecessary ones, i.e., the calculations of the distances from
a point to centroids obviously farther than the centroid of the
cluster to which the point is currently assigned. The accel-
eration algorithms identify such centroids by exploiting the
lower bound on a distance, which is calculated with a low
computational cost [17]–[25].

A typical algorithm compares the upper bound on a dis-
tance between a point and the centroid of a cluster to which
the point is assigned with the lower bounds on distances
the point and other (k − 1) centroids. Then it avoids cal-
culating the exact distance between the point and the cen-
troid of which the lower bound to the point is larger than
the upper bound. Hereinafter the foregoing upper and lower
bounds on the distances are referred to as the upper bound
and the lower bounds unless confusion arises. The bounds
are generally calculated by utilizing the triangle inequality
in a property in a metric space.

There are several usages of the triangle inequality.
Elkan’s algorithm [17] and its variants [18]–[22] use a point,
a current centroid, and its corresponding centroid at the last
iteration as three points consisting of a triangle in the tri-
angle inequality. Hattori’s algorithm [23] employs a set of
pivots instead of the last-iteration centroids. The Annular
algorithm [21] and Bottesch’s algorithm [24] adopt an origin
as a single pivot∗. Newling’s algorithm utilizes centroids as
pivots and identifies the centroids for exact distance calcu-
lations [25].

From the perspective of the trade-off between the speed
and the memory consumption, however, these algorithms
are not always sufficient as shown in Sect. 5. A more accel-
erated Lloyd-type algorithm with lower memory consump-
tion is expected for a large-scale and high-dimensional data

∗In the geometric viewpoint, the Cauchy-Schwarz inequality
in Bottesch’s algorithm is equivalent to the triangle inequality.

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers

2774
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

set with a given large k value.
Our contributions are threefold.

1. We propose a novel scheme for efficiently accelerat-
ing Lloyd’s algorithm in Sect. 4.1. A key of the accel-
eration is a newly introduced summable lower bound
on a squared Euclidean distance. The summable lower
bound is based on the following properties of a squared
distance. Since a squared distance is the sum of its
squared elements, a partial sum of the squared ele-
ments is the lower bound on the squared distance. The
more squared elements are added, the tighter the lower
bound becomes. We generate a lower-dimensional
space rather than using an original space so that the
summable lower bound in the generated space becomes
tighter by the addition of fewer elements. In order to
identify farther centroids from a point than the centroid
to which the point is currently assigned, we exploit the
two spaces, the generated and the original space, simul-
taneously.

2. We present a practical algorithm based on the scheme
in Sect. 4.2. The algorithm has two distinct filters, a
projection based filter (PRJ) based on the summable
lower bound and an invariant centroid-pair based fil-
ter (ICP) similar to those in [23], [24], [26]. The PRJ
utilizes singular value decomposition (SVD) of a given
data point set to obtain orthonormal bases that generate
a lower-dimensional space. Complementary effects of
the two filters are shown in Sect. 5.3.

3. We experimentally demonstrate that our proposed al-
gorithm achieves superior performance under the bal-
ance of the speed and the memory consumption,
compared with the state-of-the-art algorithms [19],
[20], when they are applied to large-scale and high-
dimensional real image data sets with large k values
in Sect. 5.4.

The remainder of this paper consists of the follow-
ing five sections. Section 2 describes some definitions and
the notation. Section 3 briefly reviews related work from
the two distinct viewpoints of accelerated Lloyd-type algo-
rithms and the use of low-dimensional spaces for k-means
clustering. Section 4 details the novel framework and the
practical algorithm based on the scheme. Section 5 shows
our experimental settings and demonstrates the results. The
final section provides our conclusion and future work.

2. Definition and Notation

This section provides some definitions and the notation.
Given a set of points X = {x1, x2, · · · , xn}, |X| = n, and a
positive integer of k, k-means clustering problem is to find a
set of k clusters, C∗ = {C∗1,C∗2, · · · ,C∗k}, defined by

C∗ = arg min
C={C1,··· ,Ck}

J(C;X, k) , (1)

J(C;X, k)=
∑

C j∈C

∑

xi∈C j

‖xi − μ j‖2 , (2)

k⋃

j=1

C j = C (Covering) , (3)

C j ∩C j′ = ∅ for j � j′ (Disjoint set) , (4)

where ‖ ∗ ‖ denotes the L2 norm of any vector, C the set of
k clusters, μ j ∈ RD the centroid (or mean) column vector
of cluster C j, xi ∈ RD the point column vector, and D the
dimensionality of the original space.

The problem is also regarded as a problem of finding
an optimal assignment of each point to a cluster. Then it
is formulated based on an assignment matrix (or a cluster
indicator matrix) A ∈ Rn×k with constraints as follows.

A∗ = arg min
A
‖X − AAT X‖2F , (5)

AT A = Ik , (6)

where ‖ ∗ ‖F denotes the Frobenius norm of any matrix,
X ∈ Rn×D the data point matrix, AT the transpose of A, and
Ik ∈ Rk×k the identity matrix. Let ai j be the element at the i-
th row and the j-th column of A. Let A(i, :) = [ai,1, · · · , ai,k]
and A(j, :) = [a1, j, · · · , an, j]T be the i-th row and the j-th
column of A, respectively. Then ai j = 1/

√|C j | if xi is as-
signed to C j and ai j = 0 otherwise. A(i, :) has only one
non-zero element (Disjoint). A(:, j) has |C j| > 0 non-zero
elements and

∑k
j=1 |C j| = n (Covering). Let M ∈ Rk×D be

the mean matrix of which the j-th row is μ j. Then the j-th
row of AT X is

√ |C j|μ j and the i-th row of AAT X is the
mean vector of the cluster to which xi is assigned.

For convenience, let sqd(xi,μ j) and d(xi,μ j) denote
‖xi − μ j‖2 and ‖xi − μ j‖, respectively. Let sqdLB(xi,μ j)
and dLB(xi,μ j) denote the lower bounds on sqd(xi,μ j) and
d(xi,μ j), respectively. Let us introduce a superscript t in-
dicating an iteration count of iterative algorithms. For in-
stance, C[t]

j denotes the j-th cluster just after the assignment

step at the t-th iteration and μ[t]
j its mean vector calculated

at the mean-update step at the t-th iteration. To distinguish
centroids in the ascending order of a distance from xi, let
us introduce a function ctrh(xi), h = 1, 2, · · · , k, that re-
turns the h-th closest centroid to xi. Then let μh(xi) denote
the centroid returned by ctrh(xi). As a modified function of
ctrh(xi), let ctra(xi) be a function that returns the centroid to
which xi is assigned. For example, the functions are used as
ctr1(xi) = ctra(xi) and μ j = μa(xi) = ctra(xi). Furthermore,
let ctra[t] (xi) and ctr j[t] (xi) denote ctra(xi) and ctr j(xi) at the
t-th iteration, respectively.

For easy reference, we summarize the frequently used
symbols in Table 1.

3. Related Work

This section reviews two distinct topics: accelerated Lloyd-
type algorithms that is a class to which the proposed algo-
rithm belongs, and the use of low-dimensional spaces for
clustering. The former focuses on definition and usage of
the lower bound on a distance or a squared distance. The

AOYAMA et al.: ACCELERATING A K-MEANS CLUSTERING ALGORITHM WITH SUMMABLE LOWER BOUNDS
2775

Table 1 Notation.

Symbol Description and Definitions

X Set of given points, X = {x1, x2, · · · , xn}
C[t] Set of clusters at the t-th iteration

C[t] = {C[t]
1 , · · · ,C[t]

j , · · · ,C[t]
k }

M[t] Set of centroids at the t-th iteration

M[t] = {μ[t]
1 , · · · ,μ[t]

j , · · · ,μ[t]
k }

μ[t]
j is the centroid of C[t]

j

Zm
Set of projection vectors

Zm = {z1, z2, · · · , zm}
n Number of points, n = |X|
k Number of centroids, k = |M[t] |
D Dimensionality of the original space

m
Number of projection vectors, m = |Zm |
and Dimensionality of the projected space

xi ∈ RD Column vector of the i-th point

μ j ∈ RD Column vector of the j-th centroid

X ∈ Rn×D Matrix consisting of point row vectors

X = [x1, · · · , xi, · · · , xn]T

M ∈ Rk×D Matrix consisting of centroid row vectors

M = [μ1, · · · ,μ j, · · · ,μk]T

A ∈ Rn×k Assignment matrix or Indicator matrix
ai j = 1/

√|C j | if xi is assigned to C j

Z ∈ Rm×D Matrix consisting of projection row vectors

Z = [z1, · · · , zh, · · · , zm]T

ctrh(xi)
Function of xi that returns the h-th

closest centroid to xi

d(α,β)
Function of points α and β that returns

a distance between α and β

dLB(α,β)
Function of points α and β that returns

the lower bound on d(α,β)

sqd(α,β)
Function of points α and β that returns

a squared distance between α and β

sqdLB(α,β)
Function of points α and β that returns

the lower bound on sqd(α,β)

latter reveals major differences between the existing algo-
rithms and our proposed algorithm by addressing applied
constraints and usage of low-dimensional spaces.

3.1 Accelerated Lloyd-Type Algorithms

Algorithms for solving the k-means clustering problem are
classified into three classes of exact, approximate, and
heuristic algorithms. The exact algorithms solve Eq. (2) or
Eq. (5) [3], [4]. Most naively (impractically), the problem is
solved by computing the objective function with respect to
all the assignments of kn without any constraints. The ap-
proximate algorithms guarantee the accuracy of the solution
in various manners [5]–[7]. The Lloyd-type algorithms be-
long to the heuristics that guarantee nothing in terms of their
solution but are empirically known to find a good solution.

We begin by Lloyd’s algorithm [8] followed by six
acceleration algorithms in the order of Elkan’s algo-
rithm [17], Hamerly’s algorithm [18] and its improved ver-
sions [21], [22], both Drake’s algorithm [19] and Ding’s al-

Algorithm 1 Lloyd-type algorithm
1: Input: X, M[t−1], (k)
2: Output: C[t] = {C[t]

1 ,C
[t]
2 , · · · ,C[t]

k }, M[t]

3: C[t]
j ← ∅ , j = 1, 2, · · · , k

4: for all xi ∈ X do
5: dmin ← d(xi, ctra[t−1] (xi))
6: a← a[t−1]

7: (I)

8: for all μ[t−1]
j ∈ M[t−1] (II) do

9: (III)

10: if d(xi,μ
[t−1]
j) < dmin then

11: dmin ← d(xi,μ
[t−1]
j) and a← j[t−1]

12: end if
13: end for
14: C[t]

a ← C[t]
a ∪ {xi}

15: end for
16: μ[t]

j ←
∑

xi∈C[t]
j

xi / |C[t]
j |, j = 1, 2, · · · , k

17: (IV)

18: return C[t] = {C[t]
1 ,C

[t]
2 , · · · ,C[t]

k },M[t]

gorithm [20], Hattori’s algorithm [23], and Bottesch’s algo-
rithm [24]. Here the details of the algorithms are omitted for
emphasizing their main filters.
[Lloyd] Lloyd’s algorithm is an iterative algorithm con-
sisting of two steps: the assignment and the mean-update
step. After k centorids of seeds for k clusters are given in
any way as an initial state, the assignment step starts, where
n × k distances between n points xi and the k centroids are
calculated and each xi is assigned to the cluster of which
centroid is the closest centroid μa(xi) to xi. After all points
are assigned to the identified clusters, the mean-update step
calculates and updates means of the clusters. The algo-
rithm iterates the two steps until the convergence or a given
termination condition is satisfied. Algorithm 1 shows the
overview of the Lloyd-type algorithms at the t-th iteration.
The assignment step and the mean-update step correspond
to lines 4–15 and lines 16–17, respectively.
[Elkan] This algorithm is a classical acceleration algo-
rithm based on the triangle inequality. It keeps track of the
lower bounds on distances between each point and k cen-
troids. A main filter is set at line 9 (III) in Algorithm 1 as
follows.

if d(xi, ctra(xi)) < dLB(xi,μ
[t−1]
j) − δ(μ[t−1]

j)
then continue ,

where δ(μ[t−1]
j) = d(μ[t−1]

j ,μ[t−2]
j), that is, the mean’s dis-

placement between the iterations. The distance lower
bound, which is represented by the right-hand side in the
condition, is updated at line 17 (IV) after substituting [t]
for [t − 1]. This algorithm requires the memory capacity
of O(n · k) to store the distance lower bounds between each
point and all centroids for the main filter. The required mem-
ory capacity makes it difficult to apply this algorithm to a
large-scale data set.
[Hamerly] To suppress the memory consumption of
Elkan’s algorithm, Hamerly’s algorithm stores only one dis-

2776
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

tance lower bound of the second closest centroid to a point,
resulting in the required memory capacity of O(n). A main
filter is set at line 7 (I) in Algorithm 1 as

if d(xi, ctra(xi)) < dLB(xi,μ
[t−1]
2) − δmax(∗)

then continue ,
where δmax(∗) = maxM[t−1]\{μ[t−1]

a } d(μ[t−1]
j ,μ[t−2]

j), i.e., the
maximum displacement of all the means. The lower bounds
are updated at line 17 (IV). This algorithm employs an all-
or-nothing strategy by the filter at line 7 (I) with the looser
lower bound than that of Elkan’s algorithm. To compensate
the weakness, a geometric method using the direction of a
mean movement for making a lower bound tighter [22] and
a pruning method using centroid norms for limiting the cen-
troids at line 8 (II) [21] have been developed.
[Drake+ and Ding+] The two algorithms relax the all-or-
nothing strategy of Hamerly’s algorithm based on one lower
bound for each point at the expense of more memory ca-
pacity. Main filters of Drake’s and Ding’s algorithm are
regarded as a serial-type and a parallel-type filter, respec-
tively. Drake’s algorithm utilizes b distance lower bounds
(1 < b < k) from a point to its b closest centroids with the
memory capacity of O(n · b). The first (b − 1) lower bounds
are determined in the same way as Elkan’s algorithm and
the last one is done like Hamerly’s algorithm. A filter based
on these lower bounds is set at line 7 (I).

