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Webly-Supervised Food Detection with Foodness Proposal

Wataru SHIMODA†a), Nonmember and Keiji YANAI†b), Member

SUMMARY To minimize the annotation costs associated with training
semantic segmentation models and object detection models, weakly super-
vised detection and weakly supervised segmentation approaches have been
extensively studied. However most of these approaches assume that the
domain between training and testing is the same, which at times results in
considerable performance drops. For example, if we train an object detec-
tion network using only web images showing a large object at the center, it
can be difficult for the network to detect multiple small objects. In this pa-
per, we focus on training a CNN with only web images and achieve object
detection in the wild. A proposal-based approach can address the problem
associated with differences in domains because web images are similar to
images of the proposal. In both domains, the target object is located at the
center of the image and the ratio of the size of the target object to the size of
the image is large. Several proposal methods have been proposed to detect
regions with high “object-ness.” However, many of these proposals gen-
erate a large number of candidates to increase the recall rate. Considering
the recent advent of deep CNNs, methods that generate a large number of
proposals exhibit problems in terms of processing time for practical use.
Therefore, we propose a CNN-based “food-ness” proposal method in this
paper that requires neither pixel-wise annotation nor bounding box annota-
tion. Our method generates proposals through backpropagation and most
of these proposals focus only on food objects. In addition, we can eas-
ily control the number of proposals. Through experiments, we trained a
network model using only web images and tested the model on the UEC
FOOD 100 dataset. We demonstrate that the proposed method achieves
high performance compared to traditional proposal methods in terms of the
trade-off between accuracy and computational cost. Therefore, in this pa-
per, we propose an intermediate approach between the traditional proposal
approach and the fully convolutional approach. In particular, we propose a
novel proposal method that generates high“food-ness” regions using fully
convolutional networks based on the backward approach by training food
images gathered from the web.
key words: food segmentation, convolutional neural network, deep learn-
ing, UEC-FOOD100

1. Introduction

Recording daily eating habits using smart devices has re-
cently become common practice. Food records can provide
numerical data such as the number of calories consumed and
the nutritional value of the food consumed. Such numerical
data are useful in nutrition analysis and promotes healthy-
eating habits. While food recordings can be useful, the pro-
cess of recording can be laborious. It is unrealistic to expect
that everyone indicates all the dish names they consume in
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their daily meals through texts. Thus, we require a smarter
approach to keep record of daily meals.

Food image recognition plays an important role in
the simplification of food recordings. If we can replace
the manual procedure of taking a picture, we can dra-
matically reduce the burden associated with food record-
ing, freeing us from the laborious procedure even though
it is needed for every meal consumed. To simplify food
recording also matches the recent fashion so that there are
trends uploading food images to SNS. In terms of techni-
cal aspects, food image recognition also matches the recent
trends in fashion, owing to recent significant advances in
deep neural networks. Deep convolutional neural networks
(DCNN) have been used for large-scale object recognition
at the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) 2012. Krizhevsky et al. [1] were the winners of
ILSVRC 2012, outperforming other teams who employed
conventional hand-crafted feature approaches. Considerable
advances in DCNN approaches still continue since that suc-
cess. In the ILSVRC Challenge 2015, Szegedy et al. [2]
and Simonyan et al. [3] overcame the human score. In
the ILSVRC Challenge 2016, He et al. [4] achieved state-
of-the-art performance, including human performance with
over one hundred layers. Moreover, DCNN has also out-
performed the state-of-the-art approaches in other tasks as-
sociated with computer vision. In particular, object detec-
tion and semantic segmentation tasks have been studied us-
ing applied methods based on DCNN, achieving significant
progress.

In food recognition, object detection and semantic seg-
mentation are also important tasks. The detection task in-
volves a bounding box with a target object, and the semantic
segmentation task predicts each pixel belonging to a partic-
ular class. We can estimate the food position and obtain
food sizes at a bounding-box-level or pixel-level using the
results of these tasks. In particular, we consider the predic-
tion of food sizes to be important for food recognition in the
sense that food sizes must be related to the food amount.
Precise food calorie estimation is a promising field in food
recording. Knowledge of food amount in terms of calories
has been widely accepted as common understanding. There-
fore, object detection and semantic segmentation will result
in enhanced estimation of calories.

However, most CNN-based object detection and se-
mantic segmentation methods assume that additional anno-
tation is available in the form of bounding-box annotation
and pixel-wise annotation, which can be costly to obtain in
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general. On the other hand, collecting images with image-
level annotation is relatively easier than pixel-level annota-
tion because many images with attached tags are available
on hand-crafted open image data sets such as ImageNet and
on the web. In this study, we focus on weakly-supervised se-
mantic segmentation, which requires neither pixel-wise an-
notation nor bounding box annotation but only image-level
annotation.

In general, object detection and semantic segmentation
with bounding-box annotation or pixel-wise annotation are
referred to as fully supervised methods, while object detec-
tion and semantic segmentation with only image-level anno-
tation are referred to as weakly supervised methods.

In recent years, some weakly supervised object detec-
tion and semantic segmentation methods with DCNN have
been proposed. However, most of the previous works were
tested on only the Pascal VOC 2012 dataset. Although the
Pascal VOC 2012 dataset includes multi-labeled images,
most Web images include only a single label. Therefore,
some weakly supervised methods are not stable because
they are trained using only Web images. Training methods
that use only Web images are often referred to as Webly
supervised methods [5]. In this paper, we focus on Webly
supervised detection and segmentation.

In particular, we consider “Distinct Class-specific
Saliency Maps (DCSM)” [6] to be weakly supervised de-
tection and segmentation methods. Such methods demon-
strate high performance in weakly supervised tasks and can
be easily used to adapt to other targets. However DCSM
is ineffective for Webly supervised methods because of the
change in domain at the time of training and testing. In We-
bly supervised approaches, most training images are single
labeled images and we assume that the targets are multiple-
food images, consisting of multiple foods in the test phase.
The differences in the domain can cause considerable per-
formance drops. However, we determined that we can ob-
tain the rough food regions from the outputs of the DCSM,
even though it is difficult to directly obtain detailed food
regions and the correct class of food for the region. We con-
sider the rough food regions to be a type of proposal for
food objects and we define “food-ness” as a representation
that reflects how likely a pixel belongs to a region of any
food category. In this paper, we used “food-ness” as a pro-
posal for foods and we apply it to a proposal-based method
for foods by following traditional detection or segmentation
methods such as RCNN and SDS. For this proposal method,
we primarily discuss the computational costs and the meth-
ods of generating a small number of effective region candi-
dates. Note that this paper is based on our previous confer-
ence paper [7] with the revisions on related works and the
explanation of the proposed method.

We summarize our contributions as below:

• We achieved Webly supervised food-detection and
food-segmentation for the first time.
• We proposed a novel proposal method for food images.

2. Related Works

In this paper, we focus on image recognition in the domain
of food. Our study is also related to object detection and se-
mantic segmentation. In terms of related works, we discuss
previous food recognition studies, including food detection
and segmentation, and recent CNN-based detection and seg-
mentation works for generic images.

2.1 Food Recognition

Food image recognition is a promising application of visual
object recognition, owing to its potential in estimating food
calories and analyzing the eating habits of people for their
general well-being. There have been numerous studies on
food image recognition that have been published [8]–[14].

Moreover, the effectiveness of deep convolutional neu-
ral networks (DCNN) has been recently demonstrated for
large-scale object recognition at the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) 2012. Krizhevsky
et al. [1] won the ILSVRC 2012, outperforming all other
teams who employed conventional hand-crafted feature ap-
proaches. In the DCNN approach, input data consist of a
resized image, and the output is a class-label probability.
In other words, DCNN includes all the object recognition
steps such as local feature extraction, feature coding, and
learning. In general, the advantages of DCNN includes
the adaptive estimation of optimal feature representations
for datasets, which is not possible using conventional hand-
crafted feature approaches. In conventional approaches, we
first extract local features such as SIFT and SURF and then
code them into bag-of-feature or Fisher Vector representa-
tions. In the context of food image recognition, classifi-
cation accuracy based on the UEC-FOOD100 dataset [11]
improved from 59.6% [10] to 72.26% [15] by replacing the
Fisher Vector and linear SVM with DCNN.

