
2584
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

PAPER Special Section on Information and Communication System Security

Understanding the Inconsistency between Behaviors and
Descriptions of Mobile Apps∗

Takuya WATANABE†a), Nonmember, Mitsuaki AKIYAMA†b), Tetsuya SAKAI††c), Hironori WASHIZAKI††d),
and Tatsuya MORI††e), Members

SUMMARY Permission warnings and privacy policy enforcement are
widely used to inform mobile app users of privacy threats. These mech-
anisms disclose information about use of privacy-sensitive resources such
as user location or contact list. However, it has been reported that very
few users pay attention to these mechanisms during installation. Instead,
a user may focus on a more user-friendly source of information: text de-
scription, which is written by a developer who has an incentive to attract
user attention. When a user searches for an app in a marketplace, his/her
query keywords are generally searched on text descriptions of mobile apps.
Then, users review the search results, often by reading the text descrip-
tions; i.e., text descriptions are associated with user expectation. Given
these observations, this paper aims to address the following research ques-
tion: What are the primary reasons that text descriptions of mobile apps fail
to refer to the use of privacy-sensitive resources? To answer the research
question, we performed empirical large-scale study using a huge volume
of apps with our ACODE (Analyzing COde and DEscription) framework,
which combines static code analysis and text analysis. We developed light-
weight techniques so that we can handle hundred of thousands of distinct
text descriptions. We note that our text analysis technique does not require
manually labeled descriptions; hence, it enables us to conduct a large-scale
measurement study without requiring expensive labeling tasks. Our analy-
sis of 210,000 apps, including free and paid, and multilingual text descrip-
tions collected from official and third-party Android marketplaces revealed
four primary factors that are associated with the inconsistencies between
text descriptions and the use of privacy-sensitive resources: (1) existence
of app building services/frameworks that tend to add API permissions/code
unnecessarily, (2) existence of prolific developers who publish many ap-
plications that unnecessarily install permissions and code, (3) existence of
secondary functions that tend to be unmentioned, and (4) existence of third-
party libraries that access to the privacy-sensitive resources. We believe that
these findings will be useful for improving users’ awareness of privacy on
mobile software distribution platforms.
key words: mobile security, android, textual description, program analysis,
privacy leakage

1. Introduction

Most applications for mobile devices are distributed through

Manuscript received November 13, 2017.
Manuscript publicized August 22, 2018.
†The authors are with NTT Secure Platform Laboratories,

Musashino-shi, 180–8585 Japan.
††The authors are with Waseda University, Tokyo, 169–8555

Japan.
∗Early version of this paper was presented at SOUPS [1]. The

authors will clear the copyright transfer issues before the publica-
tion in case the paper is accepted for publication.

a) E-mail: watanabe.takuya@lab.ntt.co.jp
b) E-mail: akiyama@ieee.org
c) E-mail: tetsuya@waseda.jp
d) E-mail: washizaki@waseda.jp
e) E-mail: mori@nsl.cs.waseda.ac.jp

DOI: 10.1587/transinf.2017ICP0006

mobile software distribution platforms that are usually oper-
ated by the mobile operating system vendors, e.g., Google
Play and Apple App Store. Third-party marketplaces also
attract mobile device users, offering additional features such
as localization. According to a recent report published by
Statista [2], the number of mobile app store downloads in
2017 are expected to exceed 197 billion. Mobile software
distribution platforms are the biggest distributors of mo-
bile apps and should play a key role in securing mobile
users from threats, such as spyware, malware, and phishing
scams.

As many previous studies have reported, privacy
threats related to mobile apps are becoming increasingly
serious, and need to be addressed [3]–[6]. Some mobile
apps, which are not necessarily malware, can gather privacy-
sensitive information, such as contact list [7] or user loca-
tion [8]. To protect users from such privacy threats, many of
mobile app platforms offer mechanisms such as permission
warnings and privacy policies. However, in practice, these
information channels have not been fully effective in attract-
ing user attention. For instance, Felt et al. revealed that only
17% of smartphone users paid attention to permissions dur-
ing installation [5]. The Future of Privacy Forum revealed
that only 48% of free apps and 32% of paid apps provide in-
app access to a privacy policy [9]. Further more, Chin et al.
reported that roughly 70–80% of end users ignored privacy
policies during installation process [10].

Let us turn our attention to a promising way of commu-
nicating with users about apps and privacy. This information
channel is the text descriptions provided for each app in a
marketplace. The text description is usually written in nat-
ural, user-friendly language that is aimed to attract users’
attention; it is more easily understood than the typical pri-
vacy policy. In addition, when a user searches for an app in
a marketplace, s/he create query keywords, which are gen-
erally searched on text descriptions. Then, users review the
search results, often by reading the text descriptions; i.e.,
text descriptions can work as a proxy to the user expecta-
tions. In fact, text descriptions have a higher presence than
permission warnings or privacy policies, and therefore, are a
good channel for informing users about how individual apps
gather and use privacy-sensitive information.

With these observations in mind, this work aims to ad-
dress the following research question through the analysis
of huge volume of Android applications:

RQ: What are the primary reasons that text

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers

WATANABE et al.: UNDERSTANDING THE INCONSISTENCY BETWEEN BEHAVIORS AND DESCRIPTIONS OF MOBILE APPS
2585

descriptions of mobile apps fail to refer to the use of
privacy-sensitive resources?

The answers to the question will be useful for identify-
ing sources of problems that need to be fixed. To address
the research question, we developed a framework called
ACODE (Analyzing COde and DEscription), which com-
bines two technical approaches: static code analysis and
text analysis. Using the ACODE framework, we aim to
identifiy reasons for the absence of the text descriptions for
a given privacy-sensitive permission. Unlike the previous
studies, which also focused on analyzing the text descrip-
tions of mobile apps [11]–[14], our work aims to tackle with
a huge volume of applications. To this end, we adopt light-
weight approaches, static code analysis and keyword-based
text analysis as described below.

Our static code analysis checks whether a given per-
mission is declared. Then, it investigates whether the code
includes APIs or content provider URIs† that require per-
mission for accessing privacy-sensitive resources. Lastly, it
traces function calls to check that the APIs and/or URIs are
actually callable to distinguish them from apps with dead
APIs/URIs that will never be used; e.g., reused code could
include chunks of unused code, in which privacy-sensitive
APIs were used.

Our description analysis leverages techniques devel-
oped in the fields of information retrieval (IR) and natural
language processing (NLP) to automatically classify apps
into two primary categories: apps with text descriptions that
refer to privacy-sensitive resources, and apps without such
descriptions. Here we present three noteworthy features of
our approach. First, since we adopt a simple keyword-based
approach, which is language-independent, we expect that
it is straightforward to apply our text analysis method to
other spoken languages. In fact, our evaluation through the
multilingual datasets demonstrated that it worked for both
languages, English and Chinese. Second, although our ap-
proach is simple, it achieves a high accuracy for nine distinct
data sets. The accuracy is comparable to the existing pio-
neering work, WHYPER [12], which makes use of the state-
of-the-art NLP techniques. The reason we developed the
ACODE framework instead of using the WHYPER frame-
work was that we intended to extend our analysis to multi-
ple natural languages. The WHYPER framework leverages
API documents to infer semantics. As of today, Android
API documents are not provided in Chinese. Accordingly,
we were not able to make use of the WHYPER frame-
work to analyze Chinese text descriptions. Finally, like the
WHYPER framework, our text analysis technique does not
require manually labeled descriptions. Therefore, it enables
us to enhance the text analysis of descriptions to any per-
mission APIs without requiring expensive labeling tasks. It
also enables us to reduce cost of text analysis significantly.

†Content providers manage access to data resource with per-
mission using Uniform Source Identifiers (URIs); for instance,
android.provider.ContactsContract.Contacts.
CONTENT URI is an URI used to get all users registered in the con-
tact list.

The key idea behind our approach is to leverage the results
of code analysis as a useful hint to classify text descriptions.

To the best of our knowledge, only a few previous stud-
ies have focused on analyzing the text descriptions of mobile
apps [11]–[13]. A detailed technical comparison between
these studies and ours is given in Sect. 7 (see Table 10 for
a quick summary), and here we note that this work is dis-
tinguishable from other studies by being an extensive em-
pirical study. The volume of our dataset is several orders
of magnitude larger than previous studies. In addition, be-
cause we wanted to extract generic findings, we conducted
our experiments in such a way as to incorporate differences
in the resources accessed, market, and natural language. Our
analysis considered access of 11 different resources taken
from 4 categories, i.e., personal data, SMS, hardware re-
sources, and system resources (see Table 1). We chose the
resources because they are the most commonly abused or
the potentially dangerous ones. We collected 100,000 apps
from Google Play and a further 100,000 apps from third-
party marketplaces. We also collected 10,000 paid apps
from Google Play for comparison. For the natural language
analysis, we adopted English and Chinese, because they
are the two most widely-spoken languages worldwide [15].
Furthermore, to evaluate the performance of text analysis,
we obtained a total of 6,000 text descriptions from 12 par-
ticipants. Each description was labeled by three distinct
participants.

The key findings we derived through our extensive
analysis are as follows:

The primary factors that are associated with the incon-
sistencies between text descriptions and use of privacy-
sensitive resources are broadly classified into the following
four categories.:

(1) App building services/frameworks: Apps devel-
oped with cloud-based app building services or app
building framework, which could unnecessarily install
many permissions, are less likely to have descriptions
that refer to the installed permissions.

(2) Prolific developers: There are a few prolific develop-
ers who publish a large number of applications that
unnecessarily install permissions and code.

(3) Secondary functions: There are some specific sec-
ondary functions that require access to a permission,
but tend to be unmentioned; e.g., 2D barcode reader
(camera resource), game score sharing (contact list),
and map apps that directly turns on GPS (write set-
ting), etc.

(4) Third-party libraries: There are some third-party li-
braries that requires access to privacy-sensitive re-
sources; e.g., task information (crash analysis) and
location (ad-library, access analysis).

The main contribution of our work is the derivation of
these answers through the extensive analysis of huge vol-
ume of datasets. We believe that these findings will be
useful for identifying sources of problems that need to be
fixed to improve the users’ awareness of privacy on mobile
software distribution platforms. For instance, as our anal-

2586
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

ysis revealed, there are several HTML5-based app-building
framework services that unnecessarily install permissions,
which could render the system vulnerable to additional
threats of malicious JavaScript injection attacks. There-
fore, an app developer should not install unnecessary per-
missions. However, if a developer used a rogue app-building
framework service, he/she may likely not be aware of unnec-
essary permissions installed. ACODE enables operators of
mobile software distribution platforms to pay attentions to
these cases, which are invisible otherwise.

The rest of this paper is organized as follows. Section 2
describes our the ACODE framework in detail. In Sect. 3,
we show the details of the static code analyzer. Section 4
contains details of the text description classifier. We present
our findings in Sect. 5. Section 6 discusses the limitations of
ACODE and future research directions. Section 7 summa-
rizes the related work. We conclude our work in Sect. 8.

2. ACODE Framework

In this section, we provide an overview of the ACODE
framework. We also connect the components of the ACODE
framework to the corresponding sections where we will give
their details.

2.1 Goal and Overview

Figure 1 is an overview of the ACODE framework. As
discussed previously, we used a two-stage filter, employ-
ing a static code analyzer and text descriptions analyzer.
In the first stage, the first filter extracted apps that de-
clare at least one permission, e.g., location (C0). The sec-
ond filter extracted apps with code that include correspond-
ing APIs/URIs (C1). The third filter checked whether the
APIs/URIs are callable from the apps by employing func-
tion call analysis (C2). In the second stage, the text classi-
fier determined whether the text descriptions refer to the use
of location explicitly or implicitly (C3), or not at all (C4).
Note that we are not considering apps that do not declare
to use permission, but have descriptions that indicate that
permission is needed.

Fig. 1 Overview of the ACODE framework.

These filtration mechanisms enabled us to quantify the
effectiveness of text descriptions as a potential source of in-
formation about the use of privacy-sensitive resources. For
instance, by counting the fraction of apps that are classi-
fied as C3 (see Fig. 1), we can quantify the fractions of apps
with text descriptions that successfully inform users about
the use of privacy-sensitive resources for each resource. By
examining the sources of apps that are classified as C4, we
can answer our research question, RQ. The detailed analysis
will be shown in Sect. 5.

Figure 2 illustrates the components used in the ACODE
framework. For each application, we had an application
package file (APK) and a description. APK is a format used
to install Android application software. It contains code, a
manifest file, resources, assets, and certificates. The text de-
scriptions of apps were collected from mobile software dis-
tribution platforms. As shown in the figure, the APKs and
text descriptions were input to the static code analyzer and
description classifier, respectively.

2.2 Static Code Analyzer

The goal of the static code analyzer is to extract APK files
whose code include callable APIs/URIs that are required to
use permissions related to a privacy-sensitive resource. For
a given permission, first, we extracted apps that declare the
use (C1, see Sect. 3.1). Then, we checked whether disas-
sembled code of the app include the APIs/URIs, which re-
quire the permission (C2, see Sect. 3.2). If code included
at least one API or URI, then, we checked whether it was
actually callable within the app by investigating the func-
tion call graph with some heuristics we developed (C3, see
Sect. 3.3). It should be noted that the static code analysis has
some limitations that we will discuss in Sect. 6.

2.3 Description Classifier

The goal of the description classifier was to classify text de-
scriptions into two categories: those that refer to the use of
a resource (C3), and those that do not (C4). In other words,
we wanted to determine automatically whether a user can,
by reading the text description, know that an app may use
a privacy-sensitive resource. To do this, we leveraged sev-
eral text analysis techniques. We also make use of the re-
sults of code analyzer to extract keywords associated with

Fig. 2 Components of the ACODE framework.

WATANABE et al.: UNDERSTANDING THE INCONSISTENCY BETWEEN BEHAVIORS AND DESCRIPTIONS OF MOBILE APPS
2587

a resource. To extract keywords that are useful in classify-
ing text descriptions, we first present text data preprocessing
techniques in Sect. 4.1. Next, in Sect. 4.2, we present the
keyword extraction method that leverages techniques used
in the field of information retrieval. We also evaluate the
accuracy of the description classifier in 4.3.

3. Static Code Analysis

This section describes the static code analysis techniques
used in the ACODE framework. The purpose of static code
analysis was to extract apps that include callable APIs/URIs
to use a given permission. Before applying function call
analysis, which is a process of checking whether given
function is callable, we applied two filtration mechanisms:
(1) permission filtration and (2) API/URI filtration. These
filtrations are effective in reducing the computation over-
head needed for function analysis. We also note that per-
mission filter is useful to prune apps that include callable
APIs/URIs, but will not actually use it.

3.1 Permission Filtration

First, we applied permission filtration, which simply checks
whether an app declares a given permission. Accord-
ing to Zhou et al. [16], permission filtration is quite ef-
fective in reducing the overhead of analyzing a huge
amount of mobile apps. For each app, we investigated its
AndroidManifest.xml file to check whether it declares per-
missions to access given resources. The process can be eas-
ily automated using existing tools such as aapt [17]. To fur-
ther accelerate the data processing, we also leveraged multi-
processing techniques. Table 1 summarizes the 11 different
permissions we analyzed in this work. To perform generic
analysis, we chose the permissions from 4 categories, per-
sonal data, SMS, hardware resources, and system resources.
These resources were chosen because they are the most
commonly abused or the potentially dangerous ones.

3.2 API/URI Filtration

Next, for each sample, we checked whether it includes APIs
or content provider URIs that require permissions to access
privacy-sensitive resources. For this task, we made use of

Table 1 List of permissions used for this work.

the API calls for permission mappings extracted by a tool
called PScout [18], which was developed by Au et al. [19].
In addition to API-permission mapping, the PScout database
also includes URI-permission mapping. To check the exis-
tence of APIs or URIs, first, using Android apktool [20], we
extracted DEX code from APK files and disassembled them
into smali format [21]. Then, we checked whether a set of
APIs is included in the code of an APK file.

We note that some apps may require permissions but
not include any APIs or URIs that request the permission.
This may occur for several reasons. apps. If such possibly
overprivileged apps are simply overprivileged due to devel-
oper’s error, they do not impact our study, because those
apps may not need to use APIs or URIs. However, as Felt
et al. [4] reported, one of the common developer errors that
cause overprivilege is Intent. A sender application can send
an Intent to a receiver application, which uses permission
API. In such cases, the sender of the Intent does not need to
have permissions for the API. We saw many such cases, es-
pecially related to camera permissions. In fact, [4] reported
that of the apps that unnecessarily request camera permis-
sion, 81% send an Intent to open the already installed cam-
era applications (including the default camera) to take a pic-
ture. Our observation is in agreement with their finding.

Thus, our API/URI filtration scheme may miss a non-
negligible number of apps that actually use the camera
through Intent. However, note that our final analysis will
be applied to the apps in set C2 as shown in Fig. 1. There-
fore, we are confident that the removal of such apps should
not affect our analysis, because we do not expect to see sig-
nificant differences between the descriptions of those apps
removed due to the Intent problem and the descriptions of
apps included in C2.

3.3 Function Call Analysis

Now, we present the function call analysis of the ACODE
framework. For convenience sake, let the term function
include method, constructor execution, and field initializa-
tion; i.e., we trace not only method calls, but also class
initializations. Figure 3 presents a pseudo-code of the al-
gorithm we developed for function call analysis. It checks
whether APIs/URIs of a given permission are callable (true)
or not (false). The algorithm uses depth-first search to
search the function call tree. If it finds a path from the
given function to a class of ORIGIN (line 4), it concludes
that the app has at least one API/URI that is callable,
where ORIGIN is composed of three classes: Application,
App Components, and Layout. Application is a class
that initiates an Android app. It is called when an app
is launched. App Components are the essential building
blocks that define the overall behavior of an Android app,
including Activities, Services, Content providers,
and Broadcast receivers. While the Application and
App Components classes need to be specified in the man-
ifest file of an app, the Layout class does not. It is often
used by ad libraries to incorporate ads using XML.

2588
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

Fig. 3 Pseudo-code that checks the callability of APIs of a permission.

getAU (Line 5) is a function that returns a list of
APIs/URIs for a given permission. As an implementation
of getAU, we adopted PScout [18]. refFunctions (line
21) is a function that returns a list of functions that refer-
ence to the given function or URI. As an implementation
of refFunctions, we adopted androguard [22], which we
modified to handle URIs. If a function of a class, say Foo,
implements a function of the Android SDK class whose
code is not included in the APK, we cannot trace the path
from the function in some cases. To deal with such cases,
we made a heuristic to trace the function that calls the init-
method of class Foo (lines 16–19). We note that the heuris-
tics can handle several cases such as async tasks, OS mes-
sage handlers, or callbacks from framework APIs such as
onClick(). A method is callable if it is overridden in a
subclass or an implementation of the Android SDK and an
instance of the class is created. Async tasks, the OS message
handler, or other callbacks implement their function by over-
riding the methods of the Android SDK subclass. Therefore,
it should be handled by the heuristics.

4. Text Description Analysis

This section describes the text description analysis used in
the ACODE framework. The aim of this analysis was to
classify descriptions into two classes: (1) text descriptions
that reference a privacy-sensitive resource, and (2) text de-
scriptions that do not. To this end, we adopted a set of
basic techniques used in both IR and NLP fields. As we
shall see shortly, our keyword-based approach is quite sim-
ple and works accurately for our task. As Pandita et al. [12]
reported, a keyword-based approach could result in poor
performance if it was designed naively. So, we carefully
constructed our keyword extraction processes. As a result,
we achieved 87-98% of accuracy for the combinations of 3
resources and two languages. Simple and successful text de-

scription classification enabled us to automate the analysis
of more than 200,000 text descriptions.

Section 4.1 describes how we preprocessed the descrip-
tion data so that we can extract keywords that are useful in
classifying text descriptions. Section 4.2 presents the key-
word extraction method that leverages techniques used in
the field of information retrieval. Section 4.3 describes our
experiments to compare our description classifier with the
WHYPER framework in terms of accuracy.

4.1 Text Data Preprocessing

To analyze natural language text descriptions, we applied
several text preprocessing methods. These methods are
broadly classified into four tasks; (1) generic text process-
ing, (2) domain-specific stop words removal, (3) feature
vector creation, and (4) deduplication. Especially the tasks
(2) and (4) are crucial in extracting good keywords that can
accurately classify the text descriptions.

4.1.1 Generic Text Preprocessing

We first apply widely-used generic text preprocessing tech-
niques: word segmentation, stemming, and generic stop
words removal. Word segmentation is a process of divid-
ing text into words. This process is required for Chinese
but not for English, in which words are already segmented
with spaces. We used KyTea [23] for this task. For English,
we applied stemming, which is a process of reducing de-
rived words to their stem. It is known to improve the per-
formance of text classification tasks. We used NLTK [24]
for this task. Note that the concept of stemming is not ap-
plicable to Chinese. Lastly, we applied generic stop words
removal, which is a process of removing a group of words
that are thought to be useless for classification tasks because
they are commonly used in any documentation (e.g., deter-
miners and prepositions). As lists of stop words, we used the
data in NLTK [24] for English and the data in imdict [25] for
Chinese.

4.1.2 Domain-Specific Stop Words Removal

Next, we created domain-specific stop words list so that we
can remove terms that are not generic stop words but are
commonly used in mobile app descriptions; e.g., “app” or
“free”. To this end, we make use of the technique pro-
posed in Ref. [26], which is a term-based sampling approach
based on the Kullback-Leibler divergence measure. Since
the technique measures how informative a term is, we can
remove the least weighted terms as the stop words. Num-
ber of sampling trial was set to 10,000. When we changed
the threshold of extracting the top-L stop words; i.e., from
L = 20 to L = 150, the following results are not af-
fected at all. In the followings, we use L = 100. The
extracted domain-specific stop words for English include
“app”, “free”, “get”, “feature”, “android”, “like”, etc.

WATANABE et al.: UNDERSTANDING THE INCONSISTENCY BETWEEN BEHAVIORS AND DESCRIPTIONS OF MOBILE APPS
2589

4.1.3 Feature Vector Creation

Using the preprocessed descriptions, we created a binary
feature vector for each text description as follows. Let W =
{w1, w2, . . . , wm} be a set of entire words after the screening
process shown above. A feature of vector of the ith text
description is denoted as xi = {xi(w1), xi(w2), . . . , xi(wm)},
where xi(w j) = 1 if w j is present in the ith text description.
If w j is not present, xi(w j) = 0.

4.1.4 Deduplication

Because we adopt the keyword extraction approach based
on relevance weights as shown in the next subsection, the
deduplication process plays a crucial role in eliminating the
effect of same or similar descriptions generated by a sin-
gle developer. For instance, if a developer produces thou-
sands of apps with the same text description, which is of-
ten the case we observe in our datasets, the words included
in the apps may cause unintended biases when computing
the relevance weights of terms. To deduplicate the descrip-
tions, we remove the same or similar descriptions by using
the cosine similarity measure; i.e., for a given pair of fea-
ture vectors xi and x j, the cosine similarity is computed as
s = cos

(
xi · x j/|xi||x j|

)
, and if s is larger than a threshold, the

duplicated description is removed. We note that the value of
threshold was not sensitive to the succeeding keyword ex-
traction results if it is set between 0.5 to 0.8.

4.2 Keyword Extraction

To extract keywords, we leverage the idea of relevance
weights, which measures the relation between the relevant
and non-relevant document distributions for a term modu-
lated by its frequency [27]. Relevance weighting was devel-
oped in the IR community as a means to produce optimal
information retrieval queries. To make use of the relevance
weights for our problem, we need to have sets of relevant
and non-relevant documents. Since we do not have any
labels that indicate whether a document is relevant, i.e., it
refers to a permission, or non-relevant, i.e., it does not refer
to a permission, we set the following assumption.
Assumption: For a given permission, descriptions of apps
that declare the permission and have callable APIs can be
regarded as “pseudo relevant document”, while the descrip-
tions of the remaining apps can be regarded as “pseudo non-
relevant document”.

Note that our research question contradicts with this
assumption; i.e., we are interested in the reason why an app
with callable API for a permission does not refer to the per-
mission. Nevertheless, our performance analysis using mul-
tiple permissions in two spoken languages empirically sup-
ports that our approach actually works well in extracting ef-
fective keywords.

Under this assumption, we calculate the relevance

Table 2 Extracted top-3 keywords for English descriptions.

Resources 1st 2nd 3rd

Location gps location map
Account grab google youtube
Contact sms call contact
Calendar calendar reminder meeting

SMS (read) sms message incoming
SMS (send) sms message sent

Camera camera scan photo
Audio recording voice record

Get tasks lock security task
Kill background process task kill manager
Write setting alarm ring bluetooth

weights for each word as follows. For a word wi, the rel-
evance weight (RW) is

RW(wi) = log
(ri + 0.5)(N − ni − R + ri + 0.5)

(ni − ri + 0.5)(R − ri + 0.5)
,

where ri is the number of relevant documents word wi occurs
in, R is the number of relevant documents, ni is the number
of documents word wi occurs in, and N is the number of
documents, respectively.

Using the entire descriptions with code analysis out-
puts, we extracted the keywords that have the largest rele-
vance weights. Table 2 presents a subset of extracted key-
words for each permission. For space limitation, we present
only the Top-3 English keywords. In most cases, the key-
words look intuitively reasonable. Interestingly, some key-
words such as “sms” are found in multiple resources; i.e.,
contact, SMS (read), and SMS (send). In fact, these re-
sources tend to co-occur. In the following, we will use these
keywords to classify descriptions. Once we compiled the
keywords, the text classification task is straightforward. If a
text description includes one of the extracted keywords for
a permission, the description is classified as positive, i.e.,
it refers to the permission. The problem is how we set the
number of keywords to be used. We will study the sensitiv-
ity of the threshold in Sect. 4.3.2.

4.3 Performance Evaluation

To evaluate the accuracy of our scheme, we use manually
labeled data sets. We first present the way how we compile
the labeled data set. Next, we evaluate the accuracy of our
approach, using the labeled data. Finally, to validate the ro-
bustness of our approach, we use the external dataset and
compare the performance with the existing state-of-the-art
solution, the WHYPER framework. In the analysis of ac-
curacy (Sect. 4.3.3), we use 200,000 free apps, which will
be described in Sect. 5.1 as training sets; i.e., they are only
used for keyword extraction. The labeled test set is a sub-
set of those, on which we measure accuracy. We note that
in the evaluation, our training set included test set; i.e., we
extracted the keywords using the entire text descriptions,
which is the training set, and applied the keywords (i.e.,
classifier) to the labeled descriptions, which is the test set.
In general, training classifier using test set is not good be-
cause such setting could over-estimate the accuracy of the

2590
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

Table 3 Summary of labeled datasets.

English
Location Contact Camera

of descriptions 1,000 1,000 1,000
of labels 3,000 3,000 3,000

Chinese
Location Contact Camera

of descriptions 1,000 1,000 1,000
of labels 3,000 3,000 3,000

model. However, the effect should be small because our
classifier was based on frequencies of terms and the test set
accounted for only 0.6% of entire samples.

4.3.1 Creation of Labeled Datasets

We created the labeled data sets with the aid of 12 inter-
national participants who are from China, Korea, Thailand,
and Indonesia. All the participants were university students
with different disciplines in science and engineering. 7 were
female and 5 were male. 4 were native English speakers,
and 8 were native Chinese speakers. None of them had ex-
perience of developing Android applications. All the native
Chinese speakers were fluent in English (native level). Stu-
dents who were native speakers of Chinese labeled Chinese
descriptions. In summary, six students labeled English de-
scriptions, and the other six labeled Chinese descriptions.
Here, we picked up three distinct resources, i.e., location,
contact, and camera, out of the 11 resources we considered
in this work.

Since a resource is used for various purposes, and re-
ferred to by various terms, we wanted to avoid participants
focusing too much on a particular keyword, such as “cam-
era”. Instead, we asked participants to identify whether an
app will use a camera, rather than whether it mentions a
camera. This enabled us to identify several interesting key-
words, such as “QR” and “scan”. Also, we note that the
question should reflect users’ awareness of a resource.

Before asking participants to label text descriptions, we
picked some descriptions from our entire data set. If random
sampling were applied to the entire set, there would be a
significant imbalance between the two classes. In particular,
there would be very few positive samples, i.e., text descrip-
tions that reference a resource. To avoid such an imbalance,
we applied the access permission filter shown in Sect. 3.1 so
that the sampled text descriptions would include a certain
number of positive samples. Although this solution could
create some bias toward the positive class, in fact it did not
matter, as will be shown later in this paper. From the set
of apps that declare access permissions for using resources,
we randomly sampled 1,000 text descriptions. In total, we
sampled 6,000 descriptions, as shown in Table 3.

Having sampled text descriptions, we asked each par-
ticipant to label 500 text descriptions for each resource (e.g.,
500 × 3 = 1,500 descriptions in total). A participant la-
beled text descriptions in either English or Chinese. To in-
crease the quality of labels, each text description was labeled
by three distinct, fixed participants. We obtained a total of

Table 4 Statistics of labeled descriptions to be used for performance
evaluation.

English
Location Contact Camera

of positive descriptions 128 208 276
of negative descriptions 611 449 289

Chinese
Location Contact Camera

of positive descriptions 38 102 157
of negative descriptions 828 544 583

Fig. 4 K vs. accuracy. The circles indicate median values and the bars
indicate maximum/minimum values, respectively.

18,000 labels for 6,000 text descriptions, as shown in Ta-
ble 3.

Finally, we eliminate inconsistent labels to ensure that
the quality of labels is high; i.e., we used only the text de-
scriptions upon which all three evaluators agreed. Table 4
summarizes the text descriptions that met this criterion. We
used these labeled descriptions for evaluating accuracy of
our approach, as described in the next subsection.

4.3.2 Threshold Sensitivity Study

Using the labeled datasets, we empirically studied the rela-
tion between threshold and classification accuracy. Here, the
definition of the accuracy is the fraction of correctly classi-
fied text descriptions, using the top-K keywords. Figure 4
presents how the number of keywords, K is correlated with
the classification accuracy. As shown in the graph, across
the 6 of labeled datasets, the accuracy is fairly stable around
K = 3. Also, we notice that K = 3 gives the highest accu-
racy with the minimum variance. As we increase K, the ac-
curacy is degraded; i.e., as K increases, the less relevant the
keywords become. Given these observations, in the follow-
ing analysis, we adopt K = 3 in classifying the document.
We note that the chosen threshold works nicely for the exter-
nal dataset provided by the authors of WHYPER [12]. We
will report the results in Sect. 4.3.4.

4.3.3 Accuracy of Text Classification

We now evaluate the accuracy of our text classifier. To mea-
sure the accuracy, we use several metrics. First, TP, TN, FP,
and FN represents number of true positives, number of true
negatives, number of false positives, and number of false
negatives, respectively. We also use three derivative met-
rics: accuracy (ACC), Positive predictive values (PPV), and
Negative predictive values (NPV), which are defined as

WATANABE et al.: UNDERSTANDING THE INCONSISTENCY BETWEEN BEHAVIORS AND DESCRIPTIONS OF MOBILE APPS
2591

Table 5 Accuracy of our approach (K = 3) for the 6 of labeled datasets.

Resource Lang TP TN FP FN ACC PPV NPV

Location
EN 118 591 20 10 0.959 0.855 0.983
CN 23 826 2 15 0.980 0.920 0.982

Contact
EN 177 396 53 31 0.872 0.770 0.927
CN 64 535 9 38 0.927 0.877 0.934

Camera
EN 206 284 5 74 0.867 0.976 0.802
CN 98 575 8 59 0.909 0.925 0.907

ACC =
T P + T N

T P + T N + FP + FN
,

PPV =
T P

T P + FP
, NPV =

T N
T N + FN

,

respectively. PPV and NPV measure how many of de-
scriptions classified as positive/negative are actually posi-
tive/negative. These measures are suitable to our require-
ments because we aim to derive the answers of our research
question by studying the characteristics of classified de-
scriptions. Therefore, we expect that these measures have
high values.

Table 5 presents the results of performance evaluation.
In both languages, the observed accuracy was good for all
categories; e.g., ACCs were 0.87–0.98. Also, in most cases,
NPVs were larger than 0.9. Since one of our objectives is to
understand the reasons why text descriptions fail to refer to
access permissions, the high number of NPVs is helpful, be-
cause it indicates that majority of descriptions classified as
negative are actually negative. In summary, our scheme was
validated to enable automatic classification of text descrip-
tions into the two categories with good accuracy. It works
well for both languages, English and Chinese.

4.3.4 Robustness

To validate the robustness of our approach, we use the ex-
ternal labeled dataset [28], which is provided by the authors
of the WHYPER framework [12]. Since the dataset also in-
cludes the outcomes of the WHYPER framework, we can
directly compare the performance of the two frameworks.
Since the dataset consists of a set of labels for each sen-
tence, we reconstructed original descriptions from the sen-
tenses and assign labels to the descriptions; i.e., if a descrip-
tion consists of at least one sentence that declares the use
of a permission, the description is labeled as positive, other-
wise labeled as negative. Table 6 summarizes the dataset†.
All the descriptions are written in English.

Table 7 shows the comparison of performance of the
ACODE framework and the WHYPER framework in clas-
sifying descriptions. Our results show that the performance
of the ACODE framework is comparable with that of the
WHYPER framework. Especially, the delta for NPV, which
is the most important metrics for our study, is less than 0.04
for all the three cases. We also notice that the keyword-
based approach used in the WHYPER paper (WKW in the
table) had high false positives. We conjecture that the high
false positives are due to the nature of extracted keywords,

†We derived these numbers by analyzing the dataset [28].

Table 6 Statistics of the WHYPER datasets.
Contact Calendar Audio

of positive samples 107 86 119
of negative samples 83 110 81

Table 7 Comparison of accuracy of ACODE (K = 3), WHYPER se-
mantic analysis (WHYPER), and WHYPER keyword (WKW).

Resource method TP TN FP FN ACC PPV NPV

ACODE 96 63 20 11 0.837 0.828 0.851
Contact WHYPER 92 77 6 15 0.889 0.939 0.837

WKW 95 46 37 12 0.742 0.720 0.793

ACODE 77 98 12 9 0.893 0.865 0.916
Calendar WHYPER 81 99 11 5 0.918 0.880 0.952

WKW 84 60 50 2 0.735 0.627 0.968

ACODE 95 57 24 20 0.742 0.720 0.793
Audio WHYPER 103 69 12 16 0.860 0.896 0.812

WKW 113 38 43 6 0.755 0.724 0.864

which include some generic terms such as data, event, and
capture.

Notice that the WHYPER dataset consists of higher
fractions of positive descriptions, compared to ours. This
may reflect the fact that the apps used for WHYPER study
were collected from the top-500 free apps; i.e., it is likely the
top apps were built by skilled developer and had informa-
tive descriptions. In contrast, our datasets consist of larger
fractions of negative samples. Since our datasets were col-
lected from entire app space, they consist of various apps,
including the ones that failed to add informative descriptions
due to the reasons that will be described in the next sec-
tion. Despite this potential difference in the population of
datasets, our framework established good accuracy among
all the datasets.

In summary, we evaluated the accuracy of the ACODE
framework using 5 of 11 permissions we considered††.
In the following large-scale analysis, we assume that the
ACODE framework establishes good accuracy for the rest
of permissions as well. The potential effect of the assump-
tion will be discussed in Sect. 5.5.

5. Analysis of Codes and Descriptions

Using the ACODE framework, we aim to answer our re-
search question RQ shown in Sect. 1. We first describe
the details of the data sets we used for our analysis, in
Sect. 5.1. Then, we apply our code analysis to the apps
and extract apps with callable APIs/URIs of permissions
(C2, see Fig. 1) in Sect. 5.2. Using the extracted apps with
callable APIs/URIs of permissions, Sect. 5.3 aims to quan-
tify the fractions of apps with text descriptions that suc-
cessfully inform users about the use of privacy-sensitive re-
sources for each resource. In Sect. 5.4 we aim to answer
the research question RQ. We discuss in-depth analysis to
understand the reasons of failures for text descriptions clas-
sified as C4 in informing users about access permissions. Fi-
nally, Sect. 5.5 discusses the limitations of our analysis and
evaluation.
††To be precise, we verified 5 of 11 permissions for English and

3 of 11 permissions for Chinese.

2592
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

5.1 Data Sets

We collected Android apps from the official
marketplace [29] and two other third-party market-
places [30], [31]. All these marketplaces have huge user
bases. After collecting mobile apps, we first pruned samples
that are corrupt or have zero length text descriptions. From
the rest of the samples, we randomly picked 100,000 free
apps for each type of markets. In addition, we also collected
10,000 paid apps, which enable us to study whether the paid
apps have more “informative” text descriptions. Table 8
summarizes the data sets we collected. To simplify the
interpretation of analyses, we assigned different languages,
English and Chinese, to the official and third-party mar-
ketplaces. Note that we have already shown that our text
description classification scheme works well for both
languages.

5.2 Extracting Apps with Callable APIs/URIs of Privacy-
Sensitive Resources

Table 9 presents the results of our code analysis. Overall,
many applications require permission of location. As we
will detail later, many of these are apps that use ad libraries.
This observation agrees with the fact that paid apps con-
tained fewer location permissions/APIs than free apps. In-
terestingly, the popularity of personal data resource require-
ments is almost identical across markets. The most popular
is location, second is contact, third is accounts, and fourth is
calendar. Generally, third-party markets tend to require/use
more permissions than the official market. This may corre-
late to the existence of defense mechanisms installed on the
official marketplace – Bouncer [32].

Another useful finding we can extract from the results
is that over privilege (C0−C1) is observed commonly across
the categories. Also, there are non-negligible numbers of

Table 8 Summary of Android apps used for this work.

English Chinese Data collection periods

Official (Google Play, free) 100,000 0 Apr 2012 – Apr 2014
Official (Google Play, paid) 10,000 0 May 2016 – June 2016

Third-party (Anzhi) 0 74,506 Nov 2013 – Apr 2014
Third-party (Nduoa) 0 25,494 Jul 2012 – Apr 2014

Table 9 Numbers of extracted apps for each category.
Official market apps (free 100k)

Personal data SMS Hardware resources System resources
Location Accounts Contacts Calendar SMS (read) SMS (send) Camera Audio Get tasks Kill bg processes Write setting

Permission (C0) 25026 9943 6962 1893 1352 3471 10232 5204 4646 409 2873
API/URI (C1) 23390 6948 6177 333 526 2043 7173 4621 3433 248 1954
Callable (C2) 18165 3933 4238 100 287 1567 6141 3297 1737 208 1744

Official market apps (paid 10k. All values are multiplied by 10 for comparison)
Personal data SMS Hardware resources System resources

Location Accounts Contacts Calendar SMS (read) SMS (send) Camera Audio Get tasks Kill bg processes Write setting

Permission (C0) 11110 6990 4520 720 710 1350 6220 5090 2950 470 3360
API/URI (C1) 9510 3760 3710 490 190 970 4180 4400 1470 280 2050
Callable (C2) 7100 1790 2760 310 100 860 3120 2250 1020 210 1900

Third-party market apps
Personal data SMS Hardware resources System resources

Location Accounts Contacts Calendar SMS (read) SMS (send) Camera Audio Get tasks Kill bg processes Write setting

Permission (C0) 40278 6585 9907 394 7686 16204 14581 10745 37436 7457 15249
API/URI (C1) 36885 3148 4863 98 4668 13807 6934 8354 19147 1158 11564
Callable (C2) 32122 1542 3429 66 4185 12355 6139 6147 15447 957 10299

apps that have code to use permissions but cannot be called
(C1 − C2). This often occurs when a developer incorpo-
rates an external library into an app; the library has many
functions, including APIs/URIs of permissions, but the app
does not actually call the APIs/URIs. Our code analysis can
prune these applications from further analysis.

Overprivilege ratios are especially high for account and
contact permissions in the third party marketplaces and for
camera, calendar, and kill background processes permis-
sions in both markets. Careful manual inspection revealed
that these cases can be attributed to misconfiguration on
the part of developers; i.e., the Intent issue discussed in
Sect. 3.2. Such apps were pruned by the second filter. We
also note that these apps do not need to declare permissions
because the permissions are misconfigurations. These ob-
servations agree with the work performed by Felt et al. [4].
Although our scheme pruned those applications, the prun-
ing did not affect the analysis because the pruned apps
are unlikely to exhibit special characteristics in their text
descriptions.

5.3 Analysis of Apps with Callable APIs/URIs for a Per-
mission

Using apps that include callable APIs/URIs for a permission
(C2 in Table 9), we analyzed their text descriptions. Fig-
ure 5 presents the results. We first notice that fractions of
positive text descriptions are higher for official market apps.
This can be considered natural, given that official market is

Fig. 5 Fractions of descriptions that refer to a permission. Populations
are C2 apps shown in Table 9; e.g., of the 18,165 of official market free
apps with callable functions that request location permission, roughly 30%
of them mentioned the use of location in the description.

WATANABE et al.: UNDERSTANDING THE INCONSISTENCY BETWEEN BEHAVIORS AND DESCRIPTIONS OF MOBILE APPS
2593

more restrictive. We also notice that some resources such
as CALENDAR for both markets and SMS permissions and the
KILL BG PROC (kill background process) permission for the
official market are well described in their descriptions.

For the free apps of official market, GET TASK and
ACCOUNTS were the permissions that were less described
(15–20%). In contrast, READ SMS and CALENDAR were the
permissions that were well described (70–80%). These re-
sults are consistent with intuition that permissions that are
directly associated with user actions tend to be well de-
scribed. Overall, our impression is that for the official
market, the fractions of proper descriptions are higher than
expected. Especially, paid apps have the informative text
descriptions about the use of privacy sensitive resources,
which agrees with our general expectation that paid prod-
ucts may have higher quality/safety than free products. If
the descriptions of remaining apps were improved, the text
description could serve as a good source of information to
let users know about sensitive resources.

Finally, we note that the descriptions of apps collected
from official market was only English, while the descrip-
tions of apps collected from third-party market was only
Chinese. Therefore, we cannot tell if the observed differ-
ences are due to the market or the language. We leave the
issue for future work.

5.4 Answers to the Research Question

To answer the research question RQ, we performed the
manual inspection to the extracted apps that fail to refer
to use of permissions. The methodologies of the manual
inspection are described below. Given a permission, e.g.,
Camera, we fist identify Java classes that include the APIs
associated with the permission. From the identified class,
we can extract a package name such as /com/google/
android/foo/SampleCameraClass.java, which is seg-
mented into a set of words, com, google, android, foo, and
SampleClass. By analyzing the package name words for
apps that fail to refer to use of the permission, we can find in-
trinsic words that are associated with specific libraries such
as “zxing” used for handling QR code or service names such
as “cordova”, which is an app building framework. In addi-
tion, we can analyze developer certificates included in app
packages. We also apply dynamic analysis of the apps when
we need to check how the permission is used. Using the
methodologies, we classified such apps into the four cate-
gories. For each category, we extracted reasons why text
descriptions fail to refer to permissions.
(1) App building services/frameworks

Through the analysis of package names of apps, we
noticed that many of apps were developed with cloud-based
app building services, which enable a developer to create
a multi-platform app without writing code for it. Exam-
ples of cloud-based app building services are SeattleClouds,
iBuildapp, Appsbar, appbuilder, and biznessapps. Similarly,
many of apps were developed with mobile app building
frameworks, which also enable a developer to create a multi-

Fig. 6 CDFs of number of permissions per application. The 11 permis-
sions listed in Table 1 are used.

platform app easily. Examples of such mobile app building
frameworks are Apache Cordova (Phonegap) and Sencha.
These services/frameworks provide a simple and intuitive
interface to ease the processes of building a mobile app.

Among many such services/frameworks, we found a
few services/frameworks that generate apps that unneces-
sarily install many permissions, and put callable APIs/URIs
for the permissions into the code. Since a developer using
such a service/framework cannot change that setting, it is
likely that even the developer is not aware of the fact that
app install the permissions with callable APIs/URIs; hence,
it is less likely the developer writes about the permissions in
the description.

Figure 6 shows CDFs of number of permissions per
application. First, apps collected from the official market
have small number of permissions among the 11 permis-
sions; i.e., more than 80% of apps had zero permissions.
They had other generic permission such as Internet. Second,
we considered an intrusive cloud-based app building service
and one of the popular app building frameworks. Both cases
tend to install a large number of permissions. Especially,
roughly half of the apps that were built with the intrusive
cloud-based app building service had a fixed number of per-
missions (4 out of 11). We carefully inspected these apps,
and found that many permissions such as record audio were
unnecessarily installed by the services/frameworks.

We revealed that the apps built by the intrusive cloud-
based app building services are popular in official market,
but not popular in third-party market. In the official market,
more than 65% of apps that failed to refer to use of record
audio were developed with these services. Similarly, more
than 25% of apps that failed to refer to use of contact
list were developed with these services. We also observed
non-negligible number of such apps in other resources; i.e.,
5% for location and 10% of camera. For app building frame-
works, one of the frameworks accounted for more than 28%
of apps that failed to refer to use of record audio in the
third-party market. In fact the permission was not necessary
for the apps.

We also note that unnecessarily installed permissions
on a framework such as phonegap, which is HTML5-based
mobile app building framework, could bring additional
threats because such permission can be abused through var-
ious channels of Cross-Site Scripting attacks [33].