In contrast, Ding’s algorithm partitions k centroids into
g groups (1 < g < k), and stores one distance lower bound
from a point to its closest centroid in each group, resulting
in the memory capacity of O(n · g). This scheme confines a
negative impact of a large δmax(∗) in one group and prevents
the lower bounds in the other groups from being loose. A
group filter is set at line 7 (I). In the limits of (b or g →
1) and (b or g → k), the corresponding algorithms nearly
approach Hamerly’s and Elkan’s algorithm, respectively.
[Hattori+] Instead of keeping track of the lower bounds
like the foregoing algorithms, this algorithm employs p piv-
ots (1 < p � k) to obtain the distance lower bound between
a point and a centroid by the triangle inequality as

dLB(xi,μ
[t−1]
j ; vh) =| d(vh, xi) − d(vh,μ

[t−1]
j) | ,

where vh, h = 1, 2, · · · , p, denotes the pivot. For the lower
bound calculation, this stores the distances from each of p
pivots to both the data points and centroids with the mem-
ory capacity of O(n · p), where n
 k. A filter inserted at
line 9 (III) is built as

if ∃vh ∈ {v1, · · · , vh, · · · , vp};
d(xi, ctra(xi)) < dLB(xi,μ

[t−1]
j ; vh)

then continue .
This filter judges via the p pivots whether a distance calcu-
lation between a point and a centroid is necessary or not.
[Bottesch+] In this algorithm, the lower bound on a
squared Euclidean distance between xi and μ j is defined
by applying the Cauchy-Schwarz inequality to their blocked
vectors. The same lower bound is also obtained by setting a
single pivot in Hattori’s algorithm at the origin of the space.
A squared distance between xi and μ j and the corresponding
lower bound are expressed as follows.

sqd(xi,μ j) = ‖xi‖2 + ‖μ j‖2 − 2 xT
i μ j .

sqdLB(xi,μ j) = ‖xi‖2 + ‖μ j‖2 − 2 ‖xi‖ ‖μ j‖ .
sqdLB(xi,μ j) ≤ sqd(xi,μ j) is valid by the Cauchy-Schwarz
inequality of xT

i μ j ≤ ‖xi‖ ‖μ j‖ and the pivot-based triangle
inequality of sqd(xi,μ j) ≥ | d(o, xi) − d(o,μ j) |2, where o
denotes the origin. When xi and μ j are expressed by block
vectors each of which is divided into r blocks (1 < r ≤ D)
with the assumption of D mod r = 0, (xT

i μ j) is expressed as
follows.

D∑

h=1

xih · μ jh =

r−1∑

s=0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
(s+1)(D

r)∑

h=s·(D
r)+1

xih · μ jh

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (7)

≤
r−1∑

s=0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
(s+1)(D

r)∑

h=s·(D
r)+1

x2
ih

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/2 ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
(s+1)(D

r)∑

h=s·(D
r)+1

μ2
ih

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/2

(8)

≤
(∑D

h=1 x2
ih

)1/2 (∑D
h=1 μ

2
ih

)1/2
= ‖xi‖ · ‖μ j‖ (9)

This algorithm utilizes two filters based on Eq. (8) with pa-
rameter r and Eq. (9). The filters based on the lower bounds
are set at line 9 (III) as

if sqd(xi, ctra(xi)) < sqdLB(xi,μ
[t−1]
j)

then continue .
To store the r norms in Eq. (8), the filter requires the mem-
ory capacity of O(n · r) when n
 k.
[Complementary filter] Our proposed algorithm adopts
as a complementary filter an invariant centroid-pair based
filter (ICP), which is used in the existing algorithms in
[23], [24], [26]. ICP omits a distance calculation between
an invariant centroid of μ[t−1]

j = μ[t−2]
j and a point xi

of which assigned cluster’s centroid is also invariant, i.e.,
ctra[t−1] (xi) = ctra[t−2] (xi). ICP is known to be effective at
the last stage in the convergence process [23]. Since a main
filter PRJ in the proposed algorithm is effective at the early
stage, ICP plays a role of the complementary filter. The pro-
posed algorithm with both the filters is shown in Sect. 4.2.

3.2 Use of Low-Dimensional Spaces

The existing algorithms perform clustering of data points
themselves in a low-dimensional space to which the data
points are projected†. The algorithms work effectively only
if the given number of clusters k is smaller than or equal to
the smaller one of the two values: the dimensionality D in
the original space and the number of data points n, i.e., k ≤
min(D, n). They construct the low-dimensional space by us-
ing one of feature selection such as column sampling, ran-
dom projection based on fast Johnson-Lindenstrauss trans-
form [27], [28], and (approximate) singular value decompo-
sition (SVD) of X ∈ Rn×D.

Since our proposed algorithm exploits SVD or princi-
pal component analysis (PCA), we focus on the SVD ap-
proach here. Using SVD, X = UΣVT , where Σ ∈ Rr×r

†For the projection, given data points xi ∈ RD are centered as
xi ← xi − (

∑n
i=1 xi)/n. Even in the projection case, we use the

identical symbols for simplicity.

AOYAMA et al.: ACCELERATING A K-MEANS CLUSTERING ALGORITHM WITH SUMMABLE LOWER BOUNDS
2777

the positive diagonal singular matrix, r = rank(X), and
U ∈ Rn×r and V ∈ RD×r denote the left and the right sin-
gular matrix of X, respectively. Kumar’s algorithm in [29]
executes Lloyd’s algorithm in the low-dimensional space
spanned by the column vectors in V corresponding to k
largest singular values of X, where k is the same as the
number of clusters. Then it obtains k means in the low-
dimensional space and uses them for initial seeds of Lloyd’s
algorithm in the original space.

It is shown in [6], [7] that an objective function based
on the point assignment in the low-dimensional space ap-
proximates that in the original space under some constraints.
For instance, Boutsidis’ algorithm [6] obtains assignment
matrix Ã ∈ Rn×k, which satisfies the specified approxima-
tion condition, by clustering of data points X̃ projected to a
low-dimensional space spanned by the row vectors of pro-
jection matrix Z = VT ∈ Rk×D, i.e., X̃ = XZT . Then the
following relationship between the objective functions holds
with a bounded probability.

‖X − ÃÃT X‖2F ≤ α ‖X − A∗A∗T X‖2F , (10)

where A∗ is defined by Eq. (5) and α > 2 is a constant.
In terms of dimensionality m of a lower-dimensional

space, the foregoing two algorithms in [6], [29] require
m = k ≤ min(n,D) while the other in [7] does m = �k/ε�
where 0 ≤ ε < 1. In contrast, it often happens that k > D
(D < n) in our problem setting where a large-scale and high-
dimensional point set with potentially numerous classes,
i.e., a large k value is given. Thus our condition is out of
the range set by the existing algorithms.

