
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.4 APRIL 2019
725

PAPER Special Section on Data Engineering and Information Management

Efficient Dynamic Malware Analysis for Collecting HTTP Requests
using Deep Learning∗

Toshiki SHIBAHARA†,††a), Nonmember, Takeshi YAGI†, Mitsuaki AKIYAMA†, Daiki CHIBA†,
and Kunio HATO†, Members

SUMMARY Malware-infected hosts have typically been detected us-
ing network-based Intrusion Detection Systems on the basis of character-
istic patterns of HTTP requests collected with dynamic malware analysis.
Since attackers continuously modify malicious HTTP requests to evade de-
tection, novel HTTP requests sent from new malware samples need to be
exhaustively collected in order to maintain a high detection rate. How-
ever, analyzing all new malware samples for a long period is infeasible in
a limited amount of time. Therefore, we propose a system for efficiently
collecting HTTP requests with dynamic malware analysis. Specifically, our
system analyzes a malware sample for a short period and then determines
whether the analysis should be continued or suspended. Our system iden-
tifies malware samples whose analyses should be continued on the basis of
the network behavior in their short-period analyses. To make an accurate
determination, we focus on the fact that malware communications resem-
ble natural language from the viewpoint of data structure. We apply the
recursive neural network, which has recently exhibited high classification
performance in the field of natural language processing, to our proposed
system. In the evaluation with 42,856 malware samples, our proposed sys-
tem collected 94% of novel HTTP requests and reduced analysis time by
82% in comparison with the system that continues all analyses.
key words: infected host detection, network behavior, sequential data, re-
cursive neural network

1. Introduction

Malware authors or attackers always try to evade detection
methods to increase the number of malware-infected hosts
on the Internet. The detection methods are broadly divided
into three types: static feature-, host-, and network-based.
Static feature-based methods, such as general anti-virus en-
gines, are easily evaded by changing malware samples’ code
structure with packing techniques [2]. Host-based methods,
such as application programming interface (API) call min-
ing [3], are evaded by blending malicious API calls into
legitimate system processes with API hooking or dynamic
link library (DLL) injection [4].

This arms race regarding static feature-based and host-
based methods increases the importance of network-based
methods such as malicious communication detection [5], [6]
and blacklist-based detection. These methods are difficult to

Manuscript received May 24, 2018.
Manuscript revised November 2, 2018.
Manuscript publicized February 1, 2019.
†The authors are with NTT Secure Platform Laboratories,

Musashino-shi, 185–8585 Japan.
††The author is with Osaka University, Suita-shi, 565–0871

Japan.
∗An earlier version of this paper appeared in [1].

a) E-mail: toshiki.shibahara.de@hco.ntt.co.jp
DOI: 10.1587/transinf.2018DAP0001

evade because malicious network behavior is definitely ob-
served. For example, attackers need to coordinate infected
hosts to accomplish their mission by distributing configura-
tion files or sending commands from command and control
(C&C) servers. Network-based methods detect communi-
cations sent from infected hosts on the basis of characteris-
tic patterns in HTTP or HTTPS requests collected with dy-
namic malware analysis. Note that we consider both HTTP
and HTTPS requests but hereafter refer to both as “HTTP
requests” for simplicity.

Since attackers modify a part of a program of malware
samples or produce totally new ones, patterns of malicious
HTTP requests change continuously over time. As a result,
the detection rate of network-based methods gradually de-
grades. To maintain a high detection rate, novel HTTP re-
quests, which have not been collected in past analyses, are
collected by analyzing new malware samples typically for a
fixed short period such as five minutes [7]. Ideally, all mal-
ware samples should be analyzed for a long period to collect
more novel HTTP requests. If more characteristic patterns
are identified by using collected requests, they increase the
detection rate and make it even more difficult for attackers
to evade network-based methods. However, more than 350
million new malware samples were detected in 2016 [8], and
analyzing all new malware samples for a long period is ob-
viously infeasible in a limited amount of time. Efficient dy-
namic analysis is thus required to collect more novel HTTP
requests in a shorter analysis time.

The efficiency of dynamic analysis can be enhanced
by prioritizing analyses of malware samples that send novel
HTTP requests. Identifying such malware samples before
analyzing them is difficult because malware samples are ob-
fuscated with packing techniques [2]. Therefore, we pro-
pose a system that analyzes a malware sample for a short
period and then determines whether the analysis should be
continued or suspended. Our system leverages only network
behavior, i.e., communications, for determination because
host behavior might be concealed with API hooking or DLL
injection [4].

As determination methods, there are two possible ap-
proaches referring to conventional signature-based detection
leveraged by anti-virus engines and API call mining. One is
based on the presence of a certain communication, and the
other is based on network behavior modeling. For the first
approach, the presence of novel HTTP requests is assumed
to be an adequate criterion. Specifically, an analysis is con-

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers

726
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.4 APRIL 2019

tinued if one or more novel HTTP requests are collected in
the short-period analysis. This approach is based on the in-
tuition that such malware samples are likely to continuously
send other novel requests. However, some malware samples
stop their malicious activities due to failed communications
with C&C servers. After that point, they no longer com-
municate with any hosts. Furthermore, the same malware
sample might send different HTTP requests after a certain
point of time if the secondary malware samples, which are
downloaded by the original one, behave differently. In this
case, an accurate determination cannot be made on the basis
of communications sent in the short-period analysis. From
these two points, the accurate determination is difficult to
make on the basis of the first approach.

In the second approach based on network behavior
modeling, we determine whether the analysis should be con-
tinued or suspended on the basis of network behavior in the
short-period analysis. However, it is difficult to accurately
predict whether novel HTTP requests will be collected by
continuing the analysis. This is because this prediction re-
quires information about attackers’ attempts, such as attacks
launched by malware samples, or infrastructure, such as the
configuration of C&C servers. Inspired by the method op-
timizing the approximate loss function [9], we tackle this
problem by relaxing the condition where the analysis is con-
tinued. Specifically, our system predicts the probability that
a malware sample will send HTTP requests not collected in
the short-period analysis and continues the analysis if the
probability is high. Such prediction can be made by model-
ing continuous malicious activities such as secondary mal-
ware downloads and communications with C&C servers.
Our system can collect many HTTP requests, which are ex-
pected to include not only ones previously collected in the
past analyses but also many novel ones.

To make an accurate prediction, we focus on the fact
that malware communications resemble natural language
from the viewpoint of data structure. Natural language has
a recursive structure; a phrase, e.g., noun phrase, consists
of several words, and a sentence consists of several phrases.
Similarly, malware communications have a recursive struc-
ture. A malicious activity, e.g., secondary malware down-
loads and communications with C&C servers, consists of
several communications, e.g., DNS queries and HTTP re-
quests. Functions of malware samples, e.g., information
leakage and attack to other hosts, consist of several mali-
cious activities. To capture such a recursive structure in mal-
ware communications, methods for natural language pro-
cessing (NLP) are expected to be effective.

Many methods have been proposed for NLP: recursive
neural network (RNN) [10], long short-term memory [11],
and combination of word2vec and a convolutional neural
network [12]. All methods can be applied to our proposed
system, but we evaluated our system with a method expected
to achