
2220
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.9 SEPTEMBER 2018

LETTER Special Section on Picture Coding and Image Media Processing

Fast CU Termination Algorithm with AdaBoost Classifier in HEVC
Encoder

Yitong LIU†a), Wang TIAN†, Yuchen LI†, Nonmembers, and Hongwen YANG†, Member

SUMMARY High Efficiency Video Coding (HEVC) has a better cod-
ing efficiency comparing with H.264/AVC. However, performance en-
hancement results in increased computational complexity which is mainly
brought by the quadtree based coding tree unit (CTU). In this paper, an
early termination algorithm based on AdaBoost classifier for coding unit
(CU) is proposed to accelerate the process of searching the best partition
for CTU. Experiment results indicate that our method can save 39% compu-
tational complexity on average at the cost of increasing Bjontegaard-Delta
rate (BD-rate) by 0.18.
key words: HEVC, fast algorithm, early termination, AdaBoost

1. Introduction

High Efficiency Video Coding (HEVC) improves compres-
sion performance comparing with H.264/AVC in the range
of 50% bitrate reduction for equal perceptual video qual-
ity [1]. HEVC splits a frame into coding tree units (CTUs)
that may be split into coding units (CU) recursively. HEVC
will search all the possible splitting patterns, then the best
pattern will be used to compress the CTU. The quadtree
structure in CTU splitting contributes to huge promotion
in codec performance and therefore brings heavy compu-
tational burden [2].

Numerous works focused on speeding up quadtree
pruning in HEVC. [3] proposed a machine learning based
CU depth decision algorithm with given rate-distortion (RD)
cost constraints. [4] proposed a CU size decision algorithm
for intra coding. The correlation of neighboring CUs’ depth,
distribution of RD cost, and distribution of residual data
were analyzed, respectively. [5] considered CU splitting or
non-splitting as a binary classification problem. The authors
proposed a CU size decision algorithm based on probability
statistics. [6] proposed a CU split decision algorithm for in-
ter coding based on support vector machine (SVM) where a
different SVM for each depth level was employed.

In this paper, we propose a method to perform early ter-
mination for redundant CU structure searching process with
AdaBoost classifier. The rest of this paper is organized as
follows. Section 2 introduces the process of feature filter-
ing. The AdaBoost model is built in Sect. 3. The overall

Manuscript received December 15, 2017.
Manuscript revised April 12, 2018.
Manuscript publicized June 20, 2018.
†The authors are with the School of Information and Commu-

nication Engineering, Beijing University of Posts and Telecom-
munications, No.10 Xitucheng Road, Haidian District, Beijing,
100876 China.

a) E-mail: liuyitong@bupt.edu.cn
DOI: 10.1587/transinf.2017PCL0001

performance is demonstrated in Sect. 4.

2. Feature Selection with Decision Trees

In our works, the CU splitting or non-splitting is modeled
as a binary classification problem. A feature set is built be-
fore feeding features to AdaBoost classifier. The constituent
parts of the feature set are listed in Table 1. Eight sequences
are chosen from [7] as the training sequences and listed in
Table 2.

RD cost proved significant in making the splitting de-
cision [3]–[6]. Specifically, RD cost (J) is calculated [8] by

J = D + λ · R (1)

where λ is the Lagrangian multiplier, D and R are the distor-
tion and bitrate for the sequence.

However, RD cost is related to the quantization param-
eter (QP) value. To explore the relationship between RD
cost and QP value, training sequences in Table 2 are en-
coded with different QP value and the average RD cost of
splitting CUs and non-splitting CUs are recorded, respec-
tively. Figure 1 gives partial results for illustration. The RD

Table 1 Potential factors affecting the CU splitting

Feature Name Description
VAR SUM CU (Variance, Mean, Max value) of sums of

four
MEAN SUM CU sub-CUs’ residual coefficient.
MAX SUM CU

VAR NZ CU (Variance, Mean, Max value) of nonzero
MEAN NZ CU coefficient ratio in four sub-CUs.
MAX NZ CU

AVE SUM PU Average of sums of residual coefficient in
each predicting unit (PU).

MAX NZ PU Max value of nonzero ratio of residual
coefficient in each PU.

RDcost The result of Lagrangian multiplier method.

