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SUMMARY Data integrity is a key metric of security for Internet of
Things (IoT) which refers to accuracy and reliability of data during trans-
mission, storage and retrieval. Cryptographic hash functions are common
means used for data integrity verification. Newly announced SHA-3 is
the next generation hash function standard to replace existing SHA-1 and
SHA-2 standards for better security. However, its underlying Keccak al-
gorithm is computation intensive and thus limits its deployment on IoT
systems which are normally equipped with 32-bit resource constrained em-
bedded processors. This paper proposes two efficient SHA-3 ASIPs based
on an open 32-bit RISC-V embedded processor named Z-scale. The first
operation-oriented ASIP (OASIP) focuses on accelerating time-consuming
operations with instruction set extensions to improve resource efficiency.
And next datapath-oriented ASIP (DASIP) targets exploiting advance data
and instruction level parallelism with extended auxiliary registers and cus-
tomized datapath to achieve high performance. Implementation results
show that both proposed ASIPs can effectively accelerate SHA-3 algorithm
with 14.6% and 26.9% code size reductions, 30% and 87% resource effi-
ciency improvements, 71% and 262% better maximum throughputs as well
as 40% and 288% better power efficiencies than reference design. This
work makes SHA-3 algorithm integration practical for both low-cost and
high-performance IoT systems.
key words: SHA-3, application specific instruction-set processor, RISC-V,
IoT

1. Introduction

With the widespread use of embedded IoT devices, informa-
tion security attacks are also evolving [1]. Security becomes
important as functionality, speed, resources and power in
embedded system design [2], [3]. Data integrity is a key
metric of security goals and used to confirm system data
has not been tampered during transmission, storage and re-
trieval. It provides data accuracy and reliability for further
processing [4]. Hash functions are common means used
in integrity verification and authentication fields. In 2012,
National Institute of Standards and Technology(NIST) an-
nounced the next-generation hash function standard named
SHA-3 based on the Keecak [21] algorithm. It’s proposed
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to replace the existing common hash functions like MD5,
SHA-1 and SHA-2 for better security [5], [6].

Comparing to other SHA-3 candidate algorithms, Kec-
cak uses a large internal state and operations on it are 64-bit
friendly [22]. Its software implementation on 64-bit systems
are efficient, but computational complexity increases signif-
icantly on 32-bit resource-constrained embedded systems.
The achievable throughput is limited and extra heavy burden
also slows down the whole system [28]. Hardware solutions
like co-processors utilize specialized hardware to do parallel
algorithm acceleration. They can effectively improve per-
formance, but also bring additional resource overhead with
limited flexibility and scalability which limits their deploy-
ments in IoT systems [7]–[10].

An alternative solution is to do fine-grain hardware
based acceleration like Instruction Set Extensions(ISE) and
datapath customization etc. on standard processors. It’s a
feasible way to achieve balance of performance, resource
and flexibility. The processor designed on this basis is also
known as ASIP (Application Specific Instruction-set Pro-
cessor). An ASIP targets accelerating specification appli-
cations. It is normally based on a general-purpose pro-
cessor with special instruction set extensions and datapath
customizations to deliver high performance [11]–[14]. It
introduces limited resource overhead while still provides
promising software programmability which has been widely
adopted in areas such as mobile computation, network com-
munications and digital signal processing. ASIP design
for SHA-3 has drawn attentions since the competition was
launched. [15] explores acceleration of the SHA-3 candi-
date algorithms by doing ISE on a 16-bit PIC24 processor.
The optimization for Keecak algorithm can achieve 29.8%
performance improvement and 30.6% code reduction with
negligible resource overhead. It shows the effectiveness of
ASIP in accelerating SHA-3 algorithm. [16] extends a 32-
bit LEON3 processor achieves about 87% performance im-
provement and 9.5% code size reduction with instruction
extensions for 64-bit rotation. [17] implements 2 ASIPs.
One shares the main processor datapath and the other cus-
tomize a co-processor datapath. With tailored ISE, they can
achieve 20% and 38% performance improvements with 9%
and 26% hardware resource overhead, respectively. How-
ever, existing works mostly focus on basic operation accel-
eration in instruction level while has little exploration of ad-
vance data and instruction level parallelism for SHA-3 algo-
rithm. This means there is still large space for more efficient
SHA-3 ASIP design and implementation.