However, most studies assume that one food image
represents only one food item. The approaches presented
in these studies cannot handle an image that contains two
or more food items such as an image of a hamburger and
French fries. To list all food items in a given image of food
and to estimate the calories associated with the food, the
segmentation of food is needed. Some studies attempted
food region segmentation [11], [16]–[18].

Matsuda et al. [11] proposed the use of multiple meth-
ods to detect food regions, including Felzenszwalb’s de-
formable part model (DPM) [19], a circle detector, and the
JSEG region segmentation method [20].

He et al. [18] employed local variation [21] to segment
food regions for estimating the total calories associated with
the food in a given food photo. In some studies on mobile
food recognition [16], [17], users were asked to point to the
rough locations of each food item in an image of food and
to perform GrabCut [22] for extracting food item segments.

In addition, there have been several studies on the esti-
mation of calories using computer vision techniques. Kong
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et al. [23] reconstructed 3D food models using multi-angle
pictures and estimated the calories associated with the food
using the cubic volume of 3D models. Chen et al. [24]
recognized an image and computed the cubic volume us-
ing depth information. It must be noted that they obtained
depth information using a sensor. 3D base calorie estima-
tion methods tend to be laborious for users. On the other
hand, Myers et al. [25] proposed a calorie estimation appli-
cation called “im2calorie.” They obtained each pixel depth
information through deep learning prediction and estimated
the food calories. However Myers et al. have not achieved
practical use.

Pouladzadeh et al. [26] estimated food calories from
the segmentation results of an image. They defined a thumb
as the base food area and estimated food volumes and calo-
ries from the area ratios of the thumb and the food. While
we can always take a picture of food using our thumbs, this
method can potentially distort the image and taking a pic-
ture with only one hand can be difficult. As more recent
study, Myers et al. [25] proposed calorie estimation applica-
tion which called “im2calorie”. They obtained each pixel
depth information by prediction of deep learning and esti-
mated calories. In contrast to previous studies, we tackled
food image segmentation with limited annotation through
Webly supervised learning.

2.2 CNN-Based Fully-Supervised Object Detection and
Semantic Segmentation

As early works on CNN-based semantic segmentation,
Girshick et al. [27] and Hariharan et al. [28] proposed ob-
ject segmentation methods using region proposal and CNN-
based image classification. They first generated at most
2000 region candidates using selective search [29] and
then applied CNN image classification through the feed-
forwarding of the CNN to each of the proposals. They
finally integrated all the classification results using non-
maximum suppression and generated the final object re-
gions. Although these methods significantly outperformed
the conventional methods, they had a drawback in which
they required long processing times for CNN-based image
classification of many region proposals.

While Girshick et al. [27] and Hariharan et al. [28] took
advantage of the excellent ability of a CNN for image clas-
sification tasks involved in semantic image segmentation in
a relatively straightforward manner, He et al. [30] and Long
et al. [31] proposed CNN-based semantic segmentation in a
hierarchical manner. A CNN is much different from a con-
ventional bag-of-features framework in terms of the multi-
layered structure consisting of multiple convolutional and
pooling layers. Because a CNN has several pooling lay-
ers, the location information is gradually lost as the sig-
nal is transmitted from the lower layers to the upper lay-
ers. In general, the lower layers hold location information
in their activations, while the upper layers hold weak lo-
cal information. He et al. proposed spatial pyramid pool-
ing that exploits lower layer information for object detec-

tion and reduced large computational costs associated with
an RCNN [27]. Long et al. [31] replaced the fully connected
layers in the convolutional layers and directly learned the
matrix outputs of the fully convolutional networks through
pixel-wise-annotation, which is often referred to as end-to-
end network. Later, Ren et al. [32] proposed faster RCNN,
which is an end-to-end network for object detection tasks.

2.3 CNN-Based Weakly-Supervised Semantic Segmenta-
tion

Most conventional non-CNN-based weakly supervised seg-
mentation methods employ a conditional random field
(CRF) with unary potentials estimated through multiple
instance learning [33], extremely randomized hashing for-
est [34], and GMM [35].

As a CNN-based method, Pedro et al. [36] achieved
weakly-supervised segmentation by using multi-scale CNN
proposed in [37]. They integrated the outputs that contain
location information with log sum exponential and limited
object regions to the regions overlapped with object propos-
als [38].

