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SUMMARY One of the most promising compression methods for
XML documents is the one that translates a given document to a tree gram-
mar that generates it. A feature of this compression is that the internal
structures are kept in production rules of the grammar. This enables us
to directly manipulate the tree structure without decompression. However,
previous studies assume that a given XML document does not have data
values because they focus on direct retrieval and manipulation of the tree
structure. This paper proposes a direct update method for XML documents
with data values and shows the effectiveness of the proposed method based
on experiments conducted on our implemented tool.
key words: XML, compression, tree grammars, update

1. Introduction

Digital documents that have been generated, communicated
and stored in computer systems are rapidly increased and
the development of efficient document compression meth-
ods are required. Many of those documents are described
by XML (Extensible Markup Language), which is a de facto
standard of a markup language for structured documents.
Since an XML document is given an internal hierarchical
structure by arbitrarily nested tags, the document can be
modeled by an (unranked) tree. By this reason, a few com-
pression methods for trees have been proposed. One of the
most promising compression methods is the one that trans-
lates a given tree t to a tree grammar G that generates (only)
t. The idea is that we replace frequent occurrences of a com-
mon substructure s with a nonterminal symbol, say A, and
instead, we introduce a production rule A → s. TreeRe-
Pair [1] is a compression tool that achieves efficient process-
ing and good compression ratio simultaneously by repeat-
edly replacing frequently occurring tree digrams with a non-
terminal symbol of a straight-line context-free tree gram-
mar (SLCFTG). Note that a dag (directed acyclic graph)
is a familiar compression of a tree, and it is regarded as a
straight-line regular grammar, which forms a proper sub-
class of SLCFTG.

When we make access to a compressed data c of an
original tree t, we decompress c to reconstruct t, retrieve t,
and recompress t′ if we update t to t′. It is desirable to di-
rectly manipulate c without decompression. In compression
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methods based on tree grammars, such a direct manipulation
is possible because the internal structures are kept in produc-
tion rules of the grammar. Along this line, some direct ma-
nipulation tools have been already reported [2]–[8]. How-
ever, previous studies on compression and direct manipula-
tion assume that a given XML document does not have data
values such as attribute values and PCDATA because those
studies focus on investigating an efficient compression and
direct retrieval of the structure.

This paper proposes a direct update method for struc-
tured documents with data values and shows the effective-
ness of the proposed method based on experiments con-
ducted on our implemented tool. Our approach is as follows.
A structured document with data values is modeled by a data
tree (t, δ) where t is an ordinary tree and δ is a valuation
function that takes a node of t and an attribute name and re-
turns an associated data value. We assume t is compressed
into an SLCFTG G by TreeRePair to obtain a compressed
data tree (G, δ). Note that compression of a valuation func-
tion δ is out of the scope of this paper. In a real setting,
the data part could be compressed by a traditional method
independently.

An update instruction is specified as (A, op) where A
is a query that selects the positions in the document that
should be updated and op is a kind of updated operation
possibly with arguments, such as relabel, delete, insert and
update-value. As a formal model of a queryA, we introduce
a deterministic selecting top-down data tree automaton with
bottom-up look-ahead. A transition rule of the look-ahead
part is conditional in the sense that it determines the state as-
signed to the current node depending on the truth value of a
specified predicate on the data value of a specified attribute
associated with the current node as well as the label of the
current node and the states assigned to the children nodes.
The look-ahead part is useful to simulate filters appearing in
XPath.

An advantage of direct update without decompression
is that we can avoid duplicate query evaluation on common
substructures. For this purpose, the proposed query evalua-
tion algorithm uses memoization, i.e., keeping the evaluated
partial runs of a given automaton in a hash map. Note that
the algorithm can reuse the run stored in the map when not
only the substructure but also all the decisions made by the
applied conditional transition rules are the same as before
because the data values may be different from the previous
ones. As another implementation-level optimization, we di-
vide a file that stores a valuation function δ into a few files.
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When the positions to be updated are not distributed over
the tree, this optimization can prevent the algorithm from
loading the files not related to the updated positions. We
conduct experiments of query evaluation and updates with
some benchmark XML documents and the results show that
our method outperforms BaseX [9] in both of CPU time and
memory usage.
Related work Compression of tree-structured data has
been studied extensively since [10] proposed a compression
method via DAGs (also see [11]). Using tree grammars
improves the compression ratio because we can merge re-
peated sub-structures that are not always complete subtrees,
and a few compression tools based on straight-line context-
free tree grammars (SLCFTGs) have been developed such as
BPLEX [12], Clux [13] and TreeRePair [1] (Note that com-
pression via DAGs can be regarded as compression via reg-
ular tree grammars, i.e., CFTGs where no nonterminal sym-
bol has an argument.) Among others, TreeRePair shows
good compression ratio as well as efficiency in compression
and this study has used TreeRePair as the basic compression
tool. The problem of constructing a minimal SLCFTG is
computationally intractable. [14] proposed a recompression
algorithm for string grammars that replaces (string) digrams
in linear time, and it is extended in [15] to a compression
algorithm for SLCFTGs, which exhibits the best proven ap-
proximation ratio w.r.t. the minimal SLCFTG.

About direct manipulation of compressed structured
data, [4] proposed a method of updating compressed data
without full decompression, called path isolation. Their
method traverses grammar rules (compressed data), expand-
ing (decompressing) non-terminals by the corresponding
rules until an update position is reached, conducts an up-
date and recompresses the updated tree locally. Path iso-
lation has been extended in various ways. [5] proposed
a parallelization of path isolation in updating grammars.
[2] further optimized an updating algorithm by representing
queries by DAGs and [6] proposed an extension of SLCFTG
so that redundancies appearing in path isolation can be re-
duced. In [7], a recompression method is proposed such
that tree digrams across more than one rules are searched
in an SLCFTG updated by path isolation, and the detected
digrams are locally compressed by TreeRePair. The ex-
perimental results of [7] showed that their recompression
method achieved almost the same compression ratio as the
one given by decompression, update and recompression.
Our proposed method takes a copy of the rule that directly
or indirectly contains an update position and when an up-
date position is found, an update operation is conducted. To
improve the compression ratio after an update, our method
keeps track of the update history and eliminates the created
copy if there already exists a copy of the rule with same
history, and the method also conducts a (weak version of)
pruning [1] after an update. All the update methods except
ours do not deal explicitly with compressed documents with
data values.

As a theoretical study, [16] discusses the computational
complexity of querying trees compressed by tree grammars.

Top Tree is another data structure that can represent a
tree in a compact way [17]. An updating method similar to
this paper for documents (without data values) compressed
by top trees is reported in [8]. Though the sizes of com-
pressed documents via top trees are experimentally about
twice as large as those by TreeRePair (see [18]), basic infor-
mation (e.g., reachability between specified node pairs) can
be maintained efficiently through updates in top trees [19].
Recently, a compression method of graphs via graph gram-
mars was proposed based on graph digrams [20]. Extending
our method to graph compression is another interesting fu-
ture work.

2. Preliminaries

2.1 Trees

A ranked alphabet Σ is a finite set of symbols with rk : Σ→
N. For a symbol a ∈ Σ, the value rk(a) is called the rank of
a. Let Σn denote {a ∈ Σ | rk(a) = n}. Let Att be a set of
attribute names.

Definition 1: A labeled ordered tree over Σ (simply called
a tree) is a pair (D, λ) such that

• D ⊆ N∗+ where N+ = {1, 2, 3, . . .},
• λ is a total function from D to Σ,
• if p · p′ ∈ D then p ∈ D, and
• if p ∈ D and λ(p) ∈ Σn, p · i ∈ D for each i (1 � i � n).

For a tree t = (D, λ), we call an element in D a node (or a
position) of t. We call λ the labeling function of t. For nodes
p, p·i ∈ D where p ∈ N∗+, i ∈ N+, p·i is the ith child of p and
p is the parent of p · i. For nodes p, p′ ∈ D, if ∃u ∈ N∗+. p =
p′ · u, denoted by p 	 p′, then p is a descendant of p′, and
p′ is an ancestor of p. A leaf is a node having no child, and
the root is ε. A subtree of t rooted by p ∈ D, denoted by
t|p, is the tree (Dp, λp) such that Dp = {p′ | p · p′ ∈ D} and
λp(p′) = λ(p · p′) if p · p′ ∈ D.

Definition 2: A labeled ordered data tree over (Σ, Att)
(simply called a data tree) is a pair (t, δ) such that

• t = (D, λ) is a tree over Σ, and
• δ is a partial function from D × Att to N.

For a data tree τ = ((D, λ), δ), we call δ the valuation func-
tion of τ. For p ∈ D and α ∈ Att, if δ(p, α) is defined
and δ(p, α) = d ∈ N, we say that the data value on at-
tribute α at p is d. We call the tree (D, λ), denoted by st(τ),
the structure of τ. A subtree τ|p of τ rooted by p ∈ D is
the data tree (st(τ)|p, δp) such that the domain E of δp is
{(p′, α) | δ(p · p′, α) is defined} and δp(p′, α) = δ(p · p′, α)
for each (p′, α) ∈ E.

The above trees are ranked, i.e., the number of children
of nodes are determined by their labels. XML documents
are modeled by unranked labeled ordered trees. Every un-
ranked tree can be encoded to a ranked tree by the first-child
next-sibling (fcns) encoding [21]. In what follows, we give
a definition of fcns encoding, as a mapping from sequences
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Fig. 1 Structure (D, λ)

Table 1 Valuation function δ

position attr value
11 x 1
112 y 10
112 z 100

1122 y 11
121 x 2

1212 y 20

of unranked trees over Σ to binary trees over Σ ∪ {#}, where
# is a symbol such that rk(#) = 0 and # � Σ.

Definition 3: Let t1, . . . , tn be unranked labeled ordered
trees, and t1 = f (s1, . . . , sm). fcns(t1 · · · tn) is defined in-
ductively as follows:

• fcns() = #, and
• fcns(t1 · · · tn) = f (fcns(s1 · · · sm), fcns(t2 · · · tn)).

In trees obtained by the fcns encoding, the rank of any sym-
bol f ∈ Σ is two. Note that each internal node of the ob-
tained binary tree corresponds to a node of the unranked
tree, and vice versa. The fcns encoding can be naturally ex-
tended to that from unranked data trees to binary data trees.
Henceforth, we consider only binary data trees obtained by
the fcns encoding as an input tree before compression. Note
that we use trees which is not binary in tree grammars, or
compressed trees, we will introduce later.

Example 1: Consider a data tree with the structure (D, λ)
shown in Fig. 1 and the valuation function δ shown in Ta-
ble 1. In the data tree, the label of 112 is e, and the data
values on attributes y and z at 112 are 10 and 100, respec-
tively.

2.2 Straight-Line Context-Free Tree Grammars

Let X = {x1, x2, . . .} be a countable set of variables disjoint
with Σ. We denote by T (Σ,X) the set of all trees over Σ ∪X
where the rank of any variable is 0. A tree t ∈ T (Σ,X)
is linear if any variable appears at most once in t. For
t, t1, . . . , tn ∈ T (Σ,X), t[x1/t1, . . . , xn/tn] denotes the tree ob-
tained from t by replacing xi with ti (1 ≤ i ≤ n).

Let z � Σ ∪ X. A context C is a tree in T (Σ,X ∪ {z})
such that z appears exactly once in the tree. For a context C,
we write C[t] instead of C[z/t].

Definition 4: A context-free tree grammar (CFTG) is a
quadruplet G = (N,Σ, P, S ) where

• N is a finite set of non-terminals with rank,

• Σ is a ranked alphabet,
• P is a finite set of production rules in the form

A(x1, . . . , xn)→ t,
• S ∈ N is a start non-terminal with rank 0.

A production relation ⇒G by G is a binary relation
over T (Σ ∪ N,X) defined by: For s, s′ ∈ T (Σ ∪ N,X),
s ⇒G s′ if and only if there exist a production rule
A(x1, . . . , xn) → t ∈ P where rk(A) = n, a context C ∈
T (Σ ∪ N,X∪ {z}), and t1, . . . , tn ∈ T (Σ ∪ N,X) such that s =
C[A(t1, . . . , tn)], s′ = C[t[x1/t1, . . . , xn/tn]]. Let ⇒∗G denote
the reflexive transitive closure of ⇒G. The tree language
L(G) generated by G is defined as {t ∈ T (Σ) | S ⇒∗G t}.
The binary relation �G is defined as {(A, B) ∈ N × N |
A(x1, . . . , xn)→ t ∈ P and B appears in t. }

Definition 5: A straight-line CFTG (SLCFTG) is a CFTG
G = (N,Σ, P, S ) satisfying the followings:

• For any A ∈ N, there exists exactly one production rule
A(x1, . . . , xn)→ t ∈ P and t is linear.

• The relation�G is acyclic.

An SLCFTG is a CFTG that yields only one tree. Let rhs(A)
denote the tree in the right-hand side of the rule with A ∈ N
in its left-hand side. In SLCFTGs, without loss of generality,
we assume that in rhs(A) of each A ∈ N, xi is the ith variable
when traversing in the pre-order. The size |G| of an SLCFTG
G is defined by |G| := ∑A→t∈P |t|.

Example 2: The SLCFTGG= ({S , A}, {a, b, c, d, e, #}, P, S )
where

P =

{
S → a(b(A(e(#, #)), c(A(#), #)), #),

A(x1)→ d(#, e(#, x1))

}

generates the tree (D, λ) in Example 1.