Besides, our proposed scheme differs from the forego-
ing algorithms in the usage of a lower-dimensional space.
The algorithms execute a clustering algorithm such as
Lloyd’s algorithm in the lower-dimensional space while our
scheme utilizes a lower-dimensional space for calculating
the lower bound on a squared distance in the original space,
resulting in the acceleration of Lloyd’s algorithm in the orig-
inal space.

4. Proposed Acceleration Algorithm

We first explain a novel scheme for efficiently accelerating
the Lloyd-type algorithms. Our key ideas are threefold. The
first is to introduce a summable lower bound to the Lloyd-
type algorithm, which is the lower bound on a squared dis-
tance obtained by exploiting a property of a squared (Eu-
clidean) distance effectively. The second is to generate a
space where the lower bound becomes tighter than an orig-
inal space. The last is to utilize the generated and the
original space simultaneously for the acceleration. Next,
we proposed a practical algorithm that employs a lower-
dimensional space generated by the SVD of a data point
matrix and makes the lower bound tighter incrementally by
adding a squared elements in a squared distance.

4.1 Scheme of Projection Based Filter

A squared distance between points has a useful property to
define the lower bound on the squared distance. The partial
sum of squared elements consisting of the squared distance
is the lower bound on the squared distance. A squared dis-
tance of xi and μ j is expressed as

sqd(xi,μ j) =
∑

h∈Ψ[D] (xih − μ jh)2 ,

where Ψ[D] = {1, 2, · · · ,D} and the superscript [D] denotes
|Ψ[D]|. The partial sum of m squared elements (m < D) in
the squared distance is expressed as

sqdLB(xi,μ j) =
∑

h∈Ψ[m] (xih − μ jh)2 ,

where Ψ[m] ⊂ Ψ[D]. This formulation makes the lower
bound summable. The more squared elements are added,
the tighter the lower bound becomes. Suppose Ψ[m+1] =

{q} ∪ Ψ[m], where q ∈ Ψ[D] \ Ψ[m]. Then,
∑

h∈Ψ[m] (xih − μ jh)2 ≤ ∑ h∈Ψ[m+1] (xih − μ jh)2 .

If this addition is repeated from m = 1 to m = D, then
the lower bound asymptotically approaches the squared dis-
tance as

lim
m→D

∑
h∈Ψ[m] (xih − μ jh)2 = sqd(xi,μ j) .

To improve this asymptotic rate, it is considered to sim-
ply add the squared elements in their descending order for
the one vector. To obtain the same benefit, we employs
an appropriately generated space spanned by orthonormal
bases, and in particular limits the number of the orthonormal
bases m to a small value, i.e, a lower-dimensional space, for
efficiency. To obtain the orthonormal bases for the lower-
dimensional space, we compute the SVD of data point ma-
trix and select m column vectors in a right singular matrix,
which correspond to the m largest singular values.

Our projection based filter PRJ avoids unnecessary dis-
tance calculations by comparing a squared distance between
a point and its currently assigned centroid in an original
space with the summable lower bounds on squared distances
between the point and the other centroids in the lower-
dimensional space. PRJ does not calculate sqd(xi,μ j) if
sqd(xi,μa(xi)) is smaller than or equal to the lower bound
sqdLB(xi,μ j) (j � a(xi)) is smaller than or equal to calcu-
lated in the lower-dimensional space, otherwise it updates
the lower bound by the addition of the remaining squared
elements and judges whether the condition is fulfilled or not
again. Thus our scheme effectively exploits the property of
the squared distance.

4.2 Acceleration Algorithm

The proposed algorithm contains two filters of PRJ as a
main filter and an invariant centroid-pair based filter (ICP)
as a complementary filter, which work effectively at the

2778
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

early and the last stage in the convergence process, respec-
tively, as shown later in Fig. 3.

For PRJ, our algorithm generates m orthonormal bases
as projection vectors zh ∈ RD, h = 1, 2, · · · ,m � D, by
the SVD (or the PCA) of a data point matrix, and stores
components zT

h xi for all points with the memory capacity
of O(n · m) before a clustering iteration starts. Besides,
zT

h μ j, j = 1, 2, · · · , k, is also stored at each clustering it-
eration since the centroid may change its position. To op-
timize a projection vector set Zm = {z1, z2, · · · , zm}, we
adopt an orthogonal iteration, which iteratively computes m
dominant eigenvectors associated with the m largest eigen-
values. For the effective addition of the summable lower
bound, zh is permutated in descending order of eigenval-
ues. Let Z ∈ Rm×D be the orthogonal projection matrix of
which the h-th row vector is zT

h . Then the point correspond-
ing to xi projected to the m-dimensional projection space is
expressed as yi = Z xi ∈ Rm, and a set of yi is denoted by
Y. Note that the computational cost for determining the or-
thogonal projection matrix Z is much smaller than that for
clustering in our setting since several times of the optimiza-
tion iterations are sufficient as shown in Sect. 5.3.

Algorithm 2 overviews the assignment step in our pro-
posed algorithm except a mean update step and the prepro-
cessing before the clustering process starts. PRJ is shown
at lines 11–18 and ICP at lines 8–10. The two filters in
Algorithm 2 are inserted into line 9 (III) in Algorithm 1.
ICP skips the distance calculation between the point xi and
the centroid μ[t−1]

j satisfying the following condition. The
point xi is assigned to the cluster of which centroid did not
change its position at the last iteration, i.e., C[t−1]

a = C[t−2]
a .

Algorithm 2 Assignment step in proposed algorithm
1: Input: X, M[t−1], Zm, (k)
2: Y = {y1, · · · , yn}, where yi = Z xi ∈ Rm

3: Output: C[t] = {C[t]
1 ,C

[t]
2 , · · · ,C[t]

k } and M[t]

4: C[t]
j ← ∅ and calculate Z μ[t−1]

j for all j
5: for all xi ∈ X do
6: sqdmin ← sqd(xi, ctra[t−1] (xi)) and a← a[t−1]

7: for all μ[t−1]
j ∈ M[t−1] do

8: if C[t−1]
a = C[t−2]

a and C[t−1]
j = C[t−2]

j then

9: go to line 7 to evaluate the next μ[t−1]
j

10: end if
11: h← 1 and sqdLB ← 0
12: while h ≤ m do
13: sqdLB ← sqdLB + (yih − zT

h μ j)2

14: if sqdmin ≤ sqdLB then
15: go to line 7 to evaluate the next μ[t−1]

j
16: else h← h + 1
17: end if
18: end while
19: if sqd(xi,μ

[t−1]
j) < sqdmin then

20: sqdmin ← sqd(xi,μ
[t−1]
j) and a← j[t−1]

21: end if
22: end for
23: C[t]

a ← C[t]
a ∪ {xi}

24: end for
25: return C[t] = {C[t]

1 ,C
[t]
2 , · · · ,C[t]

k } and M[t]

The centroid μ[t−1]
j does not change its position either as

C[t−1]
j = C[t−2]

j . Then xi is never assigned to C[t]
j . PRJ skips

the distance calculation between xi and μ[t−1]
j if the tenta-

tive minimum squared distance sqdmin in the original space
is smaller than or equal to

∑h′
h=1(yih − zT

h μ
[t−1]
j)2, h′ ≤ m,

in the lower-dimensional space. If the condition is not ful-
filled, PRJ makes the summable lower bound tighter incre-
mentally, and judges the condition based on the updated
lower bound again. Finally, if the filtering process fails as
sqdmin >

∑m
h=1(yih − zT

h μ
[t−1]
j)2, sqd(xi,μ

[t−1]
j) is calculated

at lines 19–21.
Let us consider the computational cost of PRJ based on

the number of multiplications related to the squared distance
calculations. Then a baseline is the computational cost of
Lloyd’s algorithm for each iteration of (n · k · D). The PRJ
cost consists of three parts. First, the cost for generating
the projected vectors of all centroids by Z μ[t−1]

j is (m · k ·
D). Second, the cost for calculating the lower bounds is∑m

h=1 h · f (h), where f (h) be the number of centroids that
satisfy the filtering condition at line 14 at the h-th addition.
Last, the penalty cost for recalculating the squared distances
to the unremoved centroids, which are not filtered out with
the condition at line 14, is

(n · k − θ −
m∑

h=1

f (h)) · (m + D) ,

where θ denotes the number of skipped squared distance cal-
culations by ICP and the first term expresses the number of
pairs of point xi and centroid μ[t−1]

j , which are evaluated at
line 19. Therefore, the computational cost of PRJ with m
projection vectors is expressed by

cost(m) = (m · k · D) +
∑m

h=1 h · f (h)

+
(

n · k − θ −∑m
h=1 f (h)

)
· (m + D) . (11)

Let {1 − cost(m)/(n · k · D)} be the reduction rate on the
number of the multiplications in PRJ for convenience. The
higher the reduction rate is, the more effective PRJ is. The
effectiveness of PRJ is experimentally shown in Sect. 5.

5. Experiments

We describe data sets and performance measures for our ex-
periments, and then show experimental results in terms of
the properties that the proposed algorithm itself has and per-
formance comparison with the state-of-the-art algorithms.
In our experiments, all the algorithms were executed on a
shared-memory computer system equipped with two Xeon
E5-2697v3 2.6GHz CPUs and a 256GB main memory by
50-thread parallel processing based on OpenMP within the
memory capacity.

5.1 Data Sets

We employed two different types of large-scale and high-
dimensional (not sparse) real image data sets: One was 80

AOYAMA et al.: ACCELERATING A K-MEANS CLUSTERING ALGORITHM WITH SUMMABLE LOWER BOUNDS
2779

million tiny images (TinyImages for short) [30] and the other
Holidays [31].

The data set of TinyImages contains images represented
by a global descriptor of a 384-dimensional GIST feature
vector [32]. Each feature vector is regarded as a point in
a 384-dimensional Euclidean space. We chose 10,219,916
feature vectors at random without duplication from the
whole vectors as our experimental data set (10M-size). Fur-
thermore, we made three data sets with the different sizes of
1,459,988 (1.5M-size), 2,919,976 (3M-size), and 5,839,952
(6M-size). In Holidays image data set, each image is rep-
resented by a set of local descriptors of SIFT keypoints ex-
tracted by the scale-invariant feature transform (SIFT) [33].
A SIFT keypoint can be regarded as a 128-dimensional fea-
ture vector. We adopted as a data set 20,964,516 feature
vectors in 679 images chosen from the whole 1491 images.

Here, let us make particular reference to memory con-
sumption, which is one of performance measures. Our in-
house implementation required the physical memory sizes
of 31.40GB and 21.47GB for TinyImages (10M-size) and
Holidays, respectively.

5.2 Performance Measures

We evaluated performance of the algorithms with three mea-
sures. The first is the total elapsed time that each algorithm
needs from just after loading a data set until the conver-
gence. The elapsed time includes the CPU time required
by preprocessing before a clustering process starts, e.g., the
CPU time spent by SVD in the proposed algorithm. Besides
we also adopted a truncated elapsed time until the algorithm
satisfied a given condition expressed as

γ > | J[t] − J[t−1] | / J[t−1] , (12)

J[t] = J(C[t];X, k) , (13)

where J(C[t];X, k) denotes the objective function value at
the t-th iteration and γ a given threshold parameter. In our
setting, γ = 1×10−4. The truncated elapsed time is effective
as a practical measure because the Lloyd-type algorithm has
a tendency to rapidly decrease its objective function value
at the early stage in the iterations. Figure 1 shows the ob-
jective function properties when Lloyd’s algorithm with an
initial state determined at random was applied to TinyImages
(10M-size) at k = 20,000 and it converged at 509 iterations.

Fig. 1 Objective function properties along the iterations when Lloyd’s
algorithm was applied to TinyImages (10M-size) at k = 20,000.
(a) J[t] / J[∞] in linear scale and (b) ΔJ[t] / J[t] in logarithmic scale where
ΔJ[t] = | J[t+1] − J[t] |.

Figures 1 (a) and (b) show J[t]/J[∞] and | J[t] − J[t−1] | / J[t−1]

along the number of iteration t, respectively, where J[∞] de-
notes the objective function value at the convergence. It was
observed that J[t]/J[∞] quickly approached to 1.0 in early
several iterations. In this case, the foregoing condition was
satisfied at only the 20-th iteration.

The second is a computational cost of the number of
exact distance calculations and the number of multiplica-
tions related to the distance calculations. They are simplified
as reduction rates. The reduction rate on the number of mul-
tiplications is defined in Eq. (11). Regarding the number of
distance calculations, it is defined as the rate of the number
of unremoved distance calculations to the baseline of (n · k)
for each iteration. These measures are more appropriate to
evaluating algorithmic aspects than the total elapsed time
because they are independent of computer architectures and
implementations. The last is the maximum physical mem-
ory size occupied through the convergence process. An ef-
ficient algorithm should achieve short elapsed time and a
large reduction rate with low memory consumption.

5.3 Properties of the Proposed Algorithm

We show three properties of the proposed algorithm. The
first is the effect of the number of projection vectors m to
the performance. The second is each effect of the two fil-
ters, PRJ and ICP. The last is the scalability in terms of the
number of clusters k and the data size n. Hereinafter, we
provide typical results each of which was obtained under an
experimental condition, but also observed the similar ten-
dencies under the other conditions.