Copyright c⃝ 2018 The Institute of Electronics, Information and Communication Engineers
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This paper targets efficient SHA-3 ASIP design for IoT
based on an open RISC-V embedded processor namely Z-
scale [18] with help of Synopsys ASIP Designer [20]. On
basis of SHA-3 algorithm performance profiling, we do ISE
for intensive operations to remove most operation hotspots
with minimal hardware resource overhead. This leads to
the first operation-oriented SHA-3 ASIP. Further analysis
shows memory bandwidth becomes performance domina-
tion. With new optimizations of auxiliary register extensions
and customized datapath, it can successfully extends the life
cycle of state data during processing and paralyzes compu-
tations with memory accesses. These exploitations result in
another datapath-oriented SHA-3 ASIP which significantly
improves the performance and reduces code size with ac-
ceptable resource overhead. Both solutions are resource and
power efficient to make SHA-3 integration practical for low
cost and high performance IoT systems. Technologies in
this paper are implemented and verified on a 32-bit embed-
ded processor which are also helpful for similar 32-bit SHA-
3 ASIP designs.

The rest of this paper is organized as follows. Sec-
tion 2 elaborates SHA-3 algorithm and the reference Z-scale
processor architecture. Section 3 describes the iterative de-
sign flow based on the ASIP Designer and Sect. 4 proposes
two ASIP architectures namely operation-oriented ASIP and
datapath-oriented ASIP based on profiling data of SHA-3
algorithm. Hardware implementation and evaluation results
are presented and discussed in Sect. 5. Section 6 draws the
conclusion.

2. Background

2.1 SHA-3 Algorithm

NIST launched the Next Generation Hash Function Calling
Initiative in 2007. The goal was to replace the existing SHA-
1, SHA-2 standards which have been used for many years
and address new security needs. After several rounds of
open competitions, the algorithm based on Keecak spong
function family [21] became the final SHA-3 standard in
2012 [23].

The sponge function construction consists of three
main steps: padding, absorbing and squeezing as in Fig. 1.
It uses multi-rate padding to pad input message to be ab-
sorbed. Padded 1600-bit message is stored in an internal
state which is organized as a 5 ∗ 5 ∗ 64 three-dimensional ar-
ray shown in Fig. 2. The index addressing order is x→y→z.
After transformations, scrambled internal state is sequen-
tially squeezed out to compose the desired length of digest.
With different digest lengths, SHA-3 standard can be re-
ferred as SHA-3(224), SHA-3(256), SHA-3(384) and SHA-
3(512).

During the spong function construction for SHA-3,
Keccak- f [1600] function implements the key permutations
on internal state for 24 rounds. Each round consists of five
steps called θ (Theta), ρ (Rho), π (Pi), χ (Chi) and ι (Iota). θ
step XORs each state bit with parities of adjacent columns.

Fig. 1 SHA-3 algorithm structure

Fig. 2 SHA-3 state data layout

Algorithm 1 Keccak- f [1600] function
Require: state array S, round number nr , rotation constant ROTC, round

constant RC
Ensure: updated state array S
1: for ir = 0; i < nr; ir + + do
2: (θ · (ρ · π) · χ · ι) (S, RC[ir])
3: end for
4: return S
5:
6: θ:
7: P[x] = S[x,0] ⊕ S[x,1] ⊕ S[x,2] ⊕ S[x,3] ⊕ S[x,4]
8: Q[x] = P[(x − 1)%5] ⊕ ROTL(P[(x + 1)%5], 1)
9: S[x,y] = S[x, y] ⊕ Q[x]

10: ρ·π:
11: T[y,(2x + 3y)%5] = ROTL(S[x,y], ROTCxy)
12: χ:
13: S[x,y]=T[x,y] ⊕ (∼(T[(x + 1)%5,y]) & T[(x + 2y)%5])
14: ι:
15: S[0,0]=S[0,0] ⊕ RC[ir]

Then ρ step rotates each lane based on its location. Next
π step scrambles the state by rearranging positions of dif-
ferent lanes with variable lengths. Following χ step is the
only non-linear step which improves algorithm security. It
does a series of AND, NOT and XOR operations among dif-
ferent lanes. Finally, the ι step XORs a round constant with
lane 0. The detailed definition of Keccak- f [1600] function
is shown as algorithm 1. For all five steps, lane addressing
indexes are modulo 5 to reside in valid range [0, 4].
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Fig. 3 Architecture of RISC-V model in ASIP Designer

2.2 Z-Scale Processor Architecture

RISC-V is an open Instruction Set Architecture(ISA) pro-
posed to facilitate processor design for different domains
from embedded devices to servers [24]. It supports both 32-
bit and 64-bit data width with minimal base set of instruc-
tions and rich optional instruction extensions. Designers
can choose to implement subsets of instructions with cus-
tomized extensions to meet application requirements while
reduce resource overhead and power consumption. It has
drawn attentions in both academia and industry. Z-scale is
a processor based on the RV32IM instruction set targeting
embedded system domain [25].