For a non-terminal A and i ∈ {1, . . . , rk(A)}, let
Vpos(A, i) be the position p such that A(x1, . . . , xrk(A)) ⇒∗
t̃ ∈ T (Σ,X) and λt̃(p) = xi.

Example 3: Consider two rules A(x1, x2) → a(x1, B(x2))
and B(x1) → b(b(x1)) where A and B are non-terminals
and a and b are terminals. Then, Vpos(A, 1) = 1 and
Vpos(A, 2) = 211 because A(x1, x2) ⇒∗ a(x1, b(b(x2))) = t̃
and λt̃(1) = x1, λt̃(211) = x2.

3. Data Tree Automata

We define deterministic selecting top-down data tree au-
tomata with bottom-up look-ahead. We use them as a model
of node selection queries for data trees.

Definition 6: A deterministic selecting top-down data tree
automaton with bottom-up look-ahead over data trees is a
tupleA = (Σ,Qb,Qt, qb0, qt0,Δb,Δt,S) where

• Σ is a ranked alphabet,
• Qb and Qt are finite sets of states,
• qb0 ∈ Qb, qt0 ∈ Qt are initial bottom-up and top-down
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states,
• Δb is a finite set of bottom-up transition rules in

the form f (qb1, qb2)→ (α, ϕ)?qT : qF where f ∈ Σ,
qT , qF , qb1, qb2 ∈ Qb, α ∈ Att, ϕ is a predicate on a
data value of attribute α,

• Δt is a finite set of top-down transition rules in the form
( f , qb, qt) → (qt1, qt2) where f ∈ Σ, qt, qt1, qt2 ∈ Qt,
qb ∈ Qb,

• S ⊆ Σ × Qb × Qt, called selection specification, and
• Both Δb and Δt have no two distinct rules with the same

left-hand side.

In this paper, we simply call an automaton defined above a
data tree automaton.

Definition 7: Let A = (Σ,Qb,Qt, qb0, qt0,Δb,Δt, S ) be a
data tree automaton. For a data tree τ = ((Dt, λt), δ) over
(Σ, Att), an accepting run r of A on τ is a tree r = (Dr, λr)
over Σ × Qb × Qt such that

• Dr = Dt, and
• for each node p ∈ Dt,

– if p is a leaf, there exists a state qt ∈ Qt such that
λr(p) = (#, qb0, qt).

– if p is the root, there exists a state qb ∈ Qb such
that λr(ε) = (λt(ε), qb, qt0).

– if p is not a leaf, there exist two transition
rules λt(p)(qb1, qb2) → (α, ϕ)?qT : qF ∈ Δb and
(λt(p), qb, qt)→ (qt1, qt2) ∈ Δt such that

λr(p) = (λt(p), qb, qt)

∧ (ϕ(δ(p, α))⇒ qb = qT )

∧ (¬ϕ(δ(p, α))⇒ qb = qF)

∧ ∀i ∈ {1, 2}.∃ f .λr(p · i) = ( f , qbi, qti)

Let Ab denote the bottom-up part (Σ,Qb, qb0,Δb) of A
and an (accepting) bottom-up run rb of Ab on a data tree
τ = ((Dt, λt), δ), is a tree rb = (Drb , λrb ) over Σ × Qb sat-
isfying the corresponding conditions for an accepting run
of A, forgetting top-down rules Δt. Since A is determin-
istic, there is at most one accepting run of A on t. If
r = (Dr, λr) is an accepting run of A on τ = ((Dt, λt), δ),
we say that a node p ∈ Dt is selected byA if λr(p) ∈ S. Let
A(τ) = {p ∈ Dt | λr(p) ∈ S}.

For a bottom-up transition rule, if the predicate in the
right-hand side is trivially valid or unsatisfiable, we omit the
predicate, like f (qb1, qb2) → q where q ∈ Qb. In this paper,
we restrict for simplicity that a data tree automaton can only
test only one attribute of a node in each rule. We can triv-
ially extend the definition to handle a boolean combination
of multiple tests on two or more attributes of a node.

Example 4: Let Σ = {a, b, c, d, e} and Att = {x, y, z} Con-
sider A = (Σ, {qb

1, q
b
2}, {q

t
1, q

t
2}, q

b
1, q

t
1,Δb,Δt, {(d, qb

2, q
t
2)})

where

Δb =

{e(qb
1, q

b
1)→ (y, λd.d ≥ 20)?qb

2 : qb
1, e(qb

1, q
b
2)→ qb

2}

Fig. 2 An accepting run ofA on the data tree in Example 1

∪ {d(qb
1, q)→ q | q ∈ {qb

1, q
b
2}}

∪ {l(q, qb
1)→ qb

1 | l ∈ {b, c}, q ∈ {q
b
1, q

b
2}}

∪ {a(qb
1, q

b
1)→ qb

1},

and

Δt =

{(l, q, qt
1)→ (qt

1, q
t
1) | l ∈ Σ \ {c}, q ∈ {qb

1, q
b
2}}

∪ {(c, q, qt
1)→ (qt

2, q
t
1) | q ∈ {qb

1, q
b
2}}

∪ {(l, q, qt
2)→ (qt

1, q
t
2) | l ∈ {d, e}, q ∈ {qb

1, q
b
2}}.

Figure 2 shows an accepting run of A on the data tree τ =
((D, λ), δ) in Example 1. A(τ) = {121}.

4. Compression

A data tree τ = (t, δ) is a pair of the structure t and the valua-
tion function δ. In this paper, we compress only the structure
but not the valuation function. We implement a direct update
method that traverses the structure part according to a query
and refers to the valuation part when a predicate in the query
needs a data value. We can apply compression methods for
a valuation function such that predicates in queries can be
evaluated on the compressed function without decompres-
sion. Though we can use the ordinary tree compression with
SLCFTGs by handling attribute names and values as termi-
nal symbols, we think that, when compressing a data tree, it
is better to compress these two parts separately for the fol-
lowing reasons. Firstly, the number of kinds of tag names
are limited even for large XML documents, but data values
at different positions are different in many cases. We guess
that this lowers compression ratios of compressed data trees
using SLCFTGs because the nodes with terminal symbols
corresponding data values remain isolated. Secondly, what
is the best compression way which can allow direct accesses
without decompression depends on what operations are ex-
pected to be applied to the compressed data. We think that
data values should be compressed depending on their data
types or the contexts of names of tags and attributes.

To compress the structure of a data tree, we use an
SLCFTG. Note that every SLCFTG generates only one tree
(see Sect. 2.2). For a tree t, the compression of t is to con-
struct an SLCFTG G such that L(G) = {t}. Conversely, the
decompression of G is to generate the tree t from G. The
compression ratio (of the structure part) is defined by |G|

|t| .
It is NP-hard to find the smallest SLCFTG for a given tree.
TreeRepair [1] is a tool for compressing trees with no data
values. Though it does not guarantee compression to the
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smallest SLCFTG, it achieves a good performance on run-
ning time and compression ratio.

Definition 8: Let τ = (t, δ) be a data tree. (G, δ) is a com-
pressed data tree of τ where G is the SLCFTG obtained by
compressing t.

5. Direct Update

5.1 Update Instructions

An update instruction is a pair (A, op) whereA is a data tree
automaton and op is an operation. For a data tree τ = (t, δ)
to be updated, op is applied to each position in A(τ). An
operation op is either of relabel, delete, insert-before, insert-
after, and update-value. Each operation (with arguments) is
defined as follows: for a position p selected byA,

• relabel( f ′), where f ′ is a symbol, relabels the label of
p with f ′.

• delete replaces the subtree λt(p)(t1, t2) at p with t2.
• insert-before(t′), where t′ = f (t′1, #) is a tree, replaces

the subtree t|p at p with f (t′1, t|p).
• insert-after(t′), where t′ = f (t′1, #) is a tree, re-

places the subtree t|p = λt(p)(t1, t2) at p with
λt(p)(t1, f (t′1, t2)).

• update-value(α, opr, v′), where α is an attribute name,
opr is an arithmetic operator, and v′ is a constant nat-
ural number, changes the data value v of p on α to
opr(v, v′).

We have designed the above operations over the binary trees
obtained by fcns encoding, corresponding to simplest up-
date operations over unranked trees before the encoding.
For a data tree τ and a position p, UpdDT(op, τ, p) denotes
the data tree obtained by applying op at p to τ.

For a data tree τ = (t, δ) and an update instruction U =
(A, op), we define U(τ) := Update(τ,A(τ), op) with

Update((t, δ), ∅, op) = (t, δ)

Update((t, δ), {p} � P, op) = Update((t1, δ2), P1, op)

where (t1, δ1)=UpdDT(op, (t, δ), p), δ2=UpdPos(op, δ1, p),
and P1 = UpdPos(op, P, p). UpdPos denotes the updates of
positions in a valuation function δ or a set P of positions
by a given update instruction. The operations delete, insert-
before, and insert-after change the structure of the tree, and
then some positions with data values may be moved. If
such positions exist, we have to update δ. For example,
suppose that a position p has a data value v on attribute α.
If the position p is moved to p′ by an operation, δ is up-
dated to δ \ {(p, α, v)} ∪ {(p′, α, v)}. UpdPos(op, δ, p) and
UpdPos(op, P, p) are defined as follows.

UpdPos(delete, δ, p)

= (δ′′ \ {p̃ | p � p̃} × Att × N)

∪ {(p · p′′, α, v) | (p · 2 · p′′, α, v) ∈ δ′′},
UpdPos(delete, P, p)

Fig. 3 Structure of U(τ)

Table 2 Valuation function of U(τ)

position attr value
11 x 1

112 y 10
112 z 100
1122 y 11
121 y 20

= (P \ {p̃ | p � p̃}) ∪ {p · p′′ | p · 2 · p′′ ∈ P}

UpdPos(insert-before(t′), δ, p)

= (δ \ {p̃ | p � p̃} × Att × N)

∪ {(p · 2 · p′′, α, v) | (p · p′′, α, v) ∈ δ},
UpdPos(insert-before(t′), P, p)

= (P \ {p̃ | p � p̃}) ∪ {p · 2 · p′′ | p · p′′ ∈ P}

UpdPos(insert-after(t′), δ, p)

= (δ \ {p̃ | p · 2 � p̃} × Att × N)

∪ {(p · 22 · p′′, α, v) | (p · 2 · p′′, α, v) ∈ δ},
UpdPos(insert-after(t′), P, p)

= (P \ {p̃ | p · 2 � p̃}) ∪ {p · 22 · p′′ | p · 2 · p′′ ∈ P}

Otherwise UpdPos(op, δ, p) = δ and UpdPos(op, P, p) = P.

Example 5: Let U = (A,delete) where A is the data tree
automaton in Example 4. Figure 3 and Table 2 show U(τ)
where τ is the data tree in Example 1.

5.2 Proposed Method

Given a compressed data tree g = (G, δ) where G gener-
ates t and an update instruction U = (A, op), we would like
to update g to g′ = (G′, δ′) such that U(t, δ) = (t′, δ′) and
G′ generates t′, without generating t from G. Our update
procedure consists of two steps: (a) find the positions of τ
selected by the data tree automaton A, identifying the cor-
responding paths in G. (b) apply the update operation op for
each selected position in G.

5.2.1 Finding Selected Positions

In this step, we construct the accepting run of a data tree
automaton A over a given compressed data tree (G, δ), and
remember the paths to the selected positions in G. Basically,
this step assigns a bottom-up state and a top-down state for
each node in the right-hand side trees of rules of G. If it
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Fig. 4 Execution of bu eval(A, p, π, σ) when s is a non-terminal

reaches a node with a non-terminal symbol A, it moves to
the root of rhs(A) and traverses it recursively. Our algorithm
consists of two substeps: (1) construct the bottom-up run
of Ab, and (2) traverse the bottom-up run, assigning a top-
down state to each node in a top-down manner, and remem-
ber the selected positions and the paths to the non-terminals
A in G such that there exists a selected position in rhs(A).

(1) Bottom-up traversal

A state assignment is a partial mapping σ : X → Qb with
a finite domain dom(σ) ⊆ X. We slightly generalize the
bottom-up run for a tree in T (Σ,X) as follows. For a tree
t = (Dt, λt) ∈ T (Σ,X′), a state assignment σ such that X′ ⊆
dom(σ) and a valuation function δ, the bottom-up run r =
(Dr, λr) on (t, δ) with σ is defined as follows: Dr = Dt, and
for each node p ∈ Dt,

• if λt(p) = #, λr(p) = (#, qb0).
• if λt(p) = x ∈ X′, λr(p) = x.
• if p is not a leaf, there exist two transition rules
λt(p)(qb1, qb2)→ (α, ϕ)?qT : qF ∈ Δb such that

λr(p) = (λt(p), qb, qt)

∧ (ϕ(δ(p, α))⇒ qb = qT )

∧ (¬ϕ(δ(p, α))⇒ qb = qF)

∧ ∀i ∈ {1, 2}.
( ∃ f .λr(p · i) = ( f , qbi)

∨ ∃x ∈ X′.(λt(p · i) = x ∧ σ(x) = qbi))

