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Learning of Nonnegative Matrix Factorization Models for
Inconsistent Resolution Dataset Analysis
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SUMMARY Due to the need to protect personal information and the
impracticality of exhaustive data collection, there is increasing need to deal
with datasets with various levels of granularity, such as user-individual data
and user-group data. In this study, we propose a new method for jointly an-
alyzing multiple datasets with different granularity. The proposed method
is a probabilistic model based on nonnegative matrix factorization, which is
derived by introducing latent variables that indicate the high-resolution data
underlying the low-resolution data. Experiments on purchase logs show
that the proposed method has a better performance than the existing meth-
ods. Furthermore, by deriving an extension of the proposed method, we
show that the proposed method is a new fundamental approach for analyz-
ing datasets with different granularity.
key words: inconsistent resolution dataset, probabilistic model, nonnega-
tive matrix factorization, collective matrix factorization

1. Introduction

Companies that have succeeded by using the power of data
analysis are attracting attention and many more companies
are accelerating efforts on data collection and analysis. Due
to the difficulty of exhaustive data collection and the need
to protect personal information, it is becoming more urgent
to be able to analyze multiple datasets that have various lev-
els of granularity, for example, a set of user-individual data
such as “how many times an item is purchased by a user”
and user-group data such as “how many times a shop is vis-
ited by users of the same age”. Therefore, we consider the
problem of inconsistent resolution dataset analysis, which is
to analyze a combination of datasets with different granular-
ity. High resolution datasets (such as user-individual data)
capture the events that occurred in fine detail such as indi-
vidual visits and purchases and said to have fine grain size.
Low resolution datasets (user group data) offer less detail,
i.e. coarser granularity.

We provide two examples that require inconsistent res-
olution dataset analysis. The first example is an analysis of
data collected in the retail industry (Fig. 1 (a)). Currently,
many retail shops collect information about users by issuing
them with membership cards. However, since not all shop-
pers will have a membership card, exhaustively data collec-
tion, some purchase log entries do not have the identification
information (ID) of the membership card; Instead they con-
tain only information on the sex and age of the user as input
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by the shop staff from assessments of the appearance of the
user at the sales point. Therefore, the collected data consists
of user-individual data and user-group data. When the pur-
chase log contains little member user data, inconsistent res-
olution dataset analysis can be useful by allowing use of the
purchase data of non-member users. The second example
is analysis of the combined datasets of different companies
(Fig. 1 (b)). The social data provided by location informa-
tion services e.g., Foursquare∗ and Yelp∗∗, omits the data of
individual users to protect personal information; only visit
logs of user groups are disclosed, for example, how many
“women” have visited a certain shop. Therefore, inconsis-
tent resolution dataset analysis is required if we are to ana-
lyze a dataset created by combining user-individual data and
the above social data.

In this study, we propose a new method for inconsis-
tent resolution dataset analysis∗∗∗. The proposed method is
a probabilistic model based on nonnegative matrix factor-
ization (NMF) [2]–[4]. First of all, to introduce the basic
setting of inconsistent resolution dataset analysis, we focus
on the situation where two assumptions are satisfied: (A1)
common user set exists, (A2) data are independent and iden-
tically distributed. We use assumptions (A1) and (A2) and
the NMF formulation to propose probabilistic nonnegative
inconsistent resolution matrix factorization (pNimf ) that can
jointly analyze high and low resolution data. pNimf makes
it possible to analyze data more accurately than the methods
that use a single set of data. For example, applying pNimf
to the purchase history of the members/non-members men-
tioned above, improves the accuracy of missing value com-
plementation in the matrix, making it possible to more ac-
curately predict the quantities purchased by members/non-
members. In addition, it is possible to extract purchasing
patterns that reflect the purchasing tendencies of both mem-
bers and non-members.

pNimf is derived by considering the data generative
process that covers the latent high resolution data that un-
derlies the low resolution matrix. Latent high resolution
data can be defined from assumption (A1) and relation be-
tween high resolution data and low resolution data can be
deduced from assumption (A2). While it is not possible to
assume that assumptions (A1) and (A2) hold for all prob-

∗http://gnip.com/sources/foursquare/
∗∗http://www.yelp.com/dataset challenge
∗∗∗An earlier version of this work was presented at interna-

tional conference on information and knowledge management
(CIKM) [1].
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Fig. 1 Example of datasets requiring inconsistent resolution analysis.

lems, approaches that use the relationship described in this
paper can be the basis for solving a lot of general problems.
In this paper, we also show the situation that diverges from
the above two assumptions, and an extended version of the
proposed method is provided for cases that demand different
assumptions.

The structure of this paper is as follows. §2 introduces
related researches and §3 details the proposed method. Fur-
ther analysis of pNimf is done in §4 and the experimental
evaluation is shown in §5. §6 shows examples of an exten-
sion of the proposed method and §7 gives our conclusions.

2. Related Works

Nonnegative matrix factorization (NMF) [2], [3] is a method
of factorizing an input matrix into a product of nonnegative
matrices. It is known that NMF can be used for soft cluster-
ing and completion of missing values in a matrix by utilizing
the result of factorization. Since NMF can deal with vari-
ous loss functions, it can be applied to various types of data
such as movie evaluation logs, document corpora, purchase
logs and so on [4]. In addition, when generalized Kullback-
Leibler divergence is used as the loss function, NMF is
equivalent to a prominent technique in information retrieval,
probabilistic latent semantic indexing (PLSI) [5], which is
also the basis of latent dirichlet allocation (LDA) [6], [7].
Given these facts, NMF is considered to be one of the core
technologies in machine learning, so we adopted it as the
basis of pNimf.

In recent years, collective matrix factorization (CMF)
or multiple matrix factorization (MMF) techniques have
been proposed for multiple dataset analysis [8]. A CMF/
MMF extension of NMF called Nonnegative Multiple Ma-
trix Factorization (NMMF) [9] has been described [9], [10].
These techniques combine multiple matrices and have been
reported to offer a better performance than the techniques
that use only a single matrix. However, these methods are
not designed to handle datasets that have different resolu-
tions. For a context different from CMF/MMF, Aimoto et al.
proposed a method for combining information of aggregated
data (corresponding to low resolution matrix in this paper) in
matrix factorization [11]. However, this method is special-
ized for situations where the datasets with different granu-
larity represent exactly the same data, making it unsuitable

as a basic method for general inconsistent resolution dataset
analysis.

3. Proposed Method

3.1 Formulation

In this section we focus on the problem of inconsistent reso-
lution dataset analysis in situations where two assumptions
are satisfied: (A1) - common user assumption, (A2) inde-
pendently and identically distributed assumption. Before
providing a mathematical representation of these assump-
tions, we give an intuitive explanation. A certain super-
market issued a members card in December to all users of
the store. Clearly then the shop’s sales records contain no
personal details prior to December. As shown in Fig. 2,
the purchase history for November consists of low resolu-
tion data, while that for December contain high resolution
data. Note that user attribute information such as sex and
age (est.) is recorded in the purchase history for November.
In this example, assumption (A1) is that the set of all shop
users in November and December are equal (whether or not
they purchased any item). Assumption (A2) states that each
user will make the same product purchases in November and
December. We will explain using this example of purchase
history analysis, and the symbol definitions follow this ex-
ample. However, our research is not limited to this example,
and more general circumstances are explained in §4.2.

Definition of Symbols: Let I, J and K represent the
number of users, items, and attributes, respectively. We de-
fine the element of X, xi j, as the number of purchases of item
j by user i in Dec. and the element of Y, yk j, as the num-
ber of purchases of item j by users with attribute k in Nov.
Each X and Y are taken to be the high-resolution matrix and
the low-resolution matrix, respectively. We also assume that
user’s attribute information is available. This assumption is
natural because such data is required, for example, when the
user creates the membership card. V = {vik}I,Ki,k=1, whose el-
ement vik ∈ {0, 1} is set to 1 if the attribute of user i is k,
otherwise 0.

Latent High Resolution Matrix: Next, we define the
latent high resolution matrix, Z. This matrix plays an im-
portant role in our model. We define Z as the matrix that
corresponds to the high-resolution data in Nov., i.e. data
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Fig. 2 Example of observed and unobserved data.

which would have collected if membership cards had been
issued in Nov. Since only low-resolution data is collected in
Nov., Z is the unobserved latent high resolution data which
lies under the low resolution data. We are usually unable
to know the set of users that exist behind Z and the num-
ber of rows of Z cannot be defined. To resolve this, we use
(A1), which we formally define as follows: user population
of high-resolution data X and that of latent high-resolution
data Z are identical. (A1) allows us to define the number
of the rows of Z as being identical to X, I. Then, we define
element zi j as the number of purchases of item j by user i in
Nov. Importantly, this definition yields a relation between
Y and Z, Y = VT Z. This comes from the fact that yk j is
equal to the summation of zi j over user i with attribute k, i.e.
yk j =

∑
i vikzi j.