Synopsys ASIP designer also ships an RISC-V model
which is fully compatible with Z-scale processor specifi-
cation. This model implements following architecture fea-
tures:

(1) 32-bit wide data path with a single cycle ALU,
shifter, multiplier and multi-cycle division/remainder unit.

(2) 32 entry central register file.
(3) Load/store architecture with supporting of 8, 16 and

32-bit memory transfers and an indexed addressing mode.
(4) Single-issue, in-order and 3 stage pipeline.
(5) 32-bit and 16-bit instructions.
The detailed micro-architecture is shown in Fig. 3. The

model also provides a series of libraries such as libc and
libm for rapid application porting and analysis. It can sig-
nificantly save efforts for software mapping.

With efficient optimizations by ASIP designer, this
model can outperform the standard Z-scale implementation
with 20% Dhrystone performance improvement and 10.1%
resource reduction [19].

All of above advantages make the model is a good start
point for SHA-3 ASIP design exploration. And following
analysis, design and implementation in this paper take it as
the reference design.

Fig. 4 ASIP design flow

3. Design Flow

ASIP Designer is a Synopsys tool for accelerating ASIP
design and programmable accelerators. Based on a uni-
form nML [26] architecture description, it can generate an
Software Development Kit (SDK) including an optimized
compiler, cycle accurate simulator, assembler, linker, de-
bugger and profiler for software development, produce ef-
ficient RTL, UVM-based environment and random test cases
for hardware verification and implementation. It efficiently
speeds up ASIP design. And the design flow in this paper is
show as Fig. 4.

(1) Implement process model in nML based on archi-
tecture definition and export its SDK for later software de-
velopment.

(2) Port application, verify functionality and do perfor-
mance profiling to locate bottlenecks.

(3) Update architecture definition by extending instruc-
tion set and customizing datapath to tackle performance bot-
tlenecks. Repeat steps (1) to (3) until there is no available
space for software optimization.

(4) Generate RTL, perform functional verification, syn-
thesize design and update architecture definition for power,
performance and area (PPA) optimization. Repeat steps (1)
to (4) until unit implementation meets hardware design tar-
gets.

(5) Map design to FPGA, run application and do a
comprehensive comparison of performance, code space and
hardware resource between implemented ASIPs and refer-
ence design.

4. Proposed ASIPs

This paper takes the algorithm implementation in Keccak
Package as target application [27]. It is a standalone pure C
implementation without any architecture optimization and
look-up tables †. This exposes all computational complexity
of SHA-3 algorithm and avoids interference caused by pre-
optimization.

†KeccakCodePackage/Standalone/CompactFIPS202/Keccak-
readable-and-compact.c
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Fig. 5 Keccak-[1600] instruction cycle distribution on reference design

Table 1 Keccak-[1600] operation patterns on reference Z-scale

Operation patterns Stpes Description

r = ii32%5 All Lane indexing
r = (ai64 << bi32)|(ai64 << (64 − bi32)) θ, ρ Lane rotation
r = (ai32 << 1)

itoa Round constant⊕((ai32&0x80)?0x71 : 0x00)
loop(counti32) { body; } All Loop control

4.1 Operation-Oriented ASIP Architecture

4.1.1 Performance Profiling

With the out-of-the-box reference RISC-V model, it can
quickly port the algorithm implementation and do initial
profiling of the Keccak- f [1600] function. Instruction types
and their executed cycle counts are the most interested tar-
gets which shows us the performance bottlenecks. Their dis-
tributions on reference design are show as Fig. 5.

The main part is data transfer instructions which is used
for internal state management. And logical instructions in-
cluding OR, XOR, NAND and 64-bit rotation are executed
for transformation. It also requires nested loops to traverse
all lanes of the internal state presented in comparison and
jump instruction group. Multiply and modulo instructions
are for lane indexing with a fixed step 5. Addition and
subtraction instructions are basic operations for general pro-
gramming also required for loop counter updating, lane in-
dex and indirect memory address calculation. Beyond basic
instruction analysis, we have examined SHA-3 algorithm
and summarized common time-consuming operation pat-
terns for dedicated acceleration. They are shown in Table 1.