For directly applying the bottom-up part Ab =

(Σ,Qb, qb0,Δb) of a given automaton A to a given com-
pressed data tree (G, δ) of a data tree (t, δ), we design an
algorithm bu eval that recursively applies transition rules in
Δb to the right-hand sides of production rules in G. We be-
gin with bu eval simp (see Algorithm 1), a naive version of
bu eval. The algorithm takes a non-terminal A, a position p
in rhs(A), a position π in t, and a state assignment σ as argu-
ments and returns the bottom-up run (if exists) r on (t′, δπ)
with σ where rhs(A)|p⇒∗Gt′ and δπ is the valuation function
derived from δ and π (see its definition between Defs. 2 and
3). Also see Fig. 4. By executing bu eval simp(S , ε, ε,⊥),
we can obtain the bottom-up run (if exists) on (t, δ). Note
that we need to maintain the position π in t corresponding
to the current position in rhs(A) because when we apply a

Algorithm 1 bu eval simp(A, p, π, σ)
Input: Non-terminal A, position p in rhs(A), position π in the whole data

tree, and state assignment σ
Output: bottom-up run r on (t′, δπ) with σ where rhs(A)|p⇒∗Gt′ and

bottom-up state q assigned to the root of r
1: s← λrhs(A)(p)
2: if s is a variable x then
3: (r, q)← (x, σ(x))
4: else if s is a terminal then
5: if s = # then
6: (r, q)← ((#, qb0), qb0) where qb0 is the initial state
7: else
8: (r1, q1)← bu eval simp(A, p · 1, π · 1, σ)
9: (r2, q2)← bu eval simp(A, p · 2, π · 2, σ)

10: if s(q1, q2)→ (α, ϕ)?qT : qF ∈ Δb then
11: if ϕ(δ(π, α)) then
12: (r, q)← ((s, q)(r1, r2), qT )
13: else
14: (r, q)← ((s, q)(r1, r2), qF )
15: end if
16: else if s(q1, q2)→ qb ∈ Δb then
17: (r, q)← ((s, qb)(r1, r2), qb)
18: end if
19: end if
20: else if s is a non-terminal then
21: for i = 1 to rk(s) do
22: (ri, qi)← bu eval simp(A, p · i, π · Vpos(s, i), σ)
23: end for
24: σ′ ← {xi �→ qi | 1 ≤ i ≤ rk(s)}
25: (r′, q)← bu eval simp(s, ε, π, σ′)
26: r ← r′[xi/ri | 1 ≤ i ≤ rk(s)]
27: end if
28: return (r, q)

conditional transition rule f (qb1, qb2) → (α, ψ)?qT : qF , we
need to know π to refer to the data value δ(π, α).

Clearly, bu eval simp is not more efficient than doing
over the data tree before compression. However, many
same substructures of the data tree are replaced with a non-
terminal by compression. Thanks to this, by constructing
the bottom-up run as an SLCFTG instead of a tree, if it vis-
its a non-terminal in the same situation twice or more, we
can reuse the previous result for the non-terminal. Here,
for a tree t which may contain non-terminals, we define a
bottom-up run r on (t, δ) with σ in the same way, adding a
case for non-terminals like: if λt(p) is a non-terminal A with
rank n and qi is assigned to ith child of p for i ∈ {1, . . . , n},
then λr(p) = A′ for a new non-terminal A′ and a produc-
tion A′(x1, . . . , xn) → r′ such that r′ is a bottom-up run on
(rhs(A), δp) with {xi �→ qi | 1 ≤ i ≤ n}. We consider that the
state assigned to the root of r′ is assigned to p in (t, δ).

Assume for simplicity that Ab does not have any con-
ditional transition rules. Then, for any non-terminal A and
any state assignment σ to its arguments, the bottom-up run
on (t′, δ) with σ where rhs(A)⇒∗Gt′ and δ is an arbitrary val-
uation function is uniquely determined independently of δ
(if exists). Hence, if we once compute the bottom-up run
r on (rhs(A), δ) and remember (A, σ)(x1, . . . , xrk(A)) → r as
a production rule whose left-hand side is an extended non-
terminal (A, σ) with the same rank as A, we can retrieve
r when we need to know it afterwards, avoiding the du-
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Algorithm 2 bu eval(A, p, π, σ)
Input: Non-terminal A, position p in rhs(A), position π in the whole data

tree, and state assignment σ
Output: bottom-up run r on (rhs(A)|p, δπ) with σ, bottom-up state q as-

signed to the root of r, and sequence qs of symbols of positions in r to
which conditional transition rules are applied

1: s← λrhs(A)(p)
2: if s is a variable x then
3: (r, q, qs)← (x, σ(x), ε)
4: else if s is a terminal then
5: if s = # then
6: (r, q, qs)← ((#, qb0), qb0, ε) where qb0 is the initial state
7: else
8: (r1, q1, qs1)← bu eval(A, p · 1, π · 1, σ)
9: (r2, q2, qs2)← bu eval(A, p · 2, π · 2, σ)

10: if s(q1, q2)→ (α, ϕ)?qT : qF ∈ Δb then
11: if ϕ(δ(π, α)) then
12: (r, q, qs)← ((s, q)(r1, r2), qT , qs1 · qs2 · (s, q))
13: else
14: (r, q, qs)← ((s, q)(r1, r2), qF , qs1 · qs2 · (s, q))
15: end if
16: else if s(q1, q2)→ qb ∈ Δb then
17: (r, q, qs)← ((s, qb)(r1, r2), qb, qs1 · qs2)
18: end if
19: end if
20: else if s is a non-terminal then
21: qs← ε
22: for i = 1 to rk(s) do
23: (ri, qi, qsi)← bu eval(A, p · i, π · Vpos(s, i), σ)
24: qs← qs · qsi

25: end for
26: σ′ ← {xi �→ qi | 1 ≤ i ≤ rk(s), ( , qi) = λri (ε)}
27: if brun has a rule with (s, σ′, ε) in the lhs then
28: Let r′ be the rhs of the rule in brun
29: q← the state appearing as the second element of λr′ (ε)
30: qs′ ← ε
31: else
32: (r′, q, qs′)← bu eval(s, ε, π, σ′)
33: brun← brun ∪ {(s, σ′, qs′)(x1, . . . , xrk(s))→ r′}
34: if qs′ � ε then qs← qs · (s, σ′, qs′)
35: end if
36: r ← (s, σ′, qs′)(r1, . . . , rrk(s))
37: end if
38: return (r, q, qs)

plicate computation. However, Ab has conditional transi-
tion rules in general and the bottom-up runs of (rhs(A), δ)
and (rhs(A), δ′) for different valuation functions δ and δ′

may differ because the application of a conditional transi-
tion rule may result in different states depending on the data
values of δ and δ′. To solve this, we add the sequence qs
of λr(p) for the positions p in rhs(A) to which conditional
transition rules are applied (in the post-order) as a compo-
nent of a new non-terminal. We will call a production rule
(A, σ, qs)(x1, . . . , xrk(A))→ r constructed in this way an aug-
mented (production) rule.

The revised algorithm is shown in Algorithm 2. Algo-
rithm 2 uses a global variable brun to keep the set of aug-
mented rules constructed during the execution. We first call
bu eval(S , ε, ε,⊥) with brun empty. If it returns (r, qs), we
add (S ,⊥, qs) → r to brun. Then, brun eventually remem-
bers the SLCFTG, denoted by GA,δ, where the start symbol
is (S ,⊥, qs), representing the bottom-up run ofA on t.

Fig. 5 brun in Example 6

Algorithm 3 td eval(γ, p, π, qt, κ)
Input: non-terminal γ of brun, position p in rhs(γ), position π in the whole

data tree, top-down state qt, key κ of UDmap
1: (c, qb)← λbrun(γ)(p)
2: if c is a variable then
3: Append qt to UDmap(κ).V
4: else if c is a terminal but not # then
5: if (c, qb, qt) ∈ S then  p is selected
6: UDmap(κ).T ← UDmap(κ).T ∪ {p}
7: end if
8: if (c, qb, qt)→ (qt1, qt2) ∈ Δt then
9: td eval(γ, p · 1, π · 1, qt1, κ)

10: td eval(γ, p · 2, π · 2, qt2, κ)
11: end if
12: else if c is a non-terminal (s, σ, qs) of brun then
13: κ′ ← (c, qt)
14: if UDmap(κ′) is undefined then
15: td eval(c, ε, π, qt , κ

′)
16: end if
17: for i = 1 to rk(c) do
18: qti ←UDmap(κ′).V[i]
19: td eval(γ, p · i, π · Vpos(s, i), qti, κ)
20: end for
21: if UDmap(κ′).T � ∅ or UDmap(κ′).N � ∅ then
22: UDmap(κ).N ← UDmap(κ).N ∪ {(p, κ′)}
23: end if
24: end if

Example 6: Figure 5 shows brun obtained by executing
bu eval for the SLCFTG G given in Example 2 and the
bottom-up part of the data automatonA given in Example 4.
brun contains the three rules.

(2) Top-down traversal

We design an algorithm td eval (see Algorithm 3) that re-
cursively applies transition rules in Δt to the right-hand sides
of production rules in GA,δ of the bottom-up run, and re-
member selected positions. td eval takes a non-terminal γ
of GA,δ, a position in rhs(γ), a position in the bottom-up
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Fig. 6 Top-down state assignment

run, a top-down state and a key of UDmap as arguments.
A key of UDmap consists of a non-terminal of GA,δ and a
top-down state. If the same non-terminal is visited with the
same key of UDmap, the accepting run on the right-hand
side of the non-terminal is the same. Thus, by remember-
ing the results together with keys, we can avoid duplicate
computation. For a key (γ, qt) where γ = (A, σ, qs), UDmap
remembers a listV of top-down states assigned to the argu-
ment variables of A, a list T of selected positions in rhs(γ),
and a listN of pairs (p′, κ′) where p′ is the position of a non-
terminal γ′ such that there is a selected position in rhs(γ′) or
in a right-hand side reachable from γ′ and κ′ is a correspond-
ing key. We call td eval((S ,⊥, qs), ε, ε, qt0, ((S ,⊥, qs), qt0))
with UDmap empty where (S ,⊥, qs) is the start symbol of
GA,δ and qt0 is the initial top-down state. After that, we have
that A(t) = S(κI) where κI is the initial key ((S ,⊥, qs), qt0)
and for a key κ, S(κ) is defined as

S(κ) = {p | p ∈ UDmap(κ).T }
∪{p · p′ | (p, κ′) ∈ UDmap(κ).N , p′ ∈ S(κ′)}.

Example 7: Figure 6 shows the assignment of the top-
down states when executing td eval for brun given in Ex-
ample 6 and the data automatonA given in Example 4. The
obtained UDmap is as follows:

key V T N
((S ,⊥, qs1), qt

1) ε ∅ {(121, ((A, σ1, qs3), qt
2))}

((A, σ1, qs2), qt
1) qt

1 ∅ ∅
((A, σ1, qs3), qt

2) qt
2 {ε} ∅

5.2.2 Application of Update Operation

(1) Updating a grammar

This step is skipped when the update operation is update-
value or the set of selected positions is empty, i.e., UDmap

Algorithm 4 UpdGrammar(κ)
Input: key κ = ((A, σ, qs), qt) of UDmap
1: Create a new nonterminal Ac as a copy of A
2: tA ← a copy of rhs(A)
3: for each (p, κ′) ∈ UDmap(κ).N do
4: if NT(κ′) is undefined then
5: UpdGrammar(κ′)
6: end if
7: B← NT(κ′)
8: if op = delete then
9: for each i ∈ RI(B) do

10: RI(Ac)← RI(Ac) ∪ { j | x j occurs below p · i on tA}
11: Remove all positions p′ s.t. p · i � p′ from UDmap(κ).T
12: end for
13: Let tA |p = A(t1, . . . , trk(A))
14: Let {i1, . . . , irk(B)} = {1, . . . , rk(A)} \ RI(B) such that i1 < · · · <

irk(B)
15: Replace the subtree at p on tA with B(ti1 , . . . , tirk(B) )
16: else
17: Relabel the non-terminal at p on tA with B
18: end if
19: UpdHist(Ac)← UpdHist(Ac) ∪ {(B, p)}
20: end for
21: for each p ∈ UDmap(κ).T do
22: if op = delete then
23: RI(Ac)← RI(Ac) ∪ {i | xi occurs below p on tA}
24: end if
25: Apply op at p to tA

26: UpdHist(Ac)← UpdHist(Ac) ∪ {p}
27: end for
28: if there is a copy A′ (� Ac) of A s.t. UpdHist(A′) = UpdHist(Ac) then
29: NT(κ)← A′

30: Clear UpdHist(Ac)
31: else
32: NT(κ)← Ac

33: if op = delete then
34: Renumber the indexes of variables in tA in the pre-order
35: end if
36: P← P ∪ {Ac(x1, . . . , xrk(Ac))→ tA}
37: end if

has no entries on T and N for its initial key.
We can enumerate selected positions by using UDmap.

UpdGrammar (see Algorithm 4) takes a key of UDmap, i.e.,
a non-terminal A of G, a state assignment σ to arguments
of A, a state sequence qs, and a top-down state qt. (Note
that (A, σ, qs) is a non-terminal of GA,δ.) For a given key
κ = ((A, σ, qs), qt), it creates a copy Ac of A and a copy tA

of rhs(A). Ac is a non-terminal which generates the tree up-
dated according to the key. For each (p, κ′) ∈ UDmap(κ).N
where p is a position in rhs(A) and κ′ is a key of UDmap, it
executes UpdGrammar(κ′) and renames the non-terminal at
p a new non-terminal. For each p ∈ UDmap(κ).T where p
is a position in rhs(A), it applies a given update operation at
p to tA. Finally, it checks if the update history UpdHist(A)
of tA coincides with that of another copy of A. If so, it re-
moves Ac and tA and reuses the existing copy of A instead
of Ac because the tree generated from Ac is the same as that
from the copy. The map NT remembers the correspondence
between the key κ and the corresponding copy of A.