Figure 2 shows the performance along the number of
projection vectors m from 5 to 100 when the algorithm with
k = 20,000 was applied to TinyImages (10M-size). Fig-
ure 2 (a) shows the average reduction rate and the average
elapsed time, which is the total elapsed time divided by
the number of iterations until the convergence. The aver-
age reduction rate was over 0.93 even when m = 10, and
approached asymptotically to 1.0 with m. In contrast, the
average elapsed time had the minimum value at m = 90.
This is because positive and negative effects in terms of the
elapsed time balance: the positive one is to increase the aver-
age reduction rate with m and the negative one is to increase
the computational cost for calculating the lower bound. Fig-

Fig. 2 Proposed algorithm performance along the number of projection
vectors m when applied to TinyImages (10M-size) at k = 20,000. (a) Av-
erage elapsed time and average reduction rate, and (b) Maximum physical
memory size including data size.

2780
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

Fig. 3 Reduction rate on the number of multiplications when the algo-
rithm with either PRJ or ICP was applied to TinyImages (10M-size), given
k = 20,000 and m = 30.

Fig. 4 Average elapsed time along the number of clusters k when m =
10: (a) TinyImages (10M-size) and (b) Holidays.

ure 2 (b) shows the maximum physical memory size. The
proposed algorithm needs memory capacity proportional to
the number of projection vectors m, except the data size,
which is approximated by m · (n+D+ k) · (sizeof(double)) ∼
m · n · (sizeof(double)) for n ≥ D, k in our implementation.

It seems that computing the SVD of a large-scale data
point matrix incurs a high cost before clustering. In our case,
however, the computational cost of the SVD is negligible
compared with that of the k-means clustering process be-
cause of two reasons. One is that our proposed algorithm
does not need an exact singular matrix (or an eigenvector
set) as far as the orthogonality is guaranteed as described in
Sect. 4.1. The other is that the m value in our algorithm is
small like m � min(D, n) as shown in Fig. 2 (a). For com-
puting the SVD, the proposed algorithm adopts an orthogo-
nal iteration, which is a simple and fast method (e.g. [34]).
In fact, as shown later in Fig. 6, the elapsed time for one it-
eration in the orthogonal iteration was almost 210 sec while
the elapsed time for one iteration for clustering exceeded it
before 156 iterations in all the 509 iterations until conver-
gence. The other experiments showed the same tendency.
In each experiment, the elapsed time of the orthogonal iter-
ation was much smaller than that of the clustering.

Figure 3 shows the reduction rate on the number of
multiplications along the number of iterations until the con-
vergence when the algorithm employing either PRJ or ICP
as its filter was applied to TinyImages (10M-size), given
k = 20,000 and m = 30. The PRJ and ICP were effec-
tive in a mutually complementary way at the very early and
the last stage in the convergence process, respectively.

Figures 4 (a) and (b) show the average elapsed time
along the number of clusters k for the TinyImages (10M-
size) and Holidays, given m = 10, respectively. Each aver-

Fig. 5 Average elapsed time through all iterations along the number of
data points n for TinyImages when m = 10 and k = 5,000, 1,0000, and
20,000.

age elapsed time was almost linear or sublinear to k although
there exist the ranges of k where the slopes were slightly dif-
ferent from the lines. It was observed that the algorithm was
scalable to the number of clusters k.

Figure 5 shows the scalability of the proposed algo-
rithm, regarding the number of data points n. The algorithm
was applied to the four TinyImages data sets of 1.5M-size,
3M-size, 6M-size, and 10M-size under k = 5,000, 10,000,
and 20,000, and m = 10. Each average elapsed time was
almost linear with respect to n in the range of nearly 1× 106

to 1×107. We think that this scalability comes from the fact
that the high fixed reduction rate was kept even in the dif-
ferent size of the data sets. Thus the proposed algorithm is
suitable for large-scale and potentially numerous-class data
sets, given a large value of k.

5.4 Comparison with Existing Algorithms

We compared the proposed algorithm (Proposed) with
Drake’s algorithm (Drake+) and Ding’s algorithm (Ding+)
for the distinct data sets of TinyImages (10M-size) and Hol-
idays, varying their parameters under k = 20,000. Drake’s
and Ding’s algorithm (in-house implementation) were se-
lected as the compared algorithms since they indicated
higher performance than the other existing Lloyd-type algo-
rithms such as Hamerly’s and Bottesch’s algorithm in Sect. 3
in our preliminary experiments†.

Tables 2 and 3 show characteristic performance of the
algorithms when they were applied to the TinyImages and
Holidays, respectively. The average elapsed time through
all the iterations and the maximum memory size except that
occupied by the data point set are listed. Figures 6 and 7
show the elapsed time required by each algorithm under the
conditions in Tables 2 and 3, respectively.

When allowed to use almost the same memory size,
the three algorithms indicated the performance shown at the
rows of (m, b, g) = (30, 20, 20) in Table 2 and in Fig. 6 (a).
The proposed algorithm successfully operated in the around
17% average elapsed time of that required by Ding’s algo-

†All the algorithms were implemented in “C” with OpenMP
for parallel processing although the original Drake+ algorithm and
the Ding+ algorithm are implemented in “C++” with the stan-
dard template library and besides the Ding+ algorithm is done in
GraphLab, a framework for parallel processing [35].

AOYAMA et al.: ACCELERATING A K-MEANS CLUSTERING ALGORITHM WITH SUMMABLE LOWER BOUNDS
2781

Table 2 Average elapsed time and memory size except that for the data
points of TinyImages (∼ 31.40 GB).

Algorithm
Parameter Elapsed Memory
(m, b, g) time (sec) size (GB)

Proposed m = 30 160.5 2.56

Drake+
b = 20 986.3 3.16

b = 400 556.1 48.7

Ding+
g = 20 954.2 3.30

g = 400 208.6 48.8

Table 3 Average elapsed time and memory size except that for the data
set of Holidays (∼ 21.47 GB).

Algorithm
Parameter Elapsed Memory
(m, b, g) time (sec) size (GB)

Proposed m = 20 149.1 4.52

Drake+
b = 10 323.7 4.64

b = 200 112.5 51.48

Ding+
g = 10 238.5 4.95

g = 200 42.60 51.81

Fig. 6 Elapsed time (logarithmic scale) of each algorithm with k =
20, 000 for TinyImages, which corresponds to that in Table 2. (a) Almost
the memory size was employed, and (b) Drake+ and Ding+ used the much
larger memory size.

Fig. 7 Elapsed time (logarithmic scale) of each algorithm with k =
20,000 for Holidays, which corresponds to that in Table 3. (a) Almost
the memory size was employed, and (b) Drake+ and Ding+ used the much
larger memory size.

rithm, and kept the much shorter elapsed time through all the
iteration. Even when Drake’s and Ding’s algorithm were al-
lowed to use the large memory size of around 49GB, their
performances were below that of the proposed algorithm as
shown at the rows of (m, b, g) = (30, 400, 400) in Table 2
and in Fig. 6 (b), although they reduced the average elapsed
time to the half and the one-fifth, respectively. Thus the pro-
posed algorithm achieved the better speed performance than
the compared algorithms with only their 1/20 memory size
for TinyImages (10M-size).