Pathak et al. [39], [40] and Papandreou et al. [41]
achieved weakly-supervised semantic segmentation by
adapting CNN models for fully-supervised segmentation to
weakly-supervised segmentation. In MIL-FCN [39], they
trained the CNN for full-supervised segmentation proposed
in Long et al. [31] with a global max-pooling loss that en-
ables the training of the CNN model using only training data
with image-level labels. Constrained convolutional neural
networks (CCNN) [40] improved MIL-FCN by adding con-
straints and using fully-connected CRF [42]. Papandreou
et al. [41] trained the DeepLab model [43] proposed as a
fully-supervised model with the EM algorithm, which is re-
ferred to as “EM-adopt.” Both CCNN and EM-adopt gen-
erate pseudo-pixel-level labels from image-level labels us-
ing constraints and the EM algorithms to train FCN and
DeepLab, which were originally proposed for fully super-
vised segmentation, respectively. Both demonstrated that
dense CRF [42] are helpful in boosting segmentation per-
formance even in a weakly supervised setting.

Meanwhile, Simonyan et al. [3] proposed a method of
generating object saliency maps by back propagation (BP)
over a pre-trained DCNN and demonstrated semantic ob-
ject segmentation by applying GrabCut [22] using saliency
maps as seeds. While all the above-mentioned methods of
weakly supervised segmentation employ only feed-forward
computation, Shimoda et al. [6] adopted a method based on
back-propagation (BP) computation and was successful.

Although the above-mentioned weakly supervised
methods achieved remarkable progress, their performance
was tested only on the Pascal VOC 2012 dataset, i.e. using
multi-label training images including only general object
class. Therefore we propose a Webly supervised food object
detection method, which requires only web images for train-
ing. We consider the combination of traditional proposal-
based approaches and fully convolutional approaches. We
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demonstrated that our method is robust to changes in do-
mains. We trained the parameters of the CNN with only
single-labeled web images and performed tests using multi-
labeled images.

2.4 CNN-Based Weakly-Supervised Object Detection

Several weakly supervised object detection methods have
been recently proposed. Bilen et al. proposed WSDDN [44],
which is a method of training an object detection network
under image level supervision. They trained classifica-
tion data streams and detection data streams using a novel
loss. Diba et al. [45] extended WSDDN [44]. They used
weakly supervised segmentation for improving the accu-
racy of weakly supervised detection. The proposed method
is divided into an end-to-end 3-stage cascaded CNN and
the weakly supervised segmentation factor is used in the
second stage for refinement of the bounding box. Kim
et al. [46] also improved the object detection accuracy by us-
ing weakly supervised segmentation. They separated train-
ing into two phases, which was a different approach from
previous weakly supervised detection methods. Kantorov
et al. [47] proposed an architecture that used the surround-
ing contexts of ROI. Although their architecture is simple,
its accuracy has been greatly improved. Previous weakly su-
pervised methods focus on directly training object detection
networks. However this approach exhibits limitations such
as differences between the domain of training images and
test images and these differences frequently result in a sig-
nificant deterioration of detection accuracy. For example, if
we train an object detection network with only web images
that have a large object at the center, it can be challenging
for the network to detect multiple small objects. Different
from these weakly supervised object detection methods, our
method is robust to differences in domain changes to focus
on learning the concept of “food-ness.”

3. Proposed Method

We propose a new method of generating “food-ness” regions
with weakly supervised annotation. Our method is based
on distinct class-specific saliency maps (DCSM) [6], which
is an extension of Simonyan et al. [3]. In this section, we
discuss the DCSM and the manner in which DCSM has been
adopted for “food-ness” proposal.

3.1 Overall Architecture

We follow traditional detection methods by using propos-
als. We first generate proposals based on DCSM. We then
identify each candidate region. Finally, we unify overlapped
candidates by Non Maximum Suppression (NMS). In this
study, we prepare two CNNs for proposal and recognition.
We illustrate an overview in Fig. 1. Details of the proposed
method process is as follows:

• Recognize an image.

Fig. 1 Processing flow of our method.

• Sort each food class based on the softmax output.
• Back-propagate upper rank class score.
• Subtract each class derivative value.
• Obtain “food-ness” proposals.
• Recognize each “food-ness” candidate.
• Unify overlapped candidates by NMS.