2594
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

(2) Prolific developers
Through the analysis of distributions of number of

apps per developer certificate, we noticed that a very few
number of developers accounted for a large number of de-
scriptions without mention of privacy-sensitive resources.
We call such developers “prolific developers”. For instance,
five prolific developers published 47% of third-party market
apps that fail to refer to send SMS. We applied eleven pop-
ular commercial anti-virus scanners to the apps with SMS
permission, and checked whether either of scanner detected
the types of application. If at least one scanner detected an
app as malware/adware, we marked it as malware/adware.
We found that majority of the apps with unmentioned SMS
permission were malware/adware and have been removed
from the market later. There are other cases. Three pro-
lific developers published 38% of third-party market apps
that fail to use of kill background processes. Another
three prolific developers published 32% of third-party mar-
ket apps that fail to use of write setting. We carefully
inspected these apps, and found that they do not have any
reasons to use the permissions. Although not conclusive,
we conjecture that these prolific developers likely reuse their
own code for building a large number of apps; i.e., they tend
to include unnecessary permissions/code.
(3) Secondary functions

Through the careful analysis of descriptions that failed
to refer to permissions, we found several secondary func-
tions that tend to be unmentioned. For instance, several apps
have functions to share information with friends, e.g., scores
of games. In many cases, such functions require to access
contact list. However, such activity is often unmentioned in
the descriptions because it is an optional function. Another
example is map-based apps that require to access the write
setting permission to enable location positioning service
such as GPS or Wi-Fi. Such map-based apps accounted for
44% of apps that failed to refer to write setting. Among
several cases, the most notable one was barcode reader,
which requires access to camera device. Although there
are several barcode reader apps, majority of apps with bar-
code reader function are shopping apps or social networking
apps. Since the barcode reader is not a primary function for
those apps, it tends to be unmentioned in their descriptions.
To study the impact of such cases, we extracted apps that
use barcode libraries such as ZXing [34] or ZBar [35]. We
found that in the official market, more than 53% of apps that
failed to refer to use of camera had barcode reader libraries
in their code. In the third-party market, more than 66% of
such apps had barcode libraries. Mobile application distri-
bution platform providers may want to support exposing the
use of privacy-sensitive resources by functions that tend to
be unmentioned.
(4) Third-party libraries

Just as the source of many vulnerabilities are in third-
party libraries [36], unintentional use of privacy-sensitive re-
sources can also be caused by the libraries. For instance, it is
well known that ad libraries make use of resources of loca-
tion or account information for establishing targeted adver-

tisement [6]. Another example of third-party libraries are
log analysis libraries and crash analysis libraries. These
libraries make use of get task permission and location
information. We analyzed apps that have callable location
APIs/URIs and text descriptions that do not refer to the loca-
tion permission. We found that in the official market, more
than 62% of such apps use ad libraries. In the third-party
market, more than 80% of such apps used ad libraries. Sim-
ilarly, in the third-party market, more than 20% of apps that
failed to refer to location permission used access analysis li-
braries. Thus, if a developer uses these third-party libraries,
it is likely that the description of the app fails to refer to the
permission unless the developer explicitly expresses it.

5.5 Threats to Validity

This section discusses several limitations of our analysis and
evaluation.

5.5.1 Static Code Analysis

Although we developed an algorithm to check whether
privacy-sensitive APIs/URIs are callable, we are aware of
some limitations. First, although the algorithm can de-
tect the callability of APIs/URIs, we cannot precisely en-
sure that they are actually called. Second, our static
code analysis cannot dynamically track assigned program
code at run-time, such as reflection. Third, as Poeplau
et al. [37] revealed, some malware families have the abil-
ity to self-update; i.e., after installation, an app can down-
load the new version of itself and load the new version via
DexClassLoad. Employing dynamic code analysis could
be a promising solution to these problems. However, other
challenges may include scalability and the creation of test
patterns for UI navigations [38], [39]. As we mentioned ear-
lier, we adopted static analysis because our empirical study
required analysis of a huge volume of applications. On the
other hand, we note that static code analysis has a chance
to extract hidden functions that cannot be explored by a dy-
namic analysis. We leave these challenges for our future
work.

5.5.2 Accuracy of the Keyword-Based Approach

As we mentioned earlier, we evaluated the accuracy of the
ACODE framework using 5 of 11 permissions we consid-
ered. Our assumption is that the ACODE framework estab-
lishes good accuracy for the rest of 6 permissions. However,
there may be a concern that the keyword-based approach
works better for some permissions more than others. We
note that some of the results derived in Sect. 5.4 were based
on permissions for which we did not evaluate the accuracy;
e.g., SEND SMS, KILL BG PROC, and GET TASKS. Therefore,
the results might have threats to validity. A simple solu-
tion to address the concern is to extend the labeled dataset,
however, we were not able to perform the additional exper-
iments due to the high cost of labeling descriptions writ-

WATANABE et al.: UNDERSTANDING THE INCONSISTENCY BETWEEN BEHAVIORS AND DESCRIPTIONS OF MOBILE APPS
2595

ten in two languages. Although not conclusive, we note
that we have validated that the descriptions were correctly
classified through the manual inspection, using randomly
sampled apps; i.e., the obtained results were partially
validated.

6. Discussion

In this section, we discuss the feasibility and versatility of
the ACODE framework. We also outline several future re-
search directions that are extensions of our work.

6.1 User Experience

In this study, we asked participants to read whole sentences
carefully, regardless of the size of the text description. In a
real-user setting, users might stop reading a text description
if it is very long. Studying how the length of text descrip-
tions or the placement of permission-related sentences affect
user awareness is a topic for future work. In addition to text
descriptions, mobile software distribution platforms provide
other information channels, such as meta data or screenshots
of an app. As users may also pay attention to these sources
of information, studying how these sources provide infor-
mation about permissions is another research challenge we
are planning to address.

6.2 Cost of Analysis

Because this work aims to tackle with a huge volume of
applications, we adopt light-weight approaches; static code
analysis (instead of dynamic code analysis) and keyword-
based text analysis (instead of semantic analysis). In the
followings, we detail the cost of our approach. The cost of
data analysis with the ACODE framework can be divided
into two parts: the static code analyzer and the text descrip-
tions analyzer. For the static code analyzer, the most ex-
pensive task is the function call analysis because we first
need to build function call trees to study whether an API is
callable. Our empirical study showed that the task of func-
tion call analysis for an application took 6.05 seconds on av-
erage. We note that the tasks can be easily parallelized. By
parallelizing the tasks with 24 of processes on a commod-
ity PC, we were able to process 200 K apps within a single
day. For the text description analyzer, collecting label was
the most expensive task. On average, a single participant
labeled 1,500 of descriptions within 10 hours. However,
once we get the performance evaluation of our approach,
we do not need to employ the task again because our work
does not need manually-labeled samples. Since we adopt
keyword-based approach, analyzing hundred thousands of
descriptions was quite fast.

Overall, all the tasks can be completed within a sin-
gle day, and we can further accelerate the speed if this is
desired. As our objective is not to perform the analysis in
real-time, we believe that the cost of performing analyses
with the ACODE framework is affordable.

6.3 Permissions that Should or Should not be Mentioned

Android OS manages several permissions with a
protection level defined as “dangerous,” which means “a
higher-risk permission that would give a requesting applica-
tion access to private user data or control over the device that
can negatively impact the user [40].” Ideally, users should
be aware of all these dangerous permissions. The danger-
ous permissions can be broadly classified into two cate-
gories: for users and for developers. Permissions for users
include read/write contacts, access fine location, read/write
calendar, read/write user dictionary, camera, microphone,
Bluetooth, and send/read SMS. The three resources ana-
lyzed in this paper are the permissions aimed at users. Per-
missions for developers include set debug app, set process
limit, signal persistent processes, reorder tasks, write set-
ting, and persistent activity.

Permissions for users are intuitively understandable.
Thus, they should be described in the text descriptions. Per-
missions for developers are difficult for general users to un-
derstand; thus, describing them may be confusing. As de-
scribing these permissions could even distract users’ atten-
tion from the text descriptions, they should not be mentioned
in the text descriptions. For such dangerous permissions
aimed at developers, we need to develop another informa-
tion channel that lets users know about the potential threats
in an intuitive way. We note that the ACODE framework
can be used to identify dangerous permissions that are least
mentioned. Knowledge of such permissions will be useful
to develop a new information channel.

7. Related Work

Researchers have studied mobile apps from various view-
points, including issues of privacy, permission, and user be-
havior. In this section, we review the previous studies along
four axes: system-level protection schemes, large-scale data
analyses, user confidence and user behavior, and text de-
scriptions of mobile apps.

7.1 System-Level Protection Schemes

As a means of protecting users from malicious software,
several studies have proposed install-time or runtime pro-
tection extensions that aim to achieve access control and ap-
plication isolation mechanisms such as [41]–[45]. Kirin [41]
performs lightweight certification of applications to mitigate
malware at install-time based on a conservative security pol-
icy. With regard to install-time permission policies and run-
time inter-application communication policies, SAINT [42]
provides operational policies to expose the impact of secu-
rity policies on application functionality, and to manage de-
pendencies between application interfaces. TaintDroid [43]
modifies the operating system and conducts dynamic data
tainting at runtime in order to track the flow of sensitive data
to detect when this data is exfiltrated. Quire [46] is defense

2596
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

mechanisms against privilege escalation attacks with inter-
component communication (ICC). Finally, SEAndroid [45]
brings flexible mandatory access control (MAC) to Android
by enabling the effective use of Security Enhanced Linux
(SELinux).

While the above studies improved the system-level se-
curity and privacy of smartphone, this work attempts to ad-
dress the problem from a different perspective – understand-
ing the effectiveness of text description as a potential source
of information channel for improving users’ awareness of
privacy.

7.2 Large-Scale Data Analyses

Several researchers have conducted measurement studies
to understand how many mobile apps access to private re-
sources and how they use permissions to do so [3]–[6].
A survey report published by Bit9 [3] included a large-
scale analysis of Android apps using more than 410,000 of
Android apps collected from the official Google Play mar-
ketplace. Through the analysis, they revealed that roughly
26% of apps access personal information such as contacts
and e-mail, 42% of apps access GPS, and 31% of apps ac-
cess phone calls or phone numbers. Book et al. [6] analyzed
how the behavior of the Android ad library and permissions
have changed over time. Through the analysis of 114,000
apps collected from Google Play, they found that the use of
most permissions has increased over time, and concluded
that permissions required by ad libraries could expose a sig-
nificant weakness in user privacy and security. From the per-
spective of dynamic code loading, Poeplau et al. [37] con-
ducted an analysis of 1,632 popular apps, each with more
than 1 million installations, and revealed that 9.25% of them
are vulnerable to code injection attacks.