3.2 Model

This subsection presents the proposed model. Let A :=
{air}I,Ri,r=1 and B := {b jr}J,Rj,r=1 be the user factor matrix and
item factor matrix, respectively. R is the number of factors.
Each vector of factor matrices (ai1, · · · , aiR), (b j1, · · · , b jR) is
interpreted as the latent feature of user i and item j. We also
define X̂ = ABT ; its element is written as x̂i j =

∑
r airb jr.

Since the Poisson distribution is frequently used to model
count data such as purchase log and visit count, we adopt it
for our model. NMF that uses Poisson models the probabil-
ity of generating matrix X as

P(X|A, B) =
I,J∏

i, j=1

PO(xi j|x̂i j), (1)

where PO is the Poisson probability distribution:

PO(xi j|x̂i j) = exp{−x̂i j + xi j log(x̂i j) − logΓ(xi j + 1)}.

Note that our model can be extended, in an analogous man-
ner, to the case that other probability distributions such as

Gaussian are adopted.
We derive the proposed method based on the data gen-

erative process summarized as follows: (i) define the prob-
ability distribution that generates both X and Z. (ii) use
(A2) iid assumption, which we formally define as follows:
elements of X and Z that have the same indices, xi j and
zi j, follow the identical probability distribution (in this case,
Poisson dist. with parameter x̂i j as in Eq. (1)) and they are
mutually independent. (A2) helps to extract factors which
are independent of month. (iii) use the relation between Z
and Y (yk j =

∑
i vikzi j) explained in the previous section.

Combining these parts, the joint distribution of X, Z, Y is
written as

P(X, Z,Y|A, B,V) (2)

=
∏
i, j

PO(xi j|x̂i j)PO(zi j|x̂i j)
∏
k, j

δ(yk j −
∑

i

vikzi j),

where δ(·) is the delta function. Figure 3 (a) shows a graph-
ical model representation. By explicitly modeling the gen-
eration of latent high-resolution matrix Z, we can naturally
define the probability distribution of all matrices. However,
since the size of Z is I × J, which is considerable, it is desir-
able to work with more convenient probabilistic models.

The key to practical implementation lies in a character-
istic of Poisson distributions: the sum of Poisson-distributed
random variables is also a Poisson-distributed random vari-
able, i.e., closed under addition. In our model, zi j represents
Poisson-distributed random variables and yk j is their sum-
mation. Thus, we can marginalize out Z from Eq. (2) which
yields the following equation:

P(X,Y|A, B,V) =
∫

P(X, Z,Y|A, B,V)dZ

=
∏
i, j

PO(xi j|x̂i j)
∏
k, j

PO(yk j|ŷk j), (3)

where ŷk j =

R∑
r=1

ckrb jr and ckr =

I∑
i=1

vikair. (4)

Figure 3 (b) shows a graphical model representation. Con-
sidering that C := {ckr}K,Rk,r=1 is the attribute latent factor
matrix, Eq. (3) can be interpreted as factorizing the high-
resolution matrix and low-resolution matrix simultaneously,
while retaining the relation between factor matrices A and
C using V (C = VT A as in Eq. (4)). Thus, we call this pro-
posal probabilistic non-negative inconsistent-resolution ma-
trix factorization (pNimf ). Figure 4 shows the factorization
form. Note that removing the linear equality relation be-
tween factor matrices, C = VT A, pNimf is reduced a CMF
method (NMMF) [9]. Thus, pNimf can be seen as subsum-
ing NMMF.

The optimization problem for estimating factor matri-
ces A, B and C is summarized as follows:

arg max
A,B,C

L(A, B,C)= log p(X,Y|A, B,V),

s.t. A ≥ 0, B ≥ 0,C ≥ 0,C = VT A
(5)
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Fig. 3 Graphical models. Shaded nodes indicate observed variables. Figure (a) presents the original
definition of the proposed model described in Eq. (2). By marginalizing out Z, Fig. (b), which is given
by Eq. (3), is obtained. Figure (c) represents the generalized model stated in §4.2.

Fig. 4 Factorization form that corresponds to Fig. 3 (b).

where A ≥ 0 means that all elements of A are nonnega-
tive. Note that for the above optimization problem, Eq. (5)
is equivalent to

arg min
A,B,C

{DKL(X|X̂) +DKL(Y|Ŷ)},

s.t. A ≥ 0, B ≥ 0,C ≥ 0,C = VT A
(6)

whereDKL is generalized KL divergence.

DKL(X|X̂) =
I,J∑

i, j=1

xi j log
xi j

x̂i j
− xi j + x̂i j. (7)

3.3 Algorithm

As shown in the next subsection, the following algorithm
can be used to solve the optimization problem posed by
Eq. (5).

anew
ir ← air

(∑
j

xi j

x̂i j
b jr +

∑
k
∑

j vik
yk j

ŷk j
b jr

)
∑

j b jr +
∑

k
∑

j vikb jr
, (8)

bnew
jr ← b jr

(∑
i

xi j

x̂i j
air +

∑
k
yk j

ŷk j
ckr

)
∑

i air +
∑

k ckr
, (9)

cnew
kr ←

∑
i
vikair. (10)

Update rules for A, B are given in “multiplicative form”.
The right hand side of the update for A is (I) always non-
negative and (II) equals air when xi j = x̂i j and yk j = ŷk j. By
iteratively updating the parameters following Eqs. (8)–(10)
from their initial values, the algorithm converges to (local)
minima; proof is provided in §4. Pseudo code of the method
is shown in Algorithm 1. Note that an almost analogous
algorithm is derived when matrix X and/or Y has missing

Algorithm 1 probabilistic nonnegative inconsistent resolu-
tion matrix factorization (pNimf )
Input: X,Y,V: input data, R: rank of approximation
Output: A, B,C: factor matrices
1: initialization for A, B and set C = VT A.
2: repeat
3: Update A and C by Eqs. (8) and (10)
4: Update B by Eq. (9)
5: until a stopping condition is met

values.

3.4 Algorithm Derivation

In this subsection, we derive the multiplicative update rules
given by Eqs. (8), (9), and (10). We define the function
F (A, B), where constant terms of the objective function in
Eq. (6) are removed and matrix C is replaced by VT A as
follows:

F (A, B) =
∑
i, j

{(
x̂i j − xi j log(x̂i j)

}

+
∑
k, j

{
ŷk j − yk j log(ŷk j)

}
.

(11)

We minimizeF (A, B) following the optimization scheme of
majorization minimization (MM) [12], [13], similar to [3].
Let us define the auxiliary (majorizing) function F + as

F +(A, B,S,T) (12)

=
∑
i, j

{(
x̂i j − xi j

R∑
r=1

si jr log
(airb jr

si jr

)}

+
∑
k, j

{
ŷk j − yk j

R∑
r=1

tk jr log
( (∑

i vikair
)
b jr

tk jr

)}
,

where S = {si jr} and T = {ti jr} are auxiliary variables satis-
fying

∑
r si jr = 1,

∑
r tk jr = 1 (∀(k, j)). It can be verified that

auxiliary function F + has the following two properties:

1. F (A, B) ≤ F +(A, B,S,T) (13)

2. F (A, B) = min
S,T
F +(A, B,S,T)

Note that the equality of Eq. (13) holds if and only if
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si jr =
airb jr∑R

r′=1 air′b jr′
, tk jr =

(∑
i vikair

)
b jr∑R

r′=1
(∑

i vikair′
)
b jr′
. (14)

Since the partial derivative of F + w.r.t. A is given by

∂F +
∂air
=
∑

j

b jr+
∑
k, j

vikb jr−
∑

j

xi j si jr

air
−
∑

j,k

vikyk jtk jr∑
i′ vi′kai′r

,

the necessary condition of the local minima, ∂F
+

∂air
= 0, can

be simplified to

air =

∑
j xi j si jr +

∑
j,k
vikairyk jtk jr∑

i vikair∑
j b jr +

∑
k, j vikb jr

. (15)

By substituting Eq. (14) into Eq. (15), we obtain the multi-
plicative update rules for A given by Eq. (8). We omit the
derivation of the update rules for B since the derivation is
exactly same as that of standard NMF. The update for C is
given by the linear constraint.

4. Further Analysis

4.1 Theoretical Analysis

Here we confirm the convergence property of the algorithm.

Theorem Objective function F (A, B) is monotonically de-
creasing under the update by Eqs. (8), (9) and (10). The di-
vergence is invariant if and only if A, B are at a stationary
point.

This theorem indicates that the algorithm reaches a local
minimum by update iteration. The theorem is proven by
showing that F + decreases with each optimization step. We
need to prove the following two lemmas to prove the theo-
rem.

Lemma 1 F + is a convex function w.r.t. A and thus A satis-
fying Eq. (15) is the global minimum if the other parameters
are fixed.

proof Since − log(air) is convex and the sum of convex
functions is convex, we need to show − log(

∑
i vikair) is con-

vex. Since its Hessian is given by

−∂
2 log(

∑
i vikair)

∂air∂ai′r′
= δrr′

vikvi′k(∑
i air
)2 ,

where δrr′ = 1 if r = r′ and 0 otherwise, it can be expressed
by, using a non-degenerate matrix W, WT W. Therefore,
Hessian is positive definite, and thus convex. �

Lemma 2 The objective F +(A, B,S,T) is minimized w.r.t.
S and T when S and T equals Eq. (14) and F (A, B) =
minS,T L+(A, B,S,T) holds.

proof By applying Jensen’s inequality to the term in
Eq. (11),

− log(x̂i j) ≤ −
∑

r

si jr log(
airb jr

si jr
),

− log(ŷk j) ≤ −
∑

r

tk jr log(
ckrb jr

tk jr
)

holds, and since Eq. (14) is the equality condition, this con-
cludes the proof. �

The theorem follows from the application of the above lem-
mas.

proof Let us denote the parameter and the auxiliary vari-
ables that satisfy F (A, B) = F +(A, B,S,T) as Aold, Bold,
Sold, Told. We also denote A after the first step of the MM
given by Eq. (15) as Anew, and S and T after the second
step given by Eq. (14) as Snew and Tnew, respectively. From
lemma 1 and lemma 2,

F +(Anew,Sold,Told) ≤ F +(A,Sold,Told) (∀A),

F +(Anew,Snew,Tnew) ≤ F +(Anew,S,T) (∀S,T).

Note that we omit the notation of B. Since F (Aold) =
F +(Aold, Sold,Told) and F (Anew) = L+(Anew,Snew,Tnew),
F (Anew) ≤ F (Aold) holds. Since proof for the update of
B is analogous, this completes the proof. �

4.2 Generalization of Algorithms

We now explain the more general scenario that pNimf can
be applied to. In §3.1, we gave the example in which both
high-resolution data and low-resolution data are one month
purchase logs. However, as long as assumptions (A1) and
(A2) are satisfied, pNimf could be applied to any problem
with theoretical support. Moreover, pNimf can deal with
multiple high-resolution and low-resolution data by gener-
alizing the data generative process. Let M be the number
of high-resolution data entries and Xm = {xm

i j} is the m-th
high-resolution matrix. Similarly, let N be the number of
low-resolution data entries and Yn = {yn

k j} is the n-th low-
resolution matrix. Each m (or n) does not need correspond
to a period of time, e.g. day, week and month (unlike the
previous example) and it may instead be an indicator of lo-
cation such as prefecture and country in which the data was
collected. By the extending data generative process repre-
sented by Fig. 3 (a) to Fig. 3 (c), the estimation procedure is
obtained by slight modification of the update rules given by
Eqs. (8) and (9) as follows:

anew
ir ← air

(
M
∑

j
x̄i j

x̂i j
b jr + N

∑
k
∑

j vik
ȳk j

ŷk j
b jr

)
M
∑

j b jr + N
∑

k
∑

j vikb jr
, (16)

bnew
jr ← b jr

(
M
∑

i
x̄i j

x̂i j
air + N

∑
k
ȳk j

ŷk j
ckr

)
M
∑

i air + N
∑

k ckr
, (17)

where, x̄i j =
1
M

∑M
m=1 xm

i j, ȳk j =
1
N

∑N
n=1 y

n
k j.
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4.3 Choice of Distribution/Divergence

This section discusses the validity of our algorithm deriva-
tion when a different distribution or loss function is used.
As we have seen in §3.2, the “closed under the summation”
property of the Poisson distribution is the key to our deriva-
tion. Thus, our derivation is valid if we chose a distribution
that also has this property, e.g., a Gaussian distribution. For
example, when a Gaussian distribution is adopted for mod-
eling the probability of generating matrix X as in

P(X|A, B) =
I,J∏

i, j=1

N(xi j|x̂i j, σ
2), (18)

a derivation analogous to that in §3.2 leads to the following
optimization problem:

arg min
A,B,C

{DEU(X|X̂; 1I) +DEU(Y|Ŷ;α)},

s.t. A ≥ 0, B ≥ 0,C ≥ 0,C = VT A,
(19)

where σ is the standard deviation, 1I is a size I vector with
all-ones and α = {αk}Kk=1(αk ≥ 0) is a weight parameter, and
DEU is the (weighted) Euclidean distance:

DKL(X|X̂;α) =
∑I,J

i, j=1
αi(xi j − x̂i j)

2. (20)

5. Experiment

5.1 Setting

We evaluate the performance of our method using synthetic
data and real purchase log data.

Synthetic data: We constructed matrices with sizes of
I = 100, J = 100, K = 10 using the probabilistic model
given by Eq. (2). We prepared V whose elements vik = 1
if k is equal to the quotient of i/K and vik = 0 otherwise.
Matrices A and B are generated by Gamma distribution and
high/low resolution matrixes X and Y were prepared with
different levels of sparsity.

Real purchase log data: We use consumer panel re-
search data “SCI” provided by Intage Inc. as the real pur-
chase log data. We use purchase logs of daily necessi-
ties (such as milk, coffee and snacks) from 2013.1.1 to
2013.12.31 in Japan. Thus, we can expect that (A2) is sat-
isfied since these items likely to be purchased each month
repeatedly. SCI includes user’s attribute information such as
age, sex and job. We construct Two-month data and Four-
month data as follows. Two-month data is constructed us-
ing the log entries of Nov. and Dec. as in Fig. 2. We use
only the logs of active users who have a purchase entry in
each month to satisfy (A1) and items that appear more than
ten times. The size and sparseness of XDec and YNov are
I = 1589, J = 3164, K = 34, 99.15% and 54.4%, re-
spectively. We repeat this procedure for the logs of Jan.
and Feb. Size and sparseness are almost similar to those

of Nov. and Dec. Four-month data is also prepared in an
analogous manner. For Four-month data, we used the logs
of Sep, Oct, Nov and Dec and made high-resolution matrix
XDec and low-resolution matrices YNov, YOct and YSep. The
resulting size was I = 1288, J = 4842, K = 34.

Evaluation Measure: In our experiments, we used a
test set log likelihood to evaluate performance. We split
the elements of matrix X into a training dataset and a test
dataset and computed the log likelihood of the elements in
the test. Test data were treated as missing values in the train-
ing phase. Log likelihood of the test data set is defined as

1
|T |
∑

(i, j)∈T logPO(xi j

∣∣∣x̂i j
)
, where T is the set of element in-

dexes in the test data and |·| indicates the number of elements
in the set. We prepared 10 pairs of training and test datasets
by randomly extracting 5% of non-zero elements as the test
data.

Baseline Methods: For comparison, we considered
the following methods. (1) NMF [2], traditional method
which uses only high-resolution matrix X. (2) NMMF [9],
an NMF-based state-of-the-art CMF method that uses both
X and Y. The weight parameter of NMMF is chosen from
the candidates α = 0.1, 0.5, 1.0. We report the result for
α = 1.0 since it yielded the best result among the candi-
dates.

5.2 Results

Table 1 shows the results for the synthetic data. Although
the three methods have comparable performance when the
sparseness of X is 50% and R = 5 and 10, NMMF and
pNimf outperform NMF when the sparseness is 90%, and
pNimf is superior to NMMF when the sparseness is 99%.
This indicates that proposed method has better performance
when the input matrix is very sparse.

Next, Table 2 shows the results using Two-month data.
It confirms that pNimf and NMMF outperform NMF regard-
less of the number of factors for all datasets. This result in-
dicates that the use of low-resolution data improves the per-
formance. Moreover, the performance of pNimf is superior
to that of NMMF in all settings. It seems that the linear rela-
tion between factor matrices using user’s attribute informa-
tion supports pNimf in handling the difference in resolution

Table 1 Results from synthetic data: test log likelihood for X deter-
mined with different sparseness values. Average and standard deviation are
shown. Larger values are better. Scores and standard deviation are divided
by ten in the 99% sparseness setting.