Table 4 Truncated elapsed time under the condition in Eq. (12) of γ =
1 × 10−4 for TinyImages (10M-size) and Holidays when k = 20,000. The
numbers of iterations at the termination for TinyImages and Holidays are 20
and 26, respectively. Note that the truncated elapsed time is not averaged
unlike the average elapsed time in Tables 2 and 3.

Algorithm
TinyImages Holidays

Param. Elapsed Param. Elapsed
(m, b, g) time (sec) (m, b, g) time (sec)

Proposed m = 30 12,037 m = 20 10,009

Drake+
b = 20 56,787 b = 10 51,138

b = 400 61,145 b = 200 26,816

Ding+
g = 20 67,001 b = 10 40,460

g = 400 29,039 g = 200 12,924

Table 3 shows their performance for the other data set
Holidays in the two different cases, (m, b, g) = (20, 10, 10)
and (m, b, g) = (20, 200, 200), similar to those in Table 2. In
the case of using the almost same memory sizes, which is
shown at the rows of (m, b, g) = (20, 10, 10) in Table 3 and
in Fig. 7 (a), the average elapsed time that the proposed al-
gorithm required was only 47% and 64% of those required
by Drake’s and Ding’s algorithm, respectively. As shown
at the rows of (m, b, g) = (20, 200, 200) in Table 3 and in
Fig. 7 (b), when the much larger memory size of around
51GB was available, which is 11 times the memory size
that the proposed algorithm used, Drake’s and Ding’s al-
gorithm lowered the average elapsed time to 35% and 18%,
respectively. By controlling the parameters b and g, those
algorithm traded the occupied memory size for speed in our
experiments. In contrast, the proposed algorithm achieved
the high-speed performance with the much lower memory
consumption without a trade-off parameter.

Table 4 shows the truncated elapsed time of each al-
gorithm when the algorithms were applied to TinyImages
(10M-size) and Holidays under the same conditions as those
in Tables 2 and 3. The parameter γ in Eq. (12) was set at
1 × 10−4. Then the numbers of iterations were 20 and 26
for TinyImages and Holidays until the termination condition
was satisfied. Note that the truncated elapsed time in Ta-
ble 4 is not averaged, i.e., it is just the elapsed time until
the termination. The truncated elapsed time of the proposed
algorithm includes the elapsed time spent by SVD in prepro-
cessing. For both the data sets, the proposed algorithm was
fastest than the others even if they were operated with the
large memory capacity. Thus the proposed algorithm works
well in practice.

6. Conclusion

We experimentally validated that the proposed algorithm
worked at high speed and with low memory consumption
for the large-scale and high-dimensional real image data
sets, given large k values, compared with the state-of-the-
art algorithms: Drake’s and Ding’s algorithm. For the Tiny-
Images data set, in particular, our algorithm achieved almost
six times the speed performance of them with the nearly
identical memory consumption. Besides, it was observed

2782
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

that our algorithm had the scalability in terms of data size n
and the number of clusters k. Thus the proposed algorithm
is more suitable for large-scale and high-dimensional data
sets with potentially numerous classes.

There remain the two directions as the future work.
One is to incorporate the existing algorithms using the dis-
tance lower bound based on the triangle inequality or the
Cauchy-Schwarz inequality into our framework if this leads
to the improvement of the clustering performance. The other
is to design a more effective space where the summable
lower bound on the squared distance becomes tighter with
smaller dimensionality. Then a method for determining the
dimensionality should be also developed.

Acknowledgments

This work was partly supported by JSPS KAKENHI Grant
Number JP17K00159.

References

[1] M. Mahajan, P. Nimbhorkar, and K. Varadarajan, “The planar k-
means problem is NP-hard,” Theoretical Computer Science, vol.442,
pp.13–21, 2012.

[2] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “NP-hardness
of Euclidean sum-of-squares clustering,” Machine Learning, vol.75,
no.2, pp.245–248, 2009.

[3] O. du Merle, P. Hansen, B. Jaumard, and N. Mladenovic, “An inte-
rior point algorithm for minimum sum-of-squares clustering,” SIAM
J. Sci. Comput., vol.21, no.4, pp.1485–1505, 2000.

[4] B. Babaki, T. Guns, and S. Nijssen, “Constrained clustering
using column generation,” Proc. 11th Int. Conf. Integration of
AI and OR Techniques in Constraint Programming (CPAIOR),
ed. H. Simonis, Lecture Notes in Computer Science, vol.8451,
pp.438–454, Springer, Cham, 2014.

[5] A. Kumar, Y. Sabharwal, and S. Sen, “Linear-time approxima-
tion schemes for clustering problems in any dimensions,” J. ACM,
vol.57, no.2, article 5, 2010.

[6] C. Boutsidis, A. Zouzias, M.W. Mahoney, and P. Drineas, “Random-
ized dimensionality reduction for k-means clustering,” IEEE Trans.
Inf. Theory, vol.61, no.2, pp.1045–1062, 2015.

[7] M.B. Cohen, S. Elder, C. Musco, C. Musco, and M. Persu, “Di-
mensionality reduction for k-means clustering and low rank approx-
imation,” Proc. 47th Annu. ACM Symp. Theory Comput. (STOC),
pp.163–172, 2015.

[8] S.P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf.
Theory, vol.28, no.2, pp.129–137, 1982.

[9] J.B. MacQueen, “Some methods for clasiffication and analysis of
multivariate observations,” Proc. 5th Berkeley Symp. Mathematical
Statistics and Probability, pp.281–297, 1967.

[10] D. Sculley, “Web-scale k-means clustering,” Proc. 19th ACM Int.
Conf. World Wide Web (WWW), pp.1177–1178, 2010.

[11] S. Har-Peled and B. Sadri, “How fast is the k-means method?,” Al-
gorithmica, vol.41, no.3, pp.185–202, 2005.

[12] D. Arthur and S. Vassilvitskii, “How slow is the k-means method?,”
Proc. 22nd ACM Symp. Comput. Geometry (SoCG), pp.144–153,
2006.

[13] R. Ostrovsky, Y. Rabani, L.J. Schulman, and C. Swamy, “The
effectiveness of Lloyd-type methods for the k-means problem,”
Proc. 47th Annu. IEEE Symp. Found. Computer Science (FOCS),
pp.165–176, 2006.

[14] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of care-
ful seeding,” Proc. 18th Annu. ACM-SIAM Symp. Discrete Algo-
rithms (SODA), pp.1027–1035, 2007.

[15] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii,
“Scalable k-means++,” Proc. 38th Int. Conf. VLDB Endowment,
vol.5, no.7, pp.622–633, 2012.

[16] O. Bachem, M. Lucic, H. Hassani, and A. Krause, “Fast and prov-
ably good seedings for k-means,” Proc. Advances in Neural In-
formation Processing Systems (NIPS), Track1 Clustering, Dec. 6,
2016.