Table 2 Training sequences

Class A PeopleOnStreet

Class B
BQTerrace
ParkScene

Class C
BasketballDrill
BQMall

Class D
BasketballPass
RaceHorses

Class E FourPeople

Copyright c⃝ 2018 The Institute of Electronics, Information and Communication Engineers



LETTER
2221

Fig. 1 Relationship between RD cost and QP value. Two sequences
(BQMall, BQS quare) are tested using QP values of {12, 17, 22, 27, 32,
37, 42}.

cost increases as the QP value raises monotonously. The
curves marked by dots and triangles respectively represent
two types of processing of the CU: “splitting” and “non-
splitting”. “splitting” means the current CU fails to achieve
the minimum RD cost on its current size and needs to be
split into four sub-CUs to conduct pattern searching, respec-
tively. “non-splitting”, on the contrary, indicates that the
current CU can obtain best RD cost without splitting into
sub-CUs. The red squares representing the average RD cost
of both sequences at different QP values, separate whether
the CU is split or not. As Fig. 1 shown, the red squares can
be well fitted to an exponential function

f (QP) = α · eβ·QP (2)

where α and β are constant coefficients to be determined.
Furthermore, the original RD cost can be adjusted into a
suitable parameter for training model by

Joffset = J − α · eβ·QP (3)

where J is the original RD cost defined in Eq. (1), Joffset

means the delta of original RD cost and the partition curve
as illustrated in Fig. 1.

With the data gained from encoding the training se-
quences in Table 2, the value of (α, β) is regressed. For
CU size 16 × 16 the value of (α, β) is (120.21, 0.15) and
(460.12, 0.14) for CU size 32 × 32. RD cost offset proves
to be an effective feature and therefore added to our feature
set.

For the sake of the simplicity, a decision tree is used
to filter the candidate features. An experiment is designed
to filter our feature set. Firstly, video sequences are com-
pressed with original HEVC encoder. The decision of
codec in every CUs and its correlative features are recorded.
Eight training sequences in Table 2 are test with the ran-
dom access main profile. About 1 million records are col-
lected for further analysis. Secondly, a dataset is built with
data collected and half of the dataset is taken as training data
to build the decision tree. Thirdly, the feature and entropy

Table 3 Entropy decreasing ratio

Feature Name Entropy Decreasing Ratio (%)
RD cost offset 88.03
VAR SUM CU 7.43
VAR NZ CU 1.97
MEAN NZ CU 1.00
MEAN SUM CU 0.87
MAX NZ CU 0.49
MAX SUM CU 0.17
MAX NZ PU 0.00
MAX NZ PU 0.00

decreasing margin in each node of the tree are recorded af-
ter building the decision tree. The entropy decreasing mar-
gin indicates the importance of the features. The second
and the third step are repeated 100 times. Accroding to the
result listed in Table 3, RD cost offset, VAR SUM CU, and
VAR NZ CU are finally selected as the input in our proposed
AdaBoost model.

3. Fast Quadtree Algorithm with AdaBoost Model

The AdaBoost (adaptive boosting) algorithm is proposed [9]
as a general method for generating a strong classifier out of a
set of weak classifiers. A decision tree is used as a base clas-
sifier in our model. As a weak classifier, the height of the
base decision tree is only one. At the beginning, AdaBoost
chooses the best decision tree learners for the current sam-
ple set. After a weak classifier is added to AdaBoost, the
weight of “wrong” samples is raised. In the next classifica-
tion, AdaBoost will pay more attention to the “wrong” sam-
ples until the number of classifiers reaches its limit. When
the AdaBoost model is built, the final prediction comes from
the weighted combination of all the weak classifiers.

In our proposed method, AdaBoost classifier predicts
the probability of splitting before further searching. A
greater probability of splitting means that the further split-
ting and pattern searching for the current CU are more
likely to achieve better rate distortion performance. If
the probability of splitting is lower than the threshold, the
quadtree structure searching terminates. Otherwise, the fur-
ther searching is executed.

Before training our model, the number of weak classi-
fiers should be determined. The model performance of us-
ing different numbers of weak classifiers is evaluated with
the Area Under Curve (AUC) [10]. When the value of AUC
is greater than 0.5, the model is considered to be of use for
prediction if appropriate thresholds are selected. As shown
in Fig. 2, the value of AUC is in (0.84, 0.90) indicating that
the model has good performance, especially when the num-
ber of classifiers exceeds 4. More classifiers bring better
performance except for certain cases. When the number of
weak classifiers is 12, 16, 20, 22, 26 or 28, the model per-
formance decreases slightly. However, model performance
improvement is negligible when the number of weak classi-
fiers exceeds a certain number (around 5). To balance model
performance and computational complexity, the number of
classifiers is 6 in our proposed AdaBoost model.



2222
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.9 SEPTEMBER 2018

Fig. 2 The relationship between the number of weak classifier and AUC.

Fig. 3 ROC curve is illustrated in (a). The relationship between thresh-
old and TNR/FNR is showed in (b).

Table 4 Overall performance of proposed method

Test Sequences

TS (%) BD − rate(%) TS (%) BD − rate(%) TS (%) BD − rate(%)
Thresholds

0.49 0.48 0.47

Class A

NebutaFestival 33% 0.15 6.5% 0.01 1% -0.03
SteamLocomotiveTrain 62% 1.77 52.3% 0.14 46% 0.08
Traffic 62% 8.58 49.4% 0.32 43% 0.13

Class B

BasketballDrive 59% 5.26 41.8% 0.16 37% 0.02
Cactus 62% 7.11 38.6% 0.24 33% 0.07
Kimono1 63% 3.12 47.7% 0.19 42% 0.12

Class C
PartyScene 48% 4.77 18.0% 0.19 12% 0.04
RaceHorsesC 48% 7.00 25.0% 0.20 19% 0.03

Class D
BlowingBubbles 52% 7.00 19.8% 0.24 14% 0.09
BQSquare 58% 6.61 24.8% 0.11 19% 0.05

Class E

Johnny 66% 3.88 63.2% 0.02 61% -0.02
KristenAndSara 65% 5.20 61.4% 0.13 58% 0.00
vidyo1 63% 4.83 61.9% 0.36 60% 0.15

Average result 57% 5.02 39% 0.18 34% 0.06

When selecting CU splitting threshold, two types of
errors in CU splitting decision are considered. One occurs
when a CU actually needs splitting while the AdaBoost ter-
minates further searching. The other occurs when CU does
not need splitting while the AdaBoost actually does. The
former brings worse result than the latter because a pre-
mature termination of CU pattern searching caused by the
former error leads to quality degradation. Unnecessary CU
pattern searching caused by the latter merely increases com-
putational complexity. However, eliminating the classifying
error is impossible. A compromise way is to set a proper
threshold deciding the result of classification.

Figure 3 illustrates relationship between false nega-
tive rate (FNR), true negative rate (TNR), and the deci-
sion threshold. FNR represents the first error which means
a CU needs splitting while the AdaBoost terminates fur-
ther searching. (1-TNR) represents the second error which
means CU dose not need splitting while the AdaBoost con-
tinues. The smaller FNR value or the greater TNR value is,
the more accurate output of the classifier provides. Consid-
ering the coding performance degradation caused by these
two errors, FNR is chosen to decide the threshold for early
termination of CU splitting.

Figure 3(a) shows Receiver Operating Characteristic
Curve (ROC) [11] which is often used for evaluating the per-
formance of a classifier. The diagonal represents the ran-
dom guessing model (area = 0.5). That the carve is above
the diagonal indicates that the proposed model works well
Fig. 3(b) shows the FNR value and the TNR value when the
threshold is 0.48. In our method, the output of AdaBoost
model is probability of “splitting” a CU. When the proba-
bility is below the threshold, further searching is terminated.
The proposed method is not used with CU size 64 × 64 to
avoid obvious quality degradation when mistakes are com-
mitted by the classifier.

4. Experiment Results

The proposed method is implemented with scikit-learn [12]
and verified on HM10. The test conditions are defined in



LETTER
2223

[7] and random access main profile is used for compres-
sion. The overall results of test sequences are listed in Table
4. Each sequence is tested with QPs at 22, 27, 32, 37, and
Bjontegaard-Delta rate (BD-rate) loss is calculated to pro-
vide a comparable result. The average encoding time saving
(TS) is calculated by

TS (%) =
THM10 − TPROP

THM10
× 100%. (4)

Notably, the sequences listed in Table 2 for training
model are not used for result verification.

The time reduction narrows and the encoding quality
improves as the threshold decreases. When the threshold is
0.49, the encoding quality degrades notably, especially for
some specific sequences (Traffic, Cactus). When the thresh-
old is 0.47, the qualities of some sequences are even supe-
rior to original codec (NebutaFestival, Johnny). When the
threshold is 0.48, the time reduction is about 39% with neg-
ligible quality degradation.

5. Conclusion

In this paper, an early termination algorithm for CU struc-
ture deciding in HEVC encoding process is proposed. An
AdaBoost classifier is applied to predict CU splitting prob-
ability according to our feature set before further search-
ing. If the probability of splitting is below the threshold,
the searching process is terminated immediately to reduce
encoding time. Experiment results show that the time reduc-
tion is about 39% at the cost of 0.18% BD-rate increasing.

References

[1] G.J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview
of the high efficiency video coding (hevc) standard,” IEEE Trans.
Circuits Syst. Video Technol., vol.22, no.12, pp.1649–1668, Dec.
2012.