By executing UpdGrammar((S ,⊥, qs), qt0) with NT
and UpdHist empty where (S ,⊥, qs) is the start symbol in
GA,δ, we can update the structure of the given data tree.
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Lastly, we remove the non-terminals not reachable from the
start symbol. Then, we apply a weak variant of the prun-
ing procedure of TreeRepair [1] which removes unprofitable
non-terminals as follows. For each non-terminal A such
that it is referred only once or rhs(A) contains only a non-
terminal and variables, we replace A with rhs(A) and get rid
of A and its production rule.

Note that our algorithm does not guarantee the mini-
mality of the updated SLCFTG. In general, the compression
ratio gets worse by repeating updates. Our algorithm makes
copies of non-terminals and their production rules if needed,
and then an update operation is applied. Though some post-
processes (removing duplicate non-terminals with the same
update history, and pruning unprofitable non-terminals) are
conducted to improve the compression ratio, they are locally
conducted and thus we cannot find all common parts made
after updates in general. We think that the deterioration of
compression ratio by updates is unavoidable without detect-
ing the common structures of the whole data tree or keep in-
formation on the frequency of occurrences of digrams. The
tool grammarRepair [7] can improve the compression ratio
of a given SLCFTG. As a way to keep the compression ratio
good, we can use the tool when the compression ratio gets
much worse by updates.

(2) Updating a valuation function

This step is skipped when the update operation is relabel or
the set of selected positions is empty. Otherwise, we execute
UpdPos using UDmap for enumerating selected positions.

Example 8: Using UDmap in Example 7 and brun, we ob-
tain the SLCFTG with the following rule set P.

P =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S → a(b(A1(e(#, #)), c(A2(#), #)), #),

A1(x1)→ d(#, e(#, x1))

A2(x1)→ e(#, x1)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
In the above SLCFTG, each of A1 and A2 is referred only
once in the first rule. By the pruning procedure, A1 and A2

are replaced with rhs(A1) and rhs(A2), and then we obtain
the SLCFTG with P′:

P′ = {S → a(b(d(#, e(#, e(#, #))), c(e(#, #), #)), #)} .

Since A(t) = S((S ,⊥, qs1), qt
0) = {121}, the valuation func-

tion is updated to the one shown in Table 2.

5.3 Splitting a Valuation Function

Assume that an XML document has a lot of data values and
they are stored in a single file. When an update instruction
is processed, loading and restoring unnecessary parts may
spend much time. By splitting a valuation function into sev-
eral files, it can make access to only files containing neces-
sary parts for updating.

We split a valuation function δ into k functions
δ1, . . . , δk The position set Pδi of each δi satisfies the fol-
lowing conditions:

Algorithm 5 UpdPos(op,Δ, p)
1: δ = find(Δ, p)
2: Let p′ such that p = δ.start · p′
3: Replace δ in Δ with UpdPos(op, δ, p′)
4: for each δ′ ∈ Δ do
5: if op = delete then
6: if δ′.start = p ∨ ∃r.δ′.start = p · 1 · r then
7: Δ← Δ \ {δ′}
8: else if ∃r, r′.(δ′.start = p · 2 · r ∧ δ′.end = p · 2 · r′) then
9: (δ′.start, δ′.end)← (p · r, p · r′)

10: end if
11: else if op = insert-before then
12: if ∃r, r′.(δ′.start = p · r ∧ δ′.end = p · r′) then
13: (δ′.start, δ′.end)← (p · 2 · r, p · 2 · r′)
14: end if
15: else if op = insert-after then
16: if ∃r, r′.(δ′.start = p · 2 · r ∧ δ′.end = p · 2 · r′) then
17: (δ′.start, δ′.end)← (p · 22 · r, p · 22 · r′)
18: end if
19: end if
20: end for
21: return Δ

• there exists a proot ∈ Pδi such that every other position
p′ ∈ Pδi is a descendant of proot.

• for any p ∈ Pδi , every descendant of p · 1 is in Pδi .

We denote proot as δi.start and the last position in the
pre-order in Pδi as δi.end. By maintaining the two abso-
lute positions for each split valuation function, we can find
which file includes a given position. In each file, each record
is positioned relatively to δi.start. If an update is applied at
an ancestor position of δi.start and a position gap happens,
we only have to update δi.start and δi.end. Algorithm 5
shows an algorithm UpdPos for split valuation functions
where Δ is the set of split valuation functions δ1, . . . , δk.

6. Experiments

We implemented a prototype tool for direct update on com-
pressed data trees. We used the XML documents from [22]
listed in Table 3. Structures are compressed by TreeRe-
pair [1], and valuation functions of 1-4th documents are di-
vided into about 50 files, and those of 5-7th documents are
divided into about 100 files. Table 4 shows update instruc-
tions we performed for compressed data trees, where we
give XPath expressions equivalent with data tree automata
for simplicity. Experiments were performed in the follow-
ing environment: Intel Core i7-2600 3.40GHz, 16GB RAM,
Ubuntu 16.04.3 LTS.

6.1 Updates for Compressed and Uncompressed Data
Trees

Tables 5 and 6 show experiment results (CPU time and
memory usage (MaxRSS)) of our update method on com-
pressed and uncompressed data trees, respectively. As the
tables illustrate, the amount of memory used on compressed
data tree is much less than that of used on uncompressed
data trees by about 65–91%. This is because the whole tree
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Table 3 XML documents and the compressed data tree

File name
File size

[kB]
#edges

(data tree)
#edges

(grammar)
comp.

ratio [%]
BaseBall 652 28,305 500 1.77
Shakespeare 7,710 179,689 17,747 9.88
Nasa 25,212 476,645 22,781 4.78
DBLP 134,315 3,332,129 156518 4.70
SwissProt 115,467 2,977,030 247,873 8.33

Table 4 XPath expressions and update operations

# File name XPath expression #selected nodes operation
1 BaseBall //PLAYER[HOME RUNS ≥ 10] 643 delete

2 BaseBall
//LEAGUE//

PLAYER[WINS ≥ 15] 30 relabel
3 Shakespeare //TITLE[text() = ACT I] 37 delete
4 Shakespeare //TITLE[text() = ACT III] 37 update-value