[17] C. Elkan, “Using the triangle inequality to accelerate k-means,”
Proc. 20th Int. Conf. Machine Learning (ICML), pp.147–153, 2003.

[18] G. Hamerly, “Making k-means even faster,” Proc. SIAM Int. Conf.
Data Mining (SDM), pp.130–140, 2010.

[19] J. Drake and G. Hamerly, “Accelerated k-means with adaptive dis-
tance bounds,” Proc. 5th NIPS Workshop on Optimization for Ma-
chine Learning, Dec. 8, 2012.

[20] Y. Ding, Y. Zhao, X. Shen, M. Musuvathi, and T. Mytkowicz,
“Yinyang k-means: A drop-in replacement of the classic k-means
with consistent speedup,” Proc. 32nd Int. Conf. Machine Learning
(ICML), pp.579–587, 2015.

[21] G. Hamerly and J. Drake, “Accelerating Lloyd’s algorithm for
k-means clustering,” Partitional Clustering Algorithms, ed. M.E.
Celebi, ch. 2, pp.41–78, Springer, Cham, 2015.

[22] P. Ryšavý and G. Hamerly, “Geometric methods to accelerate
k-means algorithms,” Proc. SIAM Int. Conf. Data Mining (SDM),
pp.324–332, 2016.

[23] T. Hattori, K. Aoyama, K. Saito, T. Ikeda, and E. Kobayashi,
“Pivot-based k-means algorithm for numerous-class data sets,” Proc.
SIAM Int. Conf. Data Mining (SDM), pp.333–341, 2016.

[24] T. Bottesch, T. Bühler, and M. Kächele, “Speeding up k-means by
approximating Euclidean distances via block vectors,” Proc. 33rd
Int. Conf. Machine Learning (ICML), Clustering, June 20, 2016.

[25] J. Newling and F. Fleuret, “Fast k-means with accurate bounds,”
Proc. 33rd Int. Conf. Machine Learning (ICML), Clustering, June
20, 2016.

[26] T. Kaukoranta, P. Fränti, and O. Nevalainen, “A fast exact GLA
based on code vector activity detection,” IEEE Trans. Image Pro-
cess., vol.9, no.8, pp.1337–1342, 2000.

[27] N. Ailon and B. Chazelle, “Approximate nearest neighbors and
the fast Johnson-Lindenstrauss transform,” Proc. 38th Annu. ACM
Symp. Theory Comput. (STOC), pp.557–563, 2006.

[28] N. Ailon and B. Chazelle, “The fast Johnson-Lindenstrauss trans-
form and approximate nearest neighbors,” SIAM J. Comput., vol.39,
no.1, pp.302–322, 2009.

[29] A. Kumar and R. Kannan, “Clustering with spectral norm and the
k-means algorithm,” Proc. 51st Annu. IEEE Symp. Found. Com-
puter Science (FOCS), pp.299–308, 2010.

[30] A. Torralba, R. Fergus, and W.T. Freeman, “80 million tiny im-
ages: A large dataset for non-parametric object and scene recog-
nition,” IEEE Trans. Pattern Anal. Mach. Intell., vol.30, no.11,
pp.1958–1970, 2008.

[31] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and
weak geometry consistency for large scale image search,” Proc. 10th
European Conf. Comput. Vision (ECCV), Lecture Notes in Com-
puter Science, vol.5302, pp.304–317, pp.304–317, Springer, Berlin,
Heidelberg, 2008.

[32] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large image
databases for recognition,” Proc. IEEE Int. Conf. Comput. Vision
Pattern Recogn. (CVPR), pp.1–8, 2008.

[33] D.G. Lowe, “Object recognition from local scale-invariant features,”
Proc. 7th IEEE Int. Conf. Comput. Vision (ICCV), pp.1150–1157,
1999.

[34] G.H. Golub and C.F.V. Loan, Matrix Computations, 4 ed., JHU
Press, 2012.

[35] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J.M. Hellerstein, “Graphlab: A new parallel framework for machine
learning,” Proc. Conf. Uncertainty in Artificial Intelligence (UAI),
Miscellaneous, July 11, 2010.

http://dx.doi.org/10.1007/s10994-009-5103-0
http://dx.doi.org/10.1137/s1064827597328327
http://dx.doi.org/10.1007/978-3-319-07046-9_31
http://dx.doi.org/10.1145/1667053.1667054
http://dx.doi.org/10.1109/tit.2014.2375327
http://dx.doi.org/10.1145/2746539.2746569
http://dx.doi.org/10.1109/tit.1982.1056489
http://dx.doi.org/10.1145/1772690.1772862
http://dx.doi.org/10.1007/s00453-004-1127-9
http://dx.doi.org/10.1145/1137856.1137880
http://dx.doi.org/10.1109/focs.2006.75
http://dx.doi.org/10.14778/2180912.2180915
http://dx.doi.org/10.1137/1.9781611972801.12
http://dx.doi.org/10.1007/978-3-319-09259-1_2
http://dx.doi.org/10.1137/1.9781611974348.37
http://dx.doi.org/10.1137/1.9781611974348.38
http://dx.doi.org/10.1109/83.855429
http://dx.doi.org/10.1145/1132516.1132597
http://dx.doi.org/10.1137/060673096
http://dx.doi.org/10.1109/focs.2010.35
http://dx.doi.org/10.1109/tpami.2008.128
http://dx.doi.org/10.1007/978-3-540-88682-2_24
http://dx.doi.org/10.1109/cvpr.2008.4587633
http://dx.doi.org/10.1109/iccv.1999.790410

AOYAMA et al.: ACCELERATING A K-MEANS CLUSTERING ALGORITHM WITH SUMMABLE LOWER BOUNDS
2783

Kazuo Aoyama received the B.E. degree
in applied physics from Waseda University in
1986 and the M.E. degree from Tokyo Institute
of Technology in 1988. In 1988, he joined NTT
Laboratories, NTT Corporation. His research
interests includes device modeling, LSI design
methodology, computer architecture, data struc-
ture and algorithms, and machine learning.

Kazumi Saito received the B.S. degree
in mathematics from Keio University in 1985
and the Ph.D. degree in engineering from Uni-
versity of Tokyo in 1998. In 1985, he joined
the NTT Electrical Communication Laborato-
ries. In 2007, he joined the University of Shizu-
oka. In 2018, he joined the Kanagawa Univer-
sity. He is currently a professor at the Faculty of
Science. His current research interests are ma-
chine learning and statistical analysis of com-
plex networks.

Tetsuo Ikeda received the Master of
Computer Science from University of Tokyo in
1981, and the Doctor of Engineering from Uni-
versity of Tokyo in 2001. In 1981, he joined
the NTT Electrical Communication Laborato-
ries. In 2002, he joined the Iwate Prefectural
University. In 2007, he joined the University
of Shizuoka. He is currently a professor at the
School of Management and Information. His
current research interests are data engineering,
information retrieval and GIS.