7.3 User Confidence and User Behavior

Several works on user confidence and user behavior dis-
cuss users’ installation decisions [10], [47]–[49]. Refer-
ences [48], [49] studied user behavior in security warnings,
and revealed that most users continue through security warn-
ings. Good et al. [47] conducted an ecological study of com-
puter users installing software, and found that providing
vague information in EULAs and providing short notices
can create an unwarranted impression of increased security.
Chin et al. [10] studied security and privacy implications of
smartphone user’s behaviors based on a set of installation
factors, e.g., price, reviews, developer, and privacy. Their
study implicates user agreements and privacy policies as
the lowest-ranked factors for the privacy. As these studies
on user confidence and behavior suggest, user agreements
or privacy policies are not effectively informing consumers
about privacy issues with apps. Centralized mobile software
distribution platforms should provide mechanisms that im-
prove privacy awareness so users can use apps safely and
confidently. We believe that our findings obtained using
the ACODE framework can be used to complement these

studies.

7.4 Text Descriptions

As mentioned in Sect. 1, only a few works have focused on
text descriptions of mobile apps [11]–[14]. The WHYPER
framework [12] is the pioneering work that attempted to
bridge the semantic gap between application behaviors and
user expectations. They applied modern NLP techniques
for semantic analysis of text descriptions, and demonstrated
that WHYPER can accurately detect text sentences that re-
fer to a permission. Qu et al. [14] indicated an inherent
limitation of the WHYPER framework, i.e., the derived se-
mantic information is limited by the use of a fixed vocab-
ulary derived from Android API documents and synonyms
of keywords there. To overcome the issue, they proposed
the AutoCog framework based on modern NLP techniques
extracting semantics from descriptions without using API
documents. The key idea behind their approach is to select
noun-phrase based governor-dependent pairs related to each
permission. They demonstrated that the AutoCog frame-
work moderately improved performance as compared to
the WHYPER framework. Gorla et al. [13] proposed the
CHABADA framework, which can identify anomalies auto-
matically by applying an unsupervised clustering algorithm
to text descriptions and identifying API usage within each
cluster. Like our work, CHABADA uses API functions to
identify outliers. On the other hand, the aim of ACODE
is not to find anomalies, but to quantify the effectiveness
of text descriptions as a means of making users aware of
privacy threats. To this end, using a simple keyword-based
approach, the ACODE framework attempts to assess the rea-
sons why text descriptions do not refer to permissions. As
we revealed, the performance of our approach is comparable
with that of the WHYPER framework. We also note that the
ACODE framework is more fine-grained than CHABADA
since ACODE checks whether API functions/URIs found in
code are callable by employing function call analysis. Fi-
nally, Lin et al. [11] studied users’ expectations related to
sensitive resources and mobile apps by using crowdsourc-
ing. They asked participants to read the provided screen-
shots and text description of an app, and asked several ques-
tions to investigate users’ perceptions of the app as related
to privacy-sensitive resources. They concluded that users’
expectations and the purpose for using sensitive resources
have a major impact on users’ subjective feelings and their
trust decisions. This observation supports the importance
of improving users’ privacy awareness on mobile software
distribution platforms.

We summarize the differences among the above three
studies, and our own in Table 10. In addition to the technical
differences, our work is distinguishable from other studies
in its large-scale empirical analysis, which spans across 11
of distinct permissions, two market places, both free and
paid, and more than 200K of text descriptions written in two
different natural languages.

Recently a few works [50], [51] take an alternative ap-

WATANABE et al.: UNDERSTANDING THE INCONSISTENCY BETWEEN BEHAVIORS AND DESCRIPTIONS OF MOBILE APPS
2597

Table 10 Comparison between related works.

proach to use a text description as an information channel
of privacy threats. They aim to generate security-centric
text descriptions automatically by using the static analysis
of app code. This approach is useful to describe the po-
tentially malicious behavior of apps. It can also extract the
secondary functions, which are not described in the text de-
scription written by a developer. The drawback of the ap-
proach is that they cannot cope with the cases of app build-
ing services/frameworks and some third-party libraries that
often inject unnecessary APIs which are never called from
the app; i.e, dead code. For such cases, the automatically
generated descriptions will not agree with the actual behav-
ior. Addressing the issue needs advanced program analysis
such as dynamic analysis.

8. Conclusion

By applying the ACODE framework to 200,000 free apps
and 10,000 paid apps collected from both official and third-
party marketplaces, our analysis across the 11 distinct re-
sources revealed four primary factors that are associated
with the inconsistencies between text descriptions and use
of privacy-sensitive resources: (1) existence of app building
services/frameworks that tend to add API permissions/code
unnecessarily, (2) existence of prolific developers who pub-
lish many applications that unnecessarily install permissions
and code, (3) existence of secondary functions that tend to
be unmentioned, and (4) existence of third-party libraries
that access to the privacy-sensitive resources. We also found
that paid apps generally have more informative text descrip-
tions than free apps, which probably reflects the developers’
motivation to achieve a high number of downloads.

We believe that our work provides an important first
step toward improving users’ privacy awareness on mo-
bile software distribution platforms. For instance, develop-
ers of app building services/frameworks can use our find-
ings to check the behaviour and deployment of their prod-
ucts. Individual mobile app developers can pay attention to
our findings when they write text descriptions or use third-
party libraries. And mobile software distribution platform
providers can pay attentions to all the potential reasons that
lead to the inconsistencies between user expectations and
developer intentions. Based on the findings revealed by the
ACODE framework, they may be able to come up with new

information channels that effectively inform users about the
use of privacy-sensitive resources.

References

[1] T. Watanabe, M. Akiyama, T. Sakai, and T. Mori, “Understanding
the inconsistencies between text descriptions and the use of privacy-
sensitive resources of mobile apps,” Eleventh Symposium On Us-
able Privacy and Security (SOUPS 2015), pp.241–255, USENIX
Association, 2015.

[2] “Annual number of mobile app downloads worldwide 2021 —
Statistic.” https://www.statista.com/statistics/271644/worldwide-
free-and-paid-mobile-app-store-downloads/.

[3] B. Report, “Pausing Google Play: More Than 100,000 Android
Apps May Pose Security Risks.” https://www.bit9.com/research/
pausing-google-play/.

[4] A.P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” Proc. 18th ACM Conference on Computer
and Communications Security, CCS ’11, pp.627–638, 2011.

[5] A.P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: user attention, comprehension, and behav-
ior,” Symposium on Usable Privacy and Security (SOUPS), p.3,
2012.

[6] T. Book, A. Pridgen, and D.S. Wallach, “Longitudinal analysis of
android ad library permissions,” IEEE Mobile Security Technologies
(MoST), 2013.

[7] Y. Zhou and X. Jiang, “Detecting passive content leaks and pollu-
tion in android applications,” 20th Annual Network & Distributed
System Security Symposium (NDSS), Feb. 2013.

[8] J. Kim, Y. Yoon, K. Yi, and J. Shin, “ScanDal: Static analyzer for
detecting privacy leaks in android applications,” MoST 2012: Mo-
bile Security Technologies 2012, May 2012.

[9] Future of Privacy Forum, “FPF Mobile Apps Study.” http://www.
futureofprivacy.org/wp-content/uploads/Mobile-Apps-Study-June-
2012.pdf.

[10] E. Chin, A.P. Felt, V. Sekar, and D. Wagner, “Measuring user con-
fidence in smartphone security and privacy,” Symposium on Usable
Privacy and Security (SOUPS), 2012.

[11] J. Lin, S. Amini, J.I. Hong, N. Sadeh, J. Lindqvist, and J. Zhang,
“Expectation and purpose: Understanding users’ mental models of
mobile app privacy through crowdsourcing,” Proc. 2012 ACM Con-
ference on Ubiquitous Computing, pp.501–510, 2012.

[12] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper:
Towards automating risk assessment of mobile applications,” Proc.
22Nd USENIX Conference on Security, pp.527–542, Aug. 2013.

[13] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app be-
havior against app descriptions,” ICSE’14: Proc. 36th International
Conference on Software Engineering, pp.1025–1035, 2014.

[14] V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Autocog:
Measuring the description-to-permission fidelity in android appli-
cations,” Proc. 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’14, pp.1354–1365, 2014.

[15] M.P. Lewis, ed., Ethnologue: Languages of the World, seventeenth
ed., SIL International, Dallas, TX, USA, 2013.

[16] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off
of my market: Detecting malicious apps in official and alternative
Android markets,” 19th Annual Network & Distributed System Se-
curity Symposium (NDSS), pp.50–52, Feb. 2012.

[17] “Android asset packaging tool.” http://www.kandroid.org/guide/
developing/tools/aapt.html.

[18] “PScout: Analyzing the Android Permission Specification.”
http://pscout.csl.toronto.edu/.

[19] K.W.Y. Au, Y.F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing
the android permission specification,” Proc. 2012 ACM Conference
on Computer and Communications Security, CCS ’12, pp.217–228,
2012.

http://dx.doi.org/10.1145/2046707.2046779
http://dx.doi.org/10.1145/2370216.2370290
http://dx.doi.org/10.1145/2382196.2382222

2598
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

[20] “android-apktool.” http://code.google.com/p/android-apktool/.
[21] “smali – An assembler/disassembler for Android’s dex format.”

https://code.google.com/p/smali/.
[22] “androguard.” https://code.google.com/p/androguard/.
[23] “Kyoto Text Analysis Toolkit.” http://www.phontron.com/kytea/.
[24] “Natural Language Toolkit.” http://www.nltk.org.
[25] “imdict-chinese-analyzer.” https://code.google.com/p/imdict-

chinese-analyzer/.
[26] M. Makrehchi and M.S. Kamel, “Automatic extraction of domain-

specific stopwords from labeled documents,” Proc. IR Research,
30th European Conference on Advances in Information Retrieval,
ECIR’08, pp.222–233, 2008.

[27] S.E. Robertson and K.S. Jones, “Simple, Proven Approaches to Text
Retrieval,” Tech. Rep. 356, University of Cambridge Computer Lab-
oratory, 1997.

[28] “Whyper: Towards automating risk assessment of mobile applica-
tions.” https://sites.google.com/site/whypermission/.

[29] “Google play.” http://play.google.com/.
[30] “Anzhi.com.” http://anzhi.com.
[31] “Nduoa market.” http://www.nduoa.com/.
[32] J. Oberheide and C. Miller, “Dissecting the android bouncer,” Sum-

merCon, Brooklyn, NY., 2012. http://jon.oberheide.org/files/
summercon12-bouncer.pdf.

[33] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G.N. Peri, “Code in-
jection attacks on html5-based mobile apps: Characterization, de-
tection and mitigation,” Proc. 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14, pp.66–77, 2014.

[34] “Official ZXing (“Zebra Crossing”) project home.” https://github.
com/zxing/zxing.

[35] “ZBar bar code reader.” http://zbar.sourceforge.net/.
[36] T. Watanabe, M. Akiyama, F. Kanei, E. Shioji, Y. Takata, B. Sun, Y.

Ishi, T. Shibahara, T. Yagi, and T. Mori, “Understanding the origins
of mobile app vulnerabilities: a large-scale measurement study of
free and paid apps,” Proc. 14th International Conference on Mining
Software Repositories, pp.14–24, IEEE Press, 2017.

[37] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna,
“Execute this! analyzing unsafe and malicious dynamic code load-
ing in android applications,” Proc. Network and Distributed System
Security Symposium (NDSS), pp.23–26, 2014.

[38] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou,
“Smartdroid: An automatic system for revealing ui-based trigger
conditions in android applications,” Proc. Second ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices, SPSM
’12, pp.93–104, 2012.

[39] A. Gianazza, F. Maggi, A. Fattori, L. Cavallaro, and S. Zanero,
“Puppetdroid: A user-centric ui exerciser for automatic dynamic
analysis of similar android applications,” CoRR, vol.abs/1402.4826,
2014.

[40] “Android developers guide: App manifest – permission.”
http://developer.android.com/guide/topics/manifest/permission-
element.html.

[41] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile
phone application certification,” Proc. 16th ACM Conference on
Computer and Communications Security, CCS ’09, pp.235–245,
ACM, 2009.

[42] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Se-
mantically rich application-centric security in android,” Proc. 2009
Annual Computer Security Applications Conference, ACSAC ’09,
Washington, DC, USA, pp.340–349, IEEE Computer Society, 2009.

[43] W. Enck, P. Gilbert, B.G. Chun, L.P. Cox, J. Jung, P. McDaniel,
and A.N. Sheth, “Taintdroid: An information-flow tracking sys-
tem for realtime privacy monitoring on smartphones,” Proc. 9th
USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI’10, 2010.

[44] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.R. Sadeghi, and B.
Shastry, “Towards taming privilege-escalation attacks on android,”
19th Annual Network and Distributed System Security Symposium

(NDSS), p.19, 2012.
[45] S. Smalley and R. Craig, “Security Enhanced (SE) Android: Bring-

ing Flexible MAC to Android,” NDSS, The Internet Society, pp.20–
38, 2013.

[46] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D.S. Wallach, “Quire:
Lightweight provenance for smart phone operating systems,” 20th
USENIX Security Symposium, p.3, 2011.

[47] N. Good, R. Dhamija, J. Grossklags, D. Thaw, S. Aronowitz, D.
Mulligan, and J. Konstan, “Stopping spyware at the gate: A user
study of privacy, notice and spyware,” Symposium on Usable Pri-
vacy and Security (SOUPS), pp.43–52, 2005.

[48] C. Bravo-Lillo, L.F. Cranor, J. Downs, and S. Komanduri, “Bridging
the gap in computer security warnings: A mental model approach,”
IEEE Security & Privacy, vol.9, no.2, pp.18–26, 2011.

[49] D. Akhawe and A.P. Felt, “Alice in warningland: A large-scale
field study of browser security warning effectiveness,” Proc. 22Nd
USENIX Conference on Security, Security’13, 2013.

[50] W. Chen, D. Aspinall, A.D. Gordon, C. Sutton, and I. Muttik, “A
text-mining approach to explain unwanted behaviours,” Proc. 9th
European Workshop on System Security, p.4, ACM, 2016.

[51] M. Zhang, Y. Duan, Q. Feng, and H. Yin, “Towards automatic gen-
eration of security-centric descriptions for android apps,” Proc. 22nd
ACM SIGSAC Conference on Computer and Communications Se-
curity, pp.518–529, ACM, 2015.

Takuya Watanabe recieved M.E. degree in
computer science and engineering from Waseda
University, Japan in 2016. Since joining Nippon
Telegraph and Telephone Corporation (NTT) in
2016, he has been engaged in research and de-
velopment of mobile security. He is now with
the Cyber Security Project of NTT Secure Plat-
form Laboratories.

Mitsuaki Akiyama received the M.E. de-
gree and Ph.D. degree in Information Science
from Nara Institute of Science and Technology,
Japan in 2007 and 2013, respectively. Since
joining Nippon Telegraph and Telephone Cor-
poration NTT in 2007, he has been engaged in
research and development of network security,
especially honeypot and malware analysis. He
is now with the Cyber Security Project of NTT
Secure Platform Laboratories.

http://dx.doi.org/10.1145/2660267.2660275
http://dx.doi.org/10.1109/msr.2017.23
http://dx.doi.org/10.1145/2381934.2381950
http://dx.doi.org/10.1145/1653662.1653691
http://dx.doi.org/10.1109/acsac.2009.39
http://dx.doi.org/10.1145/1073001.1073006
http://dx.doi.org/10.1109/msp.2010.198
http://dx.doi.org/10.1145/2810103.2813669

WATANABE et al.: UNDERSTANDING THE INCONSISTENCY BETWEEN BEHAVIORS AND DESCRIPTIONS OF MOBILE APPS
2599

Tetsuya Sakai is a professor and head of
department at the Department of Computer Sci-
ence and Engineering, Waseda University. He
is also a visiting professor at the National Insti-
tute of Informatics. He joined Toshiba in 1993.
He obtained a Ph.D from Waseda in 2000. From
2000 to 2001 he was a visiting researcher at the
University of Cambridge Computer Laboratory.
In 2007, he joined NewsWatch, Inc. as the di-
rector of the Natural Language Processing Lab-
oratory. In 2009, he joined Microsoft Research

Asia. He joined the Waseda faculty in 2013. He was Associate Dean
(IT Strategies Division) from 2015 to 2017. He is an editor-in-chief of
the Information Retrieval Journal (Springer) and an associate editor of
ACM TOIS. He is the author of two books: Information Access Evalua-
tion Methodology (in Japanese, Corona Publishing, 2015), and Laboratory
Experiments in Information Retrieval: Sample Sizes, Effect Sizes, and Sta-
tistical Power (Springer, 2018).

Hironori Washizaki is director and profes-
sor at the Global Software Engineering Labora-
tory, Waseda University, Japan. He also works
at the National Institute of Informatics as vis-
iting professor, and at SYSTEM INFORMA-
TION CO., LTD. as an outside director. He is
the Editor-in Chief of Int. J. of Agile and Ex-
treme Software Development. He has served as
the editor of journals including Int. J. Soft. Eng.
Know. Eng., IEICE Trans. Info. Sys., Computer
Software, Heliyon, and Applied Computing and

Informatics. He has contributed to societies such as IEEE Computer So-
ciety Membership at Large for the Professional and Educational Activities
Board, IEEE Computer Society Japan Chapter Chair, SEMAT Japan Chap-
ter Chair, IPSJ SamurAI Coding Director, ISO/IEC/JTC1 SC7/WG20 Con-
venor, ICST 2017 PC Co-Chair, CSEE&T 2017 PC Co-Chair and APSEC
2018 PC Co-Chair.

Tatsuya Mori is currently an associate
professor at Waseda University, Tokyo, Japan.
He received B.E. and M.E. degrees in applied
physics, and Ph.D. degree in information sci-
ence from the Waseda University, in 1997, 1999
and 2005, respectively. He joined NTT lab in
1999. Since then, he has been engaged in the re-
search of measurement and analysis of networks
and cyber security. From March 2007 to March
2008, he was a visiting researcher at the Univer-
sity of Wisconsin-Madison. He received Tele-

com System Technology Award from TAF in 2010 and Best Paper Awards
from IEICE and IEEE/ACM COMSNETS in 2009 and 2010, respectively.
He is a member of ACM, IEEE, IEICE, and USENIX.