5 Nasa
//dataset[@subject = astronomy]

/altname[1] 2,435 insert-after
6 DBLP //proceedings[year ≥ 2000]/url 913 insert-before
7 SwissProt //Entry[@seqlen ≥ 2500]/Species 192 update-value

Table 5 Results on updating compressed data trees

#
parse
[ms]

bu
[ms]

td
[ms]

upd
(struct)

[ms]

upd
(value)
[ms]

total
[ms]

memory
[kB]

1 17 7 0 1 21 46 2,771
2 10 4 0 0 0 14 2,509
3 86 4 4 1 225 320 4,699
4 83 4 4 0 220 311 4,471
5 226 14 7 3 645 895 7,814
6 1,447 1,706 118 222 1,944 5,437 213,494
7 1,627 233 89 0 1,825 3,773 58,937

Table 6 Results on updating uncompressed data trees with decompression and re-compression

#
decompression

[ms]
parse
[ms]

bu
[ms]

td
[ms]

upd
(struct)

[ms]

upd
(value)
[ms]

compression
[ms]

total
[ms]

memory
[kB]

1 13 34 2 1 2 20 26 59+39 7,829
2 12 31 1 1 5 0 44 38+56 7,726
3 104 188 13 13 44 255 472 513+576 43,626
4 103 191 13 13 0 222 0 439+103 43,626
5 260 538 38 37 142 656 1,132 1,411+1,392 96,285
6 1,698 3,631 426 268 501 1,967 7,464 6,793+9,162 946,575
7 1,547 3,446 246 222 0 1,824 0 5,738+1,547 700,053

Table 7 Comparison of compression ratio after update

Before update After update
direct update decomp-update-comp

# #edg(dt) #edg(gr) ratio[%] #NT #edg(dt) #edg(gr) ratio[%] #NT #edg(gr) ratio[%] #NT
1 28,305 500 1.77 38 13,516 481 3.56 45 314 2.32 28
2 28,305 500 1.77 38 28,305 539 1.90 48 546 1.93 37
3 179,689 17,747 9.88 746 179,652 17,769 9.89 751 17,756 9.88 745
4 179,689 17,747 9.88 746 179,689 17,747 9.88 746 17,747 9.88 746
5 476,645 22,781 4.78 1,399 479,080 22,782 4.76 1,399 22,786 4.76 1,403
6 3,332,129 156518 4.70 5,926 3,333,042 156,776 4.70 6,029 156,891 4.71 5,945
7 2,977,030 247,873 8.33 12,024 2,977,030 247,873 8.33 12,024 247,873 8.33 12,024

structures of uncompressed documents are loaded to mem-
ory once in the latter case. On the other hand, in the former
case, only the compressed tree structure is loaded and the
accepting run is compressed with a tree grammar. About the

running time, updating the compressed data trees is faster
than updating uncompressed ones because the former can
avoid duplicate computation.

Table 7 shows compression ratios before and after up-
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Table 8 Results on compressed data trees with non-splitting valuation function

#
parse
[ms]

bu
[ms]

td
[ms]

upd
(struct)

[ms]

upd
(value)
[ms]

total
[ms]

memory
[kB]

1 22 7 0 1 37 67 2,774
2 17 3 0 0 0 20 2,508
3 108 4 4 1 318 435 4,462
4 107 4 4 0 302 417 4,435
5 245 14 7 3 741 1,009 7,854
6 1,600 1,699 117 221 4,087 7,723 213,466
7 1,939 231 88 0 5,099 7,358 58,934

Table 9 Results of BaseX

#
time
[ms]

memory
[kB]

1 534 101,812
2 557 103,620
3 985 140,724
4 1,015 146,540
5 4,004 266,892
6 18,319 1,097,496
7 9,742 882,968

dates. For #4 and #7, the compression ratio does not change
because the applied operations are update-value. Except
for #1, comparing direct update and decomposition-update-
compression, the differences of the compression ratios are
small. We think that this is because the size of updated parts
are small compared to the whole trees, and few new com-
mon parts are made after update. For #2, #5, and #6, the
sizes of the output grammars obtained by direct update are a
bit smaller than those obtained by decomposition-update-
compression. We guess that TreeRepair does not output
the smallest grammars in these cases. Lastly, for #1, the
size of the data tree reduces to about half by the delete op-
eration. In this case, the compression ratio of the output
is 3.56% by direct update, while that by decomposition-
update-compression is 2.32%. We guess that due to the large
size reduction, the frequency distribution of common parts
changes much or a lot of new common parts are made after
update. We think that our method can keep the compression
ratio good if an update is associated with a relatively small
change or does not make a lot of new common parts after
update.

6.2 Effects of Splitting on Efficiency

Table 8 shows the result in the case that valuation functions
are not split, i.e., all the data values are stored in a single file.
Compared with the case that valuation functions are split
(Table 5), the case that valuation functions are not split takes
more time in parsing and updating valuation function(s).

6.3 Comparison with BaseX

Table 9 shows the total cpu time and memory usage
(MaxRSS) for executing the update instructions in Table 4
on BaseX 8.2.3 [9]. GNU time command is used to mea-
sure memory usage. The update instructions are given to

Table 10 Results of our tool

#
time
[ms]

memory
[kB]

1 46 2,771
2 14 2,509
3 320 4,699
4 311 4,471
5 895 7,814
6 5,437 213,494
7 3,773 58,937

BaseX by using the XQuery update facility [23]. Table 10
shows only the total time and memory usage on our proto-
type tool in Table 5. Comparing Tables 9 and 10, our pro-
totype tool executes the update instructions faster with less
memory used than BaseX.

7. Conclusion

We have proposed a direct update method for XML docu-
ments with data values compressed by SLCFTG. We have
implemented a prototype tool and evaluated it by experi-
ments. We confirmed the effectiveness, especially on mem-
ory usage, of our update method.

One of future work is to propose a better representation
of association between structure and data values. As exper-
imental results show, updating a valuation function spend
much time. UpdPos dominates the execution time. If the
association is robust against the change of the structure, we
can reduce the execution time. Another work is to adopt
some compression methods for a valuation function. We
think that the best compression method depends on data
types and what kind of computation is done for the com-
pressed data values. Hence, we should investigate and orga-
nize existing compression methods for data values.
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[18] L. Hübschle-Schneider and R. Raman, “Tree compression with top
trees revisited,” CoRR abs/1506.04499, 2015.

[19] S. Alstrup, J. Holm, K.D. Lichtenberg, and M. Thorup, “Maintain-
ing information in fully dynamic trees with top trees,” ACM Trans-
actions on Algorithms (TALG), vol.1, no.2, pp.243–264, 2005.

[20] S. Maneth and F. Peternek, “Compressing graphs by grammars,”
Proc. of IEEE 32nd International Conference on Data Engineering
(ICDE 2016), pp.109–120, 2016.

[21] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C.
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