3.2 DCSM

In [3], the authors considered the derivatives of the class
score with respect to the input image as class saliency maps.
However, the position of an input image is the furthest from
the class score output on the deep CNN, which sometimes
causes weakening or vanishing of gradients. Instead of the
derivatives of the class score with respect to the input image,
Shimoda et al. [6] used the derivatives with respect to feature
maps of the relatively upper intermediate layers that are ex-
pected to retain more high-level semantic information. In
addition, they applied some techniques that are known to be
effective in semantic segmentation through a backward ap-
proach. They selected the maximum absolute values of the
derivatives with respect to the feature maps at each location
of the feature maps across all the kernels and up-sampled
them with bi-linear interpolation so that their size becomes
the same as an input image.

The class score derivative vci of a feature map layer
is the derivative of the class score S c with respect to the
layerLi at the point (activation signal) L0

i :

vci =
∂S c

∂Li

∣∣∣∣∣
L0

i

(1)

vci can be computed by back-propagation. After obtaining vci ,
Shimoda et al. up-sampled it to wc

i through bi-linear interpo-
lation so that the size of a 2-D map of vci becomes the same
as an input image. Next, the class saliency map Mc

i ∈ Rm×n

is computed as

Mc
i,x,y = max

ki

|wc
i,hi(x,y,k)|, (2)

where hi(x, y, k) is the index of the element of wc
i .
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The saliency maps of two or more different classes tend
to be similar, particularly at the image level. The saliency
maps by [3] are likely to correspond to foreground regions
rather than specific class regions. To address this, Shimoda
et al. [6] proposed to subtracte saliency maps of the other
candidate classes from the saliency maps of the target class
to different target objects from other objects. They selected
several candidate classes with a pre-defined threshold and a
pre-defined minimum number.

The improved class saliency maps with respect to class
c, M̃c

i , are represented as:

M̃c
i,x,y =

∑

c′∈candidates

max
(
Mc

i,x,y − Mc′
i,x,y, 0

)
[c � c′], (3)

where candidates is a set of selected candidate classes. Sub-
traction of saliency maps resolved the overlapped regions
among the maps of the different classes.

Shimoda et al. [6] used fully convolutional networks
(FCN) that accept arbitrary-sized inputs for multi-scale gen-
eration of class saliency maps. If an input image that is
larger than the one used in the original CNN is given to the
fully-convolutional CNN, class score maps represented as
h × w × C are outputted, where C is the number of classes,
and h and w are larger than 1.

To obtain CNN derivatives with respect to enlarged fea-
ture maps, Shimoda et al. [6] simply back-propagated the
target class score map defined as S c(:, :, c) = 1 (in the
MATLAB notation) with 0 for all other elements, where c
is the target class index.

The final class saliency map M̂c averaged over the lay-
ers and the scales is obtained as follows:

M̂c
x,y =

1
|S ||L|

∑

j∈S

∑

i∈L
tanh(αM̃c

j,i,x,y), (4)

where L is a set of the layers for which saliency maps are
extracted, S is a set of the scale ratios, and α is a constant
which we set to 3 in the experiments. Note that we assume
the size of M̃ j,i for all the layers are normalized to the same
size as an input image before calculation of Eq. (4).

In [48], guided back-propagation (GBP) [48] was
adopted as a back-propagation method instead of normal
back-propagation (BP) used in [3]. The difference between
the two methods is the backward computation through
ReLU. GBP can visualize saliency maps with fewer noise
components than normal BP by back-propagating only the
positive values of CNN derivatives through ReLU [48].

3.3 “Food-ness” Proposal

In this paper, we focus on training models with single-food
images and on testing multiple-foods images. In general,
domain changes from training time to testing time results
in performance degradation. This problem is referred to as
one of the cross-domain problems or the domain adaptation
problems. Using the DCSM, this problem was also observed
and accuracy degraded significantly. We illustrate our situ-
ation using this domain adaptation problem and an example

Fig. 2 Example of our cross domain situation.

at Fig. 2 in food images.
In this study, we avoid this domain adaptation problem

using region proposals. Proposal methods generate object
region candidates and these candidates must include target
objects. When recognizing target objects in the candidates,
we obtain better results than in the case of recognizing raw
images without proposals. Because, in our situation, test im-
ages include multiple food images, some candidate regions
can be considered single food images. Therefore, the con-
dition with some candidate regions is closer to the training
condition than the raw test images condition.

RCNN [49] and SDS [28] are typical methods of de-
tection and segmentation using proposals based on DCNN.
They use selective search [29] and MCG [38] as proposal
methods. These proposal methods also typically generate
a considerable number of candidates, approximately 2000
with local features. A considerable number of candidates
rise recall but pay off computational costs. We consider the
number of candidates, approximately 2000, to be too large
and there can be several inefficient processes for food recog-
nition. Therefore, we propose a novel proposal method for
foods with DCNN.

“Objectness” is a value that reflects the likelihood that
a region or bounding box in an image covers an object of
any category. In this study, we define “food-ness” as a rep-
resentation that reflects the likelihood that a pixel belongs to
a region of any food category. In this study, we adapt DCSM
for calculating “food-ness.”

The original DCSM approach is ineffective because of
the problem of domain changes as we mentioned above. In
fact, the estimated regions by DCSM trained with only Web
images are not precise. However, we observed that most
regions belonged to any food items in an image. Interest-
ingly, the estimated regions for food classes that are not in-
cluded in a given image still belong to other existing objects,
and some regions fit food regions as shown in Fig. 3. This
means that CNN trained with different domain images could
not precisely transfer knowledge related to the category of
food but could learn rough food conception.

In practice, to adapt DCSM for “food-ness” we in-
crease the number of candidates in Eq. (3). It must be noted
that we do not aggregate multi-input-scale results because
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Fig. 3 Proposal results. The first row presents the saliency obtained from DCSM. The second row
indicates the regions obtained from saliency maps. The third row indicates the bounding boxes that we
recognize. The red rectangle indicates a good candidate.

of increasing computational costs. We obtain the probabil-
ity maps for each signal of a class using backpropagation as
follows:

Pc =
1
|L|
∑

i∈L
tanh(αMc

i ), (5)

where Pc denotes probability maps such as saliency maps.
We convert the probability maps Pc to masks Mc through
thresholding. In this study, we set the threshold to 0.5.
When the mask Mc contains multiple food items, the prob-
ability maps often include several peaks. Therefore, to ob-
tain better proposals, we divide each mask Mc into several
masks Mc

k by separating the isolated regions using a binary
tracing method. k ∈ {1, 2, · · · ,K} represents the elements of
regions and K is the number of regions. For binary tracing,
we used bwconncomp, which is a MATLAB function. We
finally integrated the masks by ignoring the category of sig-
nals for backpropagation and we used the integrated masks
M̂k′ , (K′ = C × K) as food-ness proposal.

To summarize this, we increase the number of candi-
date classes in the DCSM method and obtain regions from
the output probabilities with DCSM. We can increase the
number of candidate classes as far as the maximum tar-
get class number, which in our case is 100 for the UEC-
FOOD100 dataset. We will discuss the manner in which
the number of classes in Sect. 4.2 are chosen. For each in-
put image x ∈ X, we compute the proposals M̂k′ using the
above process. We then obtain bounding boxes B̂k′ by ex-
tracting the maximum and minimum values of the coordi-
nate from the pixels, which belong to the food region on
each mask M̂k′ . For each bounding box B̂k′ , we cropped the
images xp

k′and identified these cropped images using recog-
nition networks. The training of recognition networks is in-
dependent of the proposal network. We train the proposal
network and recognition network separately. Details of the
training are presented in Sect. 4.

4. CNN Training

In this study, we adopt VGG16 as a base convolutional net-
work for fine-tuning food images. Although there are com-
mon factors, we separate the proposal network and recog-
nition network because of differences in applications. We
fine-tune VGG16 as a proposal network with a fully convo-

lutional technique. We also fine-tune VGG16 for recogni-
tion networks in a traditional way. In this section, we present
the details concerning these two networks.

4.1 Proposal Network

As an off-the-shelf basic CNN architecture, we use the
VGG-16 [50] pre-trained with 1000-class ILSVRC datasets.
In our framework, we fine-tune a CNN with training images
with only image-level annotation. Fully convolutional net-
works (FCN) that accept arbitrary-sized inputs have been
recently used in studies on CNN-based detection and seg-
mentation such as [51] and [31]. The fully connected lay-
ers in these studies with n units were replaced with equiv-
alent convolutional layers having n 1 × 1 filters. Following
these studies, we introduce FCN for multi-scale generation
of class saliency maps. When training, we insert global max
pooling before the final loss function layer to handle input
images that are larger than the images used for pre-training
of the VGG-16. Global max pooling is an operation that
has been adopted in several weakly supervised segmenta-
tion methods. The purpose of this operation is to convert
the last output to a vector from a matrix. Therefore, we can
train FCN with usual image-level-label and soft-max loss.

In particular, we replace a fully connected layer with a
convolution layer for the VGG16-model and train the net-
work on the UECFOOD-100 dataset, which consists of 100
types of food classes with global max pooling.

4.2 Recognition Network

For recognition, although we change only the last layer for
food category outputs, we prepare additional categories for
training. The purpose of a recognition network is to discrim-
inate candidates obtained from the proposal network. The
conditions for recognizing candidates vary from the train-
ing phase in terms of including non-target-category-object
images and small-food-patch images. In RCNN and SDS,
they consider only non-target-category-object images as the
background so that RCNN and SDS can be tested on a gen-
eral object detection dataset. However, food recognition is
different for general object recognition. Food recognition
has the similarity to the texture recognition, namely, food
patches can be discriminated as food with a high score by
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Table 1 Mean average precision over all the 100 categories, 53 categories (more than 10 items of
which are included in the test data), and 11 categories (more than 50 items of which are included in the
test data) for the results in the different conditions and models.

method
small-patch

class
low-resolution

images
training with

only web images
100class

(all)
53class

(#item ≥ 10)
11class

(#item ≥ 50)

“Foodness 1” - - - 30.0 29.3 31.9
“Foodness 2” � - - 33.7 39.0 33.6
“Foodness 3” � � - 39.5 46.0 38.9
“Foodness 4” - - � 33.5 35.1 33.3
“Foodness 5” � - � 32.2 34.8 31.8
“Foodness 6” � � � 36.4 39.9 36.3

Table 2 Comparison of global pooling operations for “food-ness”.

method
training with

only web images
100class

(all)
53class

(#item ≥ 10)
11class

(#item ≥ 50)

“Foodness” (average pooling) - 39.5 46.0 38.9
“Foodness” (average pooling) � 36.4 39.9 36.3

“Foodness” (max pooling) - 39.9 48.3 37.6
“Foodness” (max pooling) � 38.9 42.5 38.1

DCNN. For example, in the case of dog recognition with
DCNN, the recognition results for the proposals of legs and
skin will include low scores in dog probability, while, in the
case of food recognition, the patches of rice images will in-
dicate high scores in rice probability. To sum up, DCNN
cannot discriminate general objects with limited parts but
can discriminate foods with minimum patch information.
Therefore we create additional classes for food patch class.

Furthermore we add low-resolution images because we
determined that a low-resolution image was discriminated
as food patch category. We assume that this is the rea-
son for which a small-food-patch image tends to be a low-
resolution image. Therefore, we add low-resolution images
to each food class. Our intuition is that if we consider low-
resolution images to be training images, the low-resolution
images will not be recognized as small-food-patch images.

We augment the training images for cropped images
and expand the category to 202 from 101 to address some
problems for each candidate recognition in food images.
Practically, we cropped three images from each training im-
age as a food path using random positions with random
sizes. The minimum size of the cropped image is 50 and
the maximum size is 150. It must be noted that the orig-
inal image size is 256, i.e. the rate of each cropped image
size for the original image is approximately 0.2 and 0.6.
We also prepare three images as low-resolution images by
down-sampling and rescaling. We randomly defined down-
sample sizes. The minimum downscaled size is 10 and the
maximum size is 256, which is equal to the original image
size. We finally obtain augmented training images that are
seven times larger than the original training images.