Sparseness R NMF NMMF pNimf

X: 50%
Y: 10%

5 -2.77(±0.17) -2.71(±0.10) -2.66(±0.09)
10 -2.72(±0.18) -2.54(±0.09) -2.42(±0.04)
20 -16.7(±20.1) -3.11(±0.18) -3.09(±0.21)

X: 90%
Y: 40%

5 -6.71(±2.13) -4.11(±0.97) -3.48(±0.69)
10 -5.26(±0.92) -3.28(±0.45) -2.96(±0.23)
20 -21.5(±4.38) -7.57(±1.28) -5.72(±0.48)

X: 99%
Y: 80%

5 -5.44(±1.82) -3.62(±1.73) -2.04(±1.12)
10 -6.64(±3.52) -7.05(±2.62) -4.59(±1.67)
20 -17.0(±32.7) -7.43(±3.37) -6.64(±3.13)
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Table 2 Result of two-month data: test set log-likelihood with various
numbers of factors, R. Average and standard deviations are presented.
Larger values are better.

Data R NMF NMMF pNimf
SCI
XFeb&
YJan

10 -13.3±0.63 -7.89±0.38 -7.84±0.17
20 -18.7±1.95 -9.14±0.48 -8.81±0.20
50 -32.7±2.15 -11.8±0.48 -10.4±0.33

SCI
XDec&
YNov

10 -13.9±0.99 -8.24±0.59 -7.83±0.23
20 -14.4±0.73 -8.95±0.37 -8.68±0.27
50 -32.59±2.17 -12.32±0.50 -10.45±0.30

Fig. 5 Results from four-month data: test set log-likelihood for various
numbers of low-resolution data entries, N.

and thus achieving better factorization results.†

We also evaluated the performance achieved while
varying the number of low-resolution data entries, N, us-
ing the Four-month data. We set the number of factors to
ten and compared it to pNimf using a different number of
low-resolution data entries, N. Figure 5 shows the results.
As the number of low-resolution data, N, increases, the per-
formance of pNimf improves. Since pNimf can deal with
multiple low-resolution data entries by the generalization
provided by the data generative process, it works well even
if the high-resolution and low-resolution data have different
sizes.

6. Extensions

In the previous section, we focused on inconsistent resolu-
tion dataset analysis with two assumptions (A1) and (A2).
The point to note here is that since the relationship that can
be introduced between the high resolution matrix and the
low resolution matrix can change depending on the problem
setting, the proposed probabilistic model may need some
modification for some problems in inconsistent resolution
dataset analysis. However, we think that many types of in-
consistent resolution dataset analysis can be solved by ex-
tending the model. Accordingly, we show examples of how
new methods can be developed by extending the proposed
model.

6.1 Formulation

Here we consider inconsistent resolution dataset analysis
†These results are consistent with the synthetic data results

since the sparseness of Two-month data is (X: 99.15%, Y: 54.4%)
and this corresponds to that between (X: 99%, Y: 80%) and (X:
90%, Y: 40%).

for the case where the member/non-member purchase logs
are created by processes different from those indicated by
§ 3.1. In the example of § 3.1, since we assumed that mem-
bership cards were issued from December, we were able
to satisfy (A1) common user set assumption that users in
November and users in December were the same. How-
ever, for data collected at shops that can be used by non-
member users, such as convenience stores, assumption (A1)
no longer holds since the members and the non-members al-
ways exist together and represent different user groups. An
explanation for this is made below using Fig. 6.

Figure 6 shows examples of possible situations when
members and non-member users are different. The differ-
ence between Fig. 6 (a) and (b) is whether the population for
each attribute in members and non-members is almost the
same or very different. The proposed method indicated by
§ 3 has some validity in the case of (a), it loses validity in
the case of (b). This is because assumptions (A1) and (A2)
imply that “the total purchase amount of each item for each
attribute is the almost same for members and non-members”
and it is generally appropriate for (a), whereas it is clearly
inappropriate in the setting of (b).

As a new assumption, we consider the approach that
introduces a new assumption (A3), the attribute purchase
quantity proportionality assumption, that is, “member pur-
chase history is roughly proportional to non-member pur-
chase history”. Let X and Y be a high resolution ma-
trix representing members’ log, and a low resolution ma-
trix representing non-members’ log, respectively. Since
the members’ purchase log of attribute k is

∑I
i=1 vik xi, and

the non-members’ purchase log is yk, the proportional re-
lation of assumption (A3) is represented by the equation
yk ∝

∑I
i=1 vik xi.