4.1.2 ISE Design

Operation-oriented ASIP targets accelerating operations on
existing datapath with instruction extensions in Table 2.

remv takes advantage of predictable input rage and do
modulo within single cycle instead of multi-cycle division
instruction for lane index calculation. To accelerate 64-bit
rotation which is inefficiently emulated by a series of shift,
AND, OR operations on 32-bit processors, this paper ex-
tends a 64-bit rotation auxiliary register. pack concatenate

Table 2 Instruction extensions for OASIP

Instruction Description

remv rd, rs0, #imm

tmp=rs0+#imm;
rd=tmp-5 if tmp∈[5, 9];
rd=tmp+10 if tmp∈[−9,−6];
rd=tmp+10 if tmp∈[−5,−1];
rd=tmp+10 if tmp∈[0, 5);
rd=tmp+10 if tmp∈[0, 5);

hmask rd, rs0 rd=(rs/2)%64;
pack rs0, rs1 aux[63:32]=rs0; aux64[31:0]=rs1;
rotl rsd, rs0 aux=left rotate(aux,rs0); rd=aux[63:32];
extlw rd rd=aux[31:0];

l f sr rd, rs0
tmp=rs<<1;
mask=(rs&0x80)?0x70:0x00;
d=tmp⊕mask;

doloop rs0, #LE hardware loop rs0 times to #LE;

Fig. 6 Operation-oriented SHA-3 ASIP architeture

two 32-bit data into it. rotl does 64-bit left rotation and
stores high 32-bit result back to a general register. And the
low 32-bit result can be extracted to another general register
with extlw later. hmask and l f sr merges common opera-
tions for index updating in π and round constant generation
in ι.

All five steps take 2 to 3 levels of loops to traverse each
lane during transformation. This is implemented with 2-
cycle delay conditional jump instructions. Without enough
instructions to fill these slots, it will significant increase the
performance overhead. Hardware zero-overhead loop can
efficiently eliminate delays of loops with fixed counts for
high loop performance. This paper introduces two level
hardware zero-overhead loops and software unrolling on the
third level small loop to balance performance, hardware re-
source and code size.

By merging operations and providing new operations
in hardware, it can both improve performance and reduce
code size. Figure 6 illustrates architecture of the proposed
OASIP.
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4.2 Datapath-Oriented ASIP Architecture

4.2.1 Performance Profiling

Based on the optimized OASIP, we have updated the algo-
rithm implementation and done re-profiling. The new dis-
tribution of different instruction executed cycles are show as
Fig. 7.

It shows that OASIP can accelerate time-consuming
operations such as modulus, 64-bit rotations etc. with dedi-
cated ISE. But it has limited contributions to solve following
problems:

(1) Dominant load/store operations: The state space
of SHA-3 algorithm is 5 ∗ 5 ∗ 64 bits while reference model
only has a 32-bit register file with depth of 32. Compiler has
to insert load/store instructions to exchange data between
registers and memory for register spilling.

(2) Heavy 32-bit logical operations: Each 64-bit log-
ical operation on 32-bit data path requires two 32-bit logical
operations.

4.2.2 Data Level Parallelism Exploitation

To tackle bottleneck (1) described in Sect. 4.1.1, this paper
extends a 64-bit auxiliary register file with depth of 6 to ex-
tend life cycle of state data in each step. The entry number
mainly comes from step χ which requires 5 for state column
data and 1 for operation result. As a 64-bit operand contains
two 32-bit sub-words, this can ideally reduce instructions by
a factor of 2 comparing to common instructions with 32-bit
operands. It’s also known as data level parallelism.

4.2.3 ISE Refinement

As there are 64-bit registers, it’s natural to extend logical
operation like AND, NOT, XOR etc. with 64-bit operands.
To speed up exchanging data between auxiliary registers
and memory, a special register relative addressing mode
with step 5 is introduced. And it also requires a new data
movement instruction among auxiliary registers for data re-
organizing.

Fig. 7 Keccak-[1600] instruction cycle distribution on OASIP

4.2.4 Instruction Level Parallelism Exploitation

Further algorithm analysis shows that it’s common to tra-
verse all lanes for state transformation while logical opera-
tions and memory accesses with different lanes are indepen-
dent. This provides us an opportunity to paralyze different
type instructions. By grouping 64-bit logical operations and
memory accesses on extended auxiliary register as operation
bundles, this paper introduces VLIW instructions to exploit
instruction level parallelism for better performance and code
size.

Above data level and instruction level parallelism ex-
ploration leads to a datapath-oriented ASIP with ISE defined
in Table 3. And Fig. 8 illustrates architecture of the proposed
DASIP.

Table 3 Instruction extensions for DASIP

Instruction Description

hmask rd, rs0 rd=rs[8:1]; //rd=(rs0>>1)%64
xor ard, ars0, ars1 ard= XOR(ars0, ars1);
rotl ard, ars0, rs1 ard= ROTL(ars0, rs1)
nandxor ard, ars0, ars1 ard= XOR(ard,AND(NOT(ars0),ars1))
mvar ard, ars0 ard= ars0;
ldlw32s5i ard, rs0, rs1, #imm ard[31:0]=mem32[rs0+rs1*5+#imm];
ldhw32s5i ard, rs0, rs1, #imm ard[63:32]=mem32[rs0+rs1*5+#imm];
stlw32s5i ard, rs0, rs1, #imm mem32[rs0+rs1*5+#imm]=ard[31:0];
sthw32s5i ard, rs0, rs1, #imm mem32[rs0+rs1*5+#imm]=ard[63:32];
ldlw32m5i ard, rs0, rs1, #imm ard[31:0]=mem32[rs0+(rs1+#imm)%5];
ldhw32m5i ard, rs0, rs1, #imm ard[63:32]=mem32[rs0+(rs1+#imm)%5];
stlw32m5i ard, rs0, rs1, #imm mem32[rs0+(rs1+#imm)%5]=ard[31:0];
sthw32m5i ard, rs0, rs1, #imm mem32[rs0+(rs1+#imm)%5]=ard[63:32];
ldhw32s5i; xor

ILP for θ step;
sthw32s5i; xor
ldhw32s5i; rotl

ILP for θ step;
sthw32s5i; rotl
ldhw32s5i; mvar

ILP for ρ step;
sthw32s5i; mvar
ldhw32s5i; nandxor

ILP for χ step;
sthw32s5i; nandxor

Fig. 8 Datapath-oriented SHA-3 ASIP architecture
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Table 4 SHA-3 ASIP evaluation results on FPGA targeting 100MHz

Implementation
Performance Area Code Size Res. Efficiency

Res. Eff. Speedup
(Bytes/cycle)*10−3 Slices Bytes (Bytes/(cycles*slices))*10−6

Z-scale 2.01 747.5 1248 2.69 -
OASIP 3.43(171%) 981(131%) 1066(85.4%) 3.50(130%) 3.68
DASIP 7.67(382%) 1522(204%) 912(73.1%) 5.04(187%) 5.30
MIPS 4.49 6074 3529 0.74 -

MIPS+Native ISE 5.61(125%) 6595(109%) 3320(92.4%) 0.85(115%) -
MIPS+Co-processor ISE 7.25 7643(126%) 3292 0.95(128%) 1.00

LEON3 1.44 7902 20000 0.18 -
LEON3+ISE 2.71(188%) 8648(109%) 18100(91.5%) 0.31(123%) -

Table 5 SHA-3 ASIP evaluation results on ASIC targeting maximum frequencies

Implementation
Fmax Power(Static+Dynamic) Max Throughput Max TP. Power Efficiency Power Eff.
(MHz) (mW) (MBytes/second) Speedup (MBytes/mJ) Speedup

Z-scale 590 3.92(0.43+3.49) 1.19 1.00 0.30 1.00
OASIP 590 4.77(0.51+4.26) 2.03 1.71 0.42 1.40
DASIP 560 3.66(0.72+2.94) 4.29 3.62 1.17 3.88

5. Evaluation

In this chapter, reference design, OASIP and DASIP are
implemented in hardware and mapped to Synopsys HAPS-
70 platform equipped with a Virtex-7 XC7V2000T FPGA
chip at 100MHz. It also runs optimized SHA-3 algorithm
implementations for functional verification and evaluation.
This paper evaluates SHA-3 hashing performance, hardware
area, software code size and resource efficiency. Perfor-
mance refers to hash speed and defined as data bytes hashed
per cycle. It uses a built-in hardware counter to collect cy-
cles running on HAPS-70. As padding overhead is depen-
dent on message length, the counter starts after it to remove
the interface. Xilinx FPGA slice number in synthesis report
is taken to quantify the area. And code size includes both
text and static data sections. To quantify the efficiency be-
tween different ASIP schemes of existing works, this paper
uses resource efficiency which is defined as bytes of mes-
sage hashed per second and slice. Table 4 shows detail re-
sults of proposed ASIPs with reference design and relevant
existing works on FGPA.