5. Experiments

In the experiments, we used the UEC-FOOD100 dataset [11]
and web food images. The UEC-FOOD100 dataset [11]
consist of 100 class food categories and each category in-
cludes 100 images. It should be noted that each food item is
an annotated bounding box. On the other hand, although

the web food images have the same category as in the
UEC-FOOD100 dataset, each category includes 1000 im-
ages without bounding box annotation. Most of these web
food images are obtained from twitter streams and some im-
ages are obtained from the Bing API. We use multiple-food
images from the UEC-FOOD100 dataset as a test dataset for
object detection. All detection evaluations based on mean
average precision are also considered for Pascal VOC de-
tection evaluation.

5.1 Food Detection Evaluation

We prepared two datasets, one dataset consist of
UECFOOD-100 and web Images. Another dataset consist
of only web images.

5.1.1 Additional Classes for Recognition Network

We first evaluate three cases of recognition networks with
two datasets using a fixed proposal network setting. Ta-
ble 1 presents the average precision (AP) of the three mod-
els trained under different conditions with two training
data.“Foodness 2” demonstrated higher performance than
“Foodness 1”. This means that adding a small patch class
is effective. On the other hand, “Foodness” 3 achieved bet-
ter results than Foodness 2”. We can observe that adding
low-resolution images is also effective for the recognition
network.“Foodness 4”, “Foodness 5” and “Foodness 6” are
trained with only Web images. The AP of “Foodness 6” is
higher than “Foodness 4” and “Foodness 5”. In Webly su-
pervised, additional classes are also effective.“Foodness 6”
exhibits a drop in AP compared with “Foodness 3”; while
overcoming the AP of “Foodness 2”. Based on the results
above, we can state that additional classes are effective and
Webly supervised learning possesses reasonable capabili-
ties.
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Table 3 Comparison with other traditional proposal method.

method
100class

(all)
53class

(#item ≥ 10)
11class

(#item ≥ 50) proposal speed[s]
Recognition speed
for candidates[s]

Selective Search [29] 38.3 39.1 35.7 7.6 35.0
Multiscale Combinatorial Grouping [38] 33.9 43.7 33.4 2.5 35.0

“Foodness” with 10 candidate classes 33.1 33.0 33.2 0.5 1.1
“Foodness” with 20 candidate classes 36.5 40.1 37.7 1.0 2.6
“Foodness” with 30 candidate classes 38.9 42.5 38.1 1.4 3.8

Fig. 4 Examples of results. Left images are input images. Center images
are detection results. Right images are ground truth images.

5.1.2 Global Pooling for Proposal Network

We then compare two general global-pooling operations,
global average pooling, and global max pooling. Table 2
presents a comparison of final pooling operations for two
datasets.

5.1.3 Comparison with Other Traditional Proposal Meth-
ods

Next, we compare the quality of our proposal method with
that of other traditional proposal methods. We evaluate our
methods in terms of mean AP and speed factors. We pre-
pare two traditional proposal methods as baselines. Selec-
tive search (SS) [29] is a bounding-box proposal method and
Multiscale Combinatorial Grouping (MCG) [38] involves a
segmentation region proposal method. Both methods gen-
erate a large number candidates, approximately 2000. To
assess our proposal quality, we changed the candidate class
number. Small candidate class results in smaller computa-
tional costs so that the time of backward computation can

be reduced. Table 3 presents the comparison results. It must
be noted that recognition speed includes theoretical values
computed from candidate numbers and the computational
cost of an image. AP of “Foodness” with 30 candidate
classes outperforms SS [29] and MCG [38] even though it
has 40 times lesser number of candidates. In addition, even
if we reduced the candidate class number, the mean AP is
still held by 30%. This shows that our proposal exhibits suf-
ficient quality for “food-ness” detection.

6. Conclusions

We proposed a CNN-based “food-ness” proposal method
that requires no pixel-wise annotation even in the case of
bounding box annotation. We focused on an intermedi-
ate approach involving traditional proposal approaches and
fully convolutional approaches. In particular, we proposed
a novel proposal method that generates “food-ness” re-
gions through a fully convolutional network-based back-
ward approach by training web food images. Therefore,
we achieved a reduction in computational costs and ensured
quality food detection.

In future studies, we aim to focus on Webly-supervised
food segmentation in addition to detection because our
“food-ness” proposal can also generate segmentation re-
sults.
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