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SUMMARY  Software-defined networking (SDN) has rapidly emerged
as a promising new technology for future networks and gained consider-
able attention from both academia and industry. However, due to the sep-
aration between the control plane and the data plane, the SDN controller
can easily become the target of denial-of service (DoS) attacks. To miti-
gate DoS attacks in OpenFlow networks, our solution, MinDoS, contains
two key techniques/modules: the simplified DoS detection module and the
priority manager. The proposed architecture sends requests into multiple
buffer queues with different priorities and then schedules the processing
of these flow requests to ensure better controller protection. The results
show that MinDoS is effective and adds only minor overhead to the entire
SDN/OpenFlow infrastructure.

key words: software-defined networking, denial-of-service attack, priority
queue, round-robin scheme

1. Introduction

Software-defined networking (SDN) has rapidly emerged as
a new networking paradigm that has considerably modified
the traditional network architecture and garnered much at-
tention from both academia and industry. By decoupling the
control plane from the data plane, SDN provides more fine-
grained network management services. However, due to the
separation between the control plane and the data plane, the
controller is more likely to be the target of DoS attacks. As
illustrated in Fig. 1, attackers may launch DoS attacks to-
ward the SDN controller simply by sending a large num-
ber of spoofed packets (Step 1). These incoming packets
will trigger table-miss events (Step 2) and make the switch
send packet-in messages (Step 3) to the controller. Con-
sequently, the controller must handle these spoofed packets
to create flow entries. This will rapidly consume the com-
putational resources of the controller and overload the flow
table space of the switches (Attacks 1 and 2). In this state,
the attacked controller can only slowly respond to legitimate
flow requests (Steps 4 and 5). Moreover, the DoS attack
may cause a cascading failure of controllers [1] in the SDN
multiple-controller model [2], which is even more harmful
to the SDN controller.

With the development of SDN technology, some re-
search has been conducted to address this problem. For
example, Avant-Guard [3] introduced connection migration
and actuating triggers into the SDN architecture to defend
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Fig.1 Example of DoS attacks on an SDN controller.

against SYN flood attacks; however, these measures do not
prevent any other types of DoS attacks on the SDN. Flood-
Guard [4] uses a proactive flow rule analyzer and packet mi-
gration to defend against data plane saturation attacks; how-
ever, these methods are too costly for most implementations.
Previous works [5], [6] have employed self-organizing maps
(SOM) to identify abnormal traffic and thus defend against
DoS attacks; however, due to the high overhead required
for classification, the method cannot be implemented in
real time. Yan [7] proposed a solution to detect DDoS at-
tacks based on a fuzzy synthetic evaluation decision-making
model. Although it is a lightweight detection method, its
detection accuracy is barely satisfactory. All of the above
studies have obvious shortcomings. In addition, most of the
solutions focus on the data plane to ease the attack traffic,
which is not consistent with the trend of SDN security de-
velopment. Therefore, we propose MinDoS, an efficient and
lightweight defense architecture for SDN networks, to miti-
gate DoS attacks and ensure better controller protection.

The MinDoS architecture has the following four advan-
tages:

e MinDoS is jointly designed with other existing DoS de-
tection algorithms to provide high detection accuracy
and ensure the protection of entire networks.

e MinDoS is implemented on the control plane, which
is consistent with the trends of SDN security develop-
ment and does not require any modifications to the data
plane. Therefore, MinDoS is easier to deploy than pre-
vious solutions.

e MinDoS is valid for all types of DoS attacks.

e MinDoS adds little overhead into the entire SDN/
OpenFlow infrastructure.

The remainder of this paper is organized as follows. In
Sect. 2, some related works are introduced. We present the
detailed design in Sect. 3, followed by a performance evalu-
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ation in Sect. 4. The last section presents the conclusions of
the study.

2. Related Work

The emergence of SDNs provides a new paradigm for solv-
ing the problems of the traditional network architecture. By
decoupling the control plane from the data plane, an SDN
can provide more fine-grained network management ser-
vices. However, because of this same separation, the secu-
rity of the SDN is open to attack and has thus received con-
siderable research attention. Many works have recently been
published to address the security issues in SDNs. For exam-
ple, FRESCO [8] proposed the development of OpenFlow
security applications. Additionally, a software extension
to NOX was proposed in FortNoX [9], which offers role-
based authorization and security constraint enforcement for
the NOX controller. Both SE-Floodlight[10] and Rose-
mary [11] proposed a security enforcement kernel to im-
prove the robustness of SDN controller. In addition, some
recent works [12]-[14] have noted that the SDN controller is
vulnerable to DoS attacks. Yan [15] argues that although the
SDN controller itself is vulnerable to DDoS attacks, it pro-
vides us with an unexpected opportunity to mitigate DDoS
attacks in cloud computing environments at a certain level.
Several solutions have been proposed to mitigate SDN DoS
attacks. For example, Kotani [16] proposed a packet-in mes-
sage filtering mechanism to protect the SDN control plane.
The packet-in filtering mechanism can initially record the
values of packet header fields before sending packet-in mes-
sages and then filter out packets that have the same values
as the recorded ones. Of course, if the DoS attacker de-
liberately sends new packets that have values that are dif-
ferent from the recorded ones, the packet-in filtering mech-
anism will be completely ineffective. Mousavi [17] intro-
duced an early detection method for DDoS attacks on the
SDN controller based on the entropy variation of the desti-
nation IP address. He assumed that the destination IP ad-
dresses of normal flows should be nearly evenly distributed
and the destination IP addresses of malicious flows are al-
ways destined to several targets. However, it is not difficult
for DoS attackers to generate a large amount of evenly dis-
tributed new traffic flows to overload the SDN controller.
An OpenFlow agent was introduced in a content-oriented
networking architecture (CONA) [18] to mitigate DDoS at-
tacks. However, the time required for rate limiting to be
implemented and the attack to be halted is uncertain. By an-
alyzing the preceding works, we realize that a more system-
atic approach is required to address these types of attacks.
In the following section, we will describe our design.

3. Design
3.1 System Architecture

MinDoS is proposed to defend the SDN controller against
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Fig.2  The architecture and work process of MinDoS.

DoS attacks. It includes two functional modules: the sim-
plified DoS detection module and the priority manager mod-
ule. The conceptual architecture is shown in Fig.2. The
work process of MinDoS mainly includes the following
three steps.

e Step 1. Divide the single processing queue at the con-
troller into multiple logical queues, each of which cor-
responds to one SDN switch.

e Step 2. Change the first-come-first-serve (FCFS)
processing mechanism and instead serve the logical
queues based on a time slice allocation strategy.

e Step 3. Design a priority management strategy to im-
prove the quality of service (QoS) for normal users.

The details of the three steps are described in the re-
mainder of this section.

3.2 Time Slice Allocation Strategy

Normally, the flow requests of each switch are all placed
in one static physical queue and processed by the FCFS
mechanism. However, the controller resources are more
likely to be fully consumed by one static queue in this ap-
proach. Therefore, we must make changes to this mecha-
nism. Specifically, MinDoS initially places the flow requests
into the logical queue of the corresponding switch and then
schedules the processing of these flow requests based on
the time slice allocation strategy. In this method, the con-
troller can create an isolated allocation of resources for each
switch.

The implementation of the time slice allocation strat-
egy is based on the existing DoS detection module [5], [7].
The simplified DoS detection module uses the fuzzy syn-
thetic evaluation decision-making model [7] and a novel 6-
tuple feature vector [S] to detect DoS attacks. This mod-
ule can calculate a comprehensive judgment score that takes
a value between 0 and 1, where the score is O if there is
no DoS attack and 1 if there is a severe DoS attack. Af-
ter quantifying the scores for each switch, MinDoS applies
different time slice allocation strategies to different switches
to preliminary reduce the impact of DoS attacks. We use
the following equation to describe the time slice allocation
strategy:
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where the request processing capacity of the controller is
4, the degree of attack on kg, switch is Deg,, and FPy is
the processing capacity allocated to switch k. Equation (1)
allocates fewer resources to a switch that has a greater prob-
ability of being attacked. In this way, the system can prelim-
inarily defend against DoS attacks on the SDN controller.

3.3 Priority Management Strategy

When launching DoS attacks, both attackers’ requests and
normal users’ requests from the same switch are placed in
the logical queue of the same corresponding switch in the
above steps. If these packets have no priority, most normal
requests will be dropped since the logical queue of the corre-
sponding switch is mostly occupied by attackers’ malicious
requests. However, if the requests from normal users are
given a higher priority, their QoS can be greatly improved.
Therefore, in this step, our goal is to protect normal users
from DDoS attacks that are launched by attackers who con-
nect to the same switch as the normal users.

To provide different QoS levels, the priority manager
module must first rank users based on their trust values. The
pseudo code of trust value management is shown in Algo-
rithm 1. The priority manager maintains a trust list trustlist;
for each switch to store the trust value of each user in its sub-
net. When a new user (IP) connects to the network for the
first time, the priority manager will initialize its trust value
and insert <IP, Trust Value> into the current correspond-
ing list (lines: 1-9). The trust list is updated in real time to
precisely reflect the trust information of the network users
(lines: 10-20). Specifically, if a user has no signs of attacks
when using SDN resources, their trust value will increase.
Otherwise, if a user decreases the performance of the con-
troller in handling other requests, their trust value will de-
crease. As described in Algorithm 1, we first add an entry
for user s into the trust list and set its initial trust value to 1
(lines: 5-6). In this time slot, if the total request from user s
is higher than the abnormal threshold, their trust value will
decrease (lines: 10-11). If the total request from user s is
less than the abnormal threshold, their trust value will in-
crease (line: 12). It is also worth noting that the abnormal
threshold for each user is computed based on the statistics
of the user. In addition, if user s does not appear in this time
slot, we can infer that the user tends to be inactive, and its
trust value needs to be reduced as well (lines: 17-19). Above
all, the trust value management algorithm can dynamically
adjust the priority of users by managing the trust values so
as to mitigate SDN DoS attacks.
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Algorithm 1. Trust Value Management
1: In each time slot ¢

2: for Each switch i do

3: for Each request » from user s (ip) arriving at priority manager do

4: if The ip of user s is not in the trust list i then

5 Insert an entry for s into E =< ID id, IP ip, TrustValue tv>
6 Associate id with ip and initialize its trust value rv(id) =1
7:  else

8 id < index of (ip, tl,)

9: endif

10:  if The total request from this ijp > 6, then

11: tv(idy=Atv(id) -1

12:  else

13: tv(id y=Atv(id ) +1

14:  endif

15: end for

16: for Each user s in trust list 7/, do

17:  if The ip of user s does not appear in this time slot # then
18: id < index of (ip, tl,)

19: tv(idy=Atv(id)

20:  endif

21: end for

22: end for

After the trust value management process, each packet
is labeled with the user’s trust value. Next, these trust values
are used to design an algorithm to manage priority queues.
The pseudo code of priority queue management is shown in
Algorithm 2. When packets arrive at the priority manager,
the priority manager then appends these packets to the cor-
responding priority queues according to their trust labels:

ﬁ
t(id) — min {tv in tli}
N, =

* N, (2)
. —) . . q
max {tv in tl,-} —min {tv in tl,-}

- -
where min {tv in tl,-} and max {tv in tl,-} represent the mini-

mum and maximum trust values in trust list ﬁz respectively,
and N, is the buffer index. In addition, to keep the total
length of the buffers within the necessary bounds, the pri-
ority manager must periodically remove the lowest priority
packets.(lines: 3-11)

After placing packets into the corresponding priority
queues, the priority manager processes them based on the
weighted round-robin strategy. In this process, the num-
ber of packets processed from a queue is proportional to the
weight of the queue, which is defined based on the queue
length and priority level (line: 13). Therefore, when the
controller allocates processing resources for flow requests to
the logical queue of the switch using Eq. (1), requests with
higher priority are processed faster than those with lower
priority (line: 15). We can use this priority management
strategy to provide different QoS levels.
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Algorithm 2. Priority Queue Management
1: In each time slot ¢

2: for Each switch i do

3: for Each request » from user s (ip) arriving at buffers do

4:  id < index of (ip, tl,)
tv(id)—min{tv in i}

o

*N,

Buffer index of : N, = max{rv - J}—min{tv " E}

N,
6 if YL <L, then

n=1

7: Append r to N” queue

8: else

9: Drops the tail request from the lowest priority non-empty queue
10: Append 7 to N queue

11: end for

12: fornzltoNq do

13: Calculate the weight of each queue: ), = LL—” 5”"—|

‘max

14: end for

15:  In each round the number of the requests processed from n” queue

Fpx O

N, A

20,

n=1

16: end for

3.4 Fairness and Starvation Analysis

In this subsection, we describe how fairness and the star-
vation of requests are handled. In our approach, we first
split requests into multiple logical queues, each of which
corresponds to a requested SDN switch. Next, the time
slice for processing each queue is allocated based on the
inverse of the degree of attacks. For example, if there are
three switches in the SDN network (FP = 24) and the de-
gree of attack on each switch is (Deg, = 0.2, Deg, = 0.4,
Deg; = 0.8), the processing capacity assigned by the con-
troller to each switch is: (FPy = 12, FP, = 9, FP; = 3).
Therefore, a grater probability that the switch is attacked
results in fewer resources being allocated to the switch. Fi-
nally, requests in a queue are prioritized by the trust values
of the requesters. We assume that there are m priority queues
in each switch’s logical queue. The weight of each prior-
ity queue is wi, Wy, ..., Wy, and Wye and wy;, denote the
maximum and maximum common divisions, respectively.
Before processing these queues, the controller initializes a
parameter w to wu,,. In each round, all the priority queues
are traversed by the controller. If the weight of queue w; is
greater than or equal to w (w; > w), the controller processes
one packet from the queue. After a round, the controller up-
dates the value of w to w — w;. If the value of w is less than
0 (w < 0), the controller updates it to w,,,, again. For exam-
ple, we assume that there are 3 priority queues (g1, g2, g3) in
switch 1 (FP, = 12), and the weight of each priority queue
is (w; = 3,w; = 2, w3 = 1). Then, the controller schedul-
ing order is (g1, 42, 3, 41, 92, 415 q15 92, 43, 41> G2, q1)-
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This method not only improves the fairness but also avoids
starvation.

4. Performance Evaluation

We implemented MinDoS and a fuzzy synthetic evaluation
decision-making model (FSEDM) by modifying the Flood-
light controller, and evaluated them in both software and
hardware environments.

4.1 Software Environment Setups

The topology used for the software experiment is shown in
Fig.2. We used four servers in the experiment. Each server
was equipped with two Intel(R) Xeon(R) x5690 3.47 GHz
CPUs with 48 GB of RAM and CentOS 7. The 1%, 2nd
and 3" server used virtual machines to separately run clients
(including attackers). The Floodlight controller and virtual
switches were implemented on the 4" server. To overload
the controller in our experiment, we set a > u = 60 [reqs/s],
where a [reqs/s] is the rate of the DoS attack flow and u
is the flow request processing ability of the controller. In
particular, we set /u between 1.5 (mild attack) and 8 (se-
vere attack). In the simulation, the legitimate users under
each switch were modeled as ‘random’. Thus, the legiti-
mate users sent requests at random rates (the value was be-
tween u/6 and 2u/3). We set the capacity of the controller
processing queue to Q. = 3000 [reqs], the logical queue
capacity of each switch to L,,,, = 200 [reqs], the rate thresh-
old to 6; = 25 [reqs/s], the decay factor of the trust value
to 4 = 0.9, the default number of priority buffer queues to
N, =5, and the weight scale factor to 6 = 2. During the en-
tire simulation process, i.e., 50 seconds, we measured four
parameters: the TCP connection setup failure rate Ry, the
successful connection setup delay Dj, the delay of priori-
tizing requests and the processing of priority queues. To
evaluate the performance of MinDoS, we compared it with
the other two schemes, FCFS and FSEDM. The results un-
der different DoS attack intensities of @ = 1.5u, 2 u, 4, 8
are shown in Fig. 3, 4 and 5.

4.1.1 Defense Effect Analysis

The results in Fig.3 show that the connection failure rate
(Rr) when applying FCFS increases sharply as the attack
intensity increases. In this respect, MinDoS and FSEDM
perform better. For example, assuming that @ = 8y, the
connection failure rate using MinDoS or FSEDM is much
lower than that found when applying FCFS, and the suc-
cessful connection delay (D;) is also low. The connection
failure rate and the successful connection delay are higher
when using FCFS because the FCFS approach does not in-
clude a mechanism to detect attack requests. The results in
Fig. 3 also show that MinDoS outperforms FSEDM, regard-
less of whether it is measured by Dy or Ry. A more intense
attack leads to a greater advantage. These results show that
MinDoS can effectively protect the controller and normal
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users from DoS attacks. Because MinDoS makes full use of
the advantages of FSEDM, the time slice allocation strategy,
and the priority management strategy, better attack defense
effects are ensured.

4.1.2 Overhead Analysis

In this section, we present our evaluation of the overhead
required for MinDoS. To include the costs of scanning the
queue to prioritize and organize requests, we measured the
average overhead required to prioritize requests and process
priority queues in the simulation. The results for different
DoS attack intensities are shown in Fig. 4. The data in Fig. 4
show that the overhead of prioritizing requests and process-
ing priority queues increases slightly with increasing attack
intensity because the flooding attacks inevitably add extra
load to the priority manager. After the attack rate reaches a
certain level, the overhead tends to stabilize. For the worst
case (@ = 8, severe attack), the overhead of prioritizing
requests is less than 43.6 ms, and the overhead of scanning
requests is less than 67.4ms. This overhead is acceptable
for our system.

Next, we compared and analyzed the overhead for Min-
DoS with that used for FSEDM. We also compared the
CPU and memory utilization to determine the computational
overhead of the system. The evaluation results are presented
in Fig. 5. The data show that the overall utilization (either
CPU or memory utilization) of MinDoS is relatively low,
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which indicates that MinDoS is highly scalable and able to
provide security services for more network devices. In con-
trast, the overhead of the FSEDM is high. The FSEDM must
make a comprehensive judgment according to multiple fac-
tors and then take the appropriate protective measures. This
process involves many complex calculations. Therefore, the
evaluation results are not surprising. As attack intensity in-
creases, the overall utilization of MinDoS and FSEDM also
slightly rise. The CPU utilization is below 30%, and the
memory utilization is below 20%, which is reasonable given
the small scale of the experiment.

4.2 Hardware Environment

We set up a test bed with three physical switches and six
users, as shown in Fig.6. Here, OF switches 1 and 2 are
FPGA-based OpenFlow switches. The switch uses four
1 Gb/s ports to forward packet and one 1 Gb/s port to con-
nect the controller. The other experimental parameter set-
tings are the same as described in Sect. 4.1.

We let hl be the attacking host and let h2 ping h4. The
round-trip times (RTTs) between h2 and h4 are shown in
Fig.7. The data in Fig. 7 show that using the FCFS mecha-
nism, the RTTs between h2 and h4 become very large, with
an attack rate up of to 1000 packets/s. Additionally, the
RTTs between h2 and h4 remain small when using FSEDM
or MinDoS. This result reflects the effectiveness of MinDoS
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and FSEDM in defending against TCP flooding attacks. As
the attack rate increases, the RTTs between h2 and h4 be-
gin to sharply increase when using FSEDM; however, the
RTTs between h2 and h4 remain nearly constant when us-
ing MinDoS. Furthermore, FSEDM fails to process the flow
requests when the attack rate is above 1500 packets/s. This
demonstrates that the defensive effect of MinDoS is better
than that of FSEDM under TCP flooding attacks.

5. Conclusions

In this paper, we propose a priority-based SDN safe-guard
architecture, MinDoS, to mitigate DoS attacks. Specifically,
the time slice allocation strategy and priority management
strategy greatly enhance system security. The experimental
results demonstrate that MinDoS ensures better protection
of the controller and adds only minor overhead to the entire
SDN infrastructure. In future work, we plan to implement
MinDoS on larger experimental topologies to improve our
results.
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