[2] J.R. Ohm, G.J. Sullivan, H. Schwarz, T.K. Tan, and T. Wiegand,
“Comparison of the coding efficiency of video coding standards—
including high efficiency video coding (hevc),” IEEE Trans. Circuits
Syst. Video Technol., vol.22, no.12, pp.1669–1684, Dec. 2012.

[3] Y. Zhang, S. Kwong, X. Wang, H. Yuan, Z. Pan, and L. Xu, “Ma-
chine learning-based coding unit depth decisions for flexible com-
plexity allocation in high efficiency video coding,” IEEE Trans. Im-
age Process., vol.24, no.7, pp.2225–2238, July 2015.

[4] T. Fan, G. Wang, and X. Shang, “Fast coding unit size decision
in hevc intra coding,” IEICE Trans. Inf. & Syst., vol.E99-D, no.7,
pp.1953–1956, July 2016.

[5] X. Jiang, T. Song, W. Shi, T. Katayama, T. Shimamoto, and L.
Wang, “Fast coding unit size decision based on probabilistic graph-
ical model in high efficiency video coding inter prediction,” IEICE
Trans. Inf. & Syst., vol.E99-D, no.11, pp.2836–2839, Nov. 2016.

[6] A. Heindel, T. Haubner, and A. Kaup, “Fast cu split decisions for
hevc inter coding using support vector machines,” Picture Coding
Symposium (PCS), 2016, pp.1–5, IEEE, 2016.

[7] F. Bossen and H. Common, “Test conditions and software reference
configurations, jct-vc doc,” L1100, Jan, 2013.

[8] G.J. Sullivan and T. Wiegand, “Rate-distortion optimization for
video compression,” IEEE Signal Process. Mag., vol.15, no.6,
pp.74–90, Nov. 1998.

[9] Y. Freund and R.E. Schapire, “A decision-theoretic generalization
of on-line learning and an application to boosting,” J. Comput. Syst.
Sci., vol.55, no.1, pp.119–139, 1997.

[10] A.P. Bradley, “The use of the area under the roc curve in the eval-
uation of machine learning algorithms,” Pattern Recognit., vol.30,
no.7, pp.1145–1159, July 1997.

[11] J.A. Hanley and B.J. McNeil, “The meaning and use of the area
under a receiver operating characteristic (roc) curve,” Radiology,
vol.143, no.1, pp.29–36, 1982.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in python,” J. ma-
chine learning research, vol.12, no.Oct, pp.2825–2830, 2011.

http://dx.doi.org/10.1109/tcsvt.2012.2221191
http://dx.doi.org/10.1109/tcsvt.2012.2221191
http://dx.doi.org/10.1109/tcsvt.2012.2221191
http://dx.doi.org/10.1109/tcsvt.2012.2221191
http://dx.doi.org/10.1109/tcsvt.2012.2221192
http://dx.doi.org/10.1109/tcsvt.2012.2221192
http://dx.doi.org/10.1109/tcsvt.2012.2221192
http://dx.doi.org/10.1109/tcsvt.2012.2221192
http://dx.doi.org/10.1109/tip.2015.2417498
http://dx.doi.org/10.1109/tip.2015.2417498
http://dx.doi.org/10.1109/tip.2015.2417498
http://dx.doi.org/10.1109/tip.2015.2417498
http://dx.doi.org/10.1587/transinf.2015edl8231
http://dx.doi.org/10.1587/transinf.2015edl8231
http://dx.doi.org/10.1587/transinf.2015edl8231
http://dx.doi.org/10.1587/transinf.2015edl8237
http://dx.doi.org/10.1587/transinf.2015edl8237
http://dx.doi.org/10.1587/transinf.2015edl8237
http://dx.doi.org/10.1587/transinf.2015edl8237
http://dx.doi.org/10.1109/pcs.2016.7906358
http://dx.doi.org/10.1109/pcs.2016.7906358
http://dx.doi.org/10.1109/pcs.2016.7906358
http://dx.doi.org/10.1109/79.733497
http://dx.doi.org/10.1109/79.733497
http://dx.doi.org/10.1109/79.733497
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1016/s0031-3203(96)00142-2
http://dx.doi.org/10.1016/s0031-3203(96)00142-2
http://dx.doi.org/10.1016/s0031-3203(96)00142-2
http://dx.doi.org/10.1148/radiology.143.1.7063747
http://dx.doi.org/10.1148/radiology.143.1.7063747
http://dx.doi.org/10.1148/radiology.143.1.7063747
http://dx.doi.org/10.3389/fninf.2014.00014
http://dx.doi.org/10.3389/fninf.2014.00014
http://dx.doi.org/10.3389/fninf.2014.00014
http://dx.doi.org/10.3389/fninf.2014.00014
http://dx.doi.org/10.3389/fninf.2014.00014