If there are a certain number of members with attribute
k, it is considered quite natural to make this assumption.
Therefore, we consider a factorization form that holds this
proportional relation on between X̂, Ŷ. By defining the di-
agonal matrix D := diag({dk}Kk=1) whose elements dk repre-
sent the proportionality constant of attribute k, the following
equation holds given the proportional relationship:

Ŷ = DVT X̂. (21)

Using factorization form X̂ = ABT for X̂ and substituting it
into Eq. (21), the factorization form for Y becomes

Ŷ = DCBT , C = VT A. (22)

Summarizing the above yields the following probabilistic
model:

p(X,Y|A, B,C, D,V)

=
∏
i, j

PO(xi j|x̂i j)
∏
k, j

PO(βyk j|βŷk j),

where ŷk j =

R∑
r=1

dkckrb jr and ckr =

I∑
i=1

vikair,

where β is a weight parameter that controls the contribution
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Fig. 6 An example where (a) members and non-members have almost the same population and (b)
members and non-members have different populations. Proposed method shown in § 3 can be applied
to the case of (a). However, it is not appropriate for the case of (b) since the members and non-members
have greatly different purchase volumes.

Fig. 7 Factorization form of the extended method.

Algorithm 2 extended model of pNimf
Input: X,Y,V: input data, R: rank of approximation
Output: A, B,C: factor matrices
1: initialization for A, B, D and set C = VT A.
2: repeat
3: Update A and C by Eqs. (23) and (25)
4: Update B by Eq. (24)
5: Update D by Eq. (26)
6: until a stopping condition is met

of non-member data. Figure 7 shows the factorization form
of this model. The difference from the factorization form
shown in Fig. 4 of §3 is the existence of diagonal matrix D
and thus the former is an extended factorization form. Pa-
rameter update rules for air, b jr, ckr, dk are derived as fol-
lows:

anew
ir ← air

(∑
j

xi j

x̂i j
b jr + β

∑
k dkvik

∑
j
yk j

ŷk j
b jr

)
∑

j b jr + β
∑

k dkvik
∑

j b jr
, (23)

bnew
jr ← b jr

(∑
i

xi j

x̂i j
air + β

∑
k
yk j

ŷk j
dkckr

)
∑

i air + β
∑

k dkckr
, (24)

cnew
kr ←

∑
i
vikair, (25)

dnew
k ←

∑
j yk j∑

r ckr(
∑

j b jr)
. (26)

Pseudo code is shown in Algorithm 2.

Fig. 8 Test set log-likelihood for various ratios of members and non-
members. Blue, red and green histograms represent the results of NMF,
NMMF and proposed method, respectively.

6.2 Experiment

We again use consumer panel research data “SCI” provided
by Intage Inc. as the real purchase log data. We constructed
members’ log matrix X by randomly extracting 5%, 10%,
20%, 40% users and non-members’ log matrix Y by using
the remaining users’ log. We used the set of users and items
that appeared more than 50 and 30 times in the log; users
and items had sizes of 5000 and 7000, respectively.

We used exactly the same evaluation measure and
baseline methods as used in §5. In order to treat mem-
bers’ log and non-members’ log equally, we set their ra-
tio (members/non-members) as a weight parameter, i.e.,
β = 0.05, 0.11, 0.25, and 0.66.

Figure 8 shows the results. Regardless of the members’
ratio, proposed method and NMMF are superior to NMF.
This indicates that the use of the non-members’ log data
contributed to improving the performance. Moreover, it is
confirmed that the improvement is small when the mem-
ber’s ratio is 40%, i.e., the number of members is large,
and that the improvement is large when the member’s ra-
tios are 5%, 10%, and 20%, i.e., the number of members
is small. Comparing the proposed method with NMMF, the
performances are comparable when the member’s ratios are
10%, 20%, and 40%, but the proposed method outperforms
NMMF when the ratio is 5%. This indicates that the use
of the proportional relation between the members’ and non-
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members’ log data raises the performance when the number
of members is very small.

7. Conclusion

In this paper, we proposed a new method for inconsistent
resolution dataset analysis. By considering the data genera-
tive process using the latent high resolution matrix, we pro-
posed a new probabilistic model pNimf. Furthermore, we
also showed that extended variant of pNimf is constructed
under the setting requiring different assumptions. These re-
sults show that the proposed method can be a fundamental
approach for inconsistent resolution dataset analysis.

The remaining research topics include further expan-
sion of the model by, for example, introducing seasonality.
We also need to analyze how the difference of the grain sizes
(difference in the number of lines) between the high and low
resolution matrices affects the degree of performance im-
provement.
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