It shows that both ASIPs effectively improve the per-
formance of SHA-3 algorithm over the reference design.
The OASIP gains 71% performance improvement with
hardware acceleration of time-consuming operations. The
31% area overhead is mainly comes from the 64-bit auxil-
iary register and shifter for 64-bit rotation support. It also
gets 14.6% code size reduction which is benefit from op-
eration merging, less instructions of 64-bit rotation than
software emulation with 32-bit instructions only and zero-
overhead loops for program flow control. While DASIP sig-
nificantly improves performance by 282% with 104% area
overhead including extended register file and customized
datapath. Its code size reduction is 26.9% with advantages
of data and instruction level parallelism exploitation. The
resource overhead of both proposed ASIP looks relative
large, this is because the reference design is an extremely

lightweight RISC-V processor with only basic subset in-
structions. It’s expected to have lower overall overhead in
IoT systems with more RISC-V instruction subsets imple-
mented. And comparing with relevant researches, the re-
source efficiency speedup varies from 3.68X to 5.30X on
FPGA.

Meanwhile, this paper does further evaluation of max-
imum throughput and average power consumption based
on Synopsys ASIC Design Reference Methodology [29] as
these metrics are crucial for resource and power sensi-
tive embedded processor design for IoT systems. Dif-
ferent version of Z-scale implementations are synthesized
with TSMC28HPM technology for maximum frequency,
and power evaluation is done with Synopsys Power Com-
piler based on SAIF(Switching Activity Interchange For-
mat) generated in gate-level simulation of SHA-3 algorithm.
Table 5 shows the detail results on ASIC †.

OASIP adds simple compare, add, shift and select op-
erations which are not on the critical timing path, while
comparing with simple multiplier in reference Z-scale,
MAC(Multiply-Add) operation in DASIP adds a chained
adder after multiplier and slightly decreases achievable
maximum frequency from 590MHz to 560MHz. Neverthe-
less, the overall throughputs of OASIP and DASIP still out-
perform reference Z-scale. Both OASIP and DASIP con-
sume more static power as they increase the design logic.
OASIP increases the dynamic power as it has to pack two
32-bit word to a 64-bit word for each rotation and convert
the result back to two 32-bit words afterwards, while DASIP
does 64-bit operations on extended 64-bit auxiliary register
files as much as possible, and the dedicated ILPs can also
avoid redundant operations which significantly improves its
power efficiency. And comparing to reference Z-scale, the
speedup of achievable maximum throughputs are 1.71X and
3.62XX with 1.40X and 3.88X better power efficiencies on
ASIC.

†Research [16] and [17] only evaluate performance on FPGA
prototypes without any evaluation of power.
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All for these advantages make them more practical for
integrations in modern IoT systems.

6. Conclusion

This paper explores SHA-3 ASIP design for IoT systems
based on a lightweight embedded RISC-V processor model
named Z-scale. The whole work is done with a fast ASIP
iterative design flow in Synopsys ASIP Designer. It leads
to two efficient SHA-3 ASIP designs. The first operation-
oriented ASIP (OASIP) is proposed for accelerating time-
consuming operations with minimal impact of existing dat-
apath. And the other datapath-oriented ASIP (DASIP) tar-
gets more advance data and instruction level parallelism
exploitation for high performance with extended registers
and customized datapath. Both ASIPs are hardware imple-
mented and mapped to HASP-70 for evaluation. Compar-
ing to the reference design, there are 71% and 282% perfor-
mance improvements, 14.6% and 26.9% code size reduc-
tion with 31% and 104% resource overhead. And their re-
source efficiencies also outperform known best work by a
factor from 3.68X to 5.30X. Further evaluation on ASIC
shows that OASIP and DASIP are 1.71X and 3.62X more
maximum throughput efficient with 1.40X and 3.88X more
power efficient than reference design for SHA-3 algorithm
support. Technologies proposed in this paper are based on
a typical 32-bit embedded processor which can facilitate ei-
ther low-cost or high performance SHA-3 integrations for
other 32-bit IoT systems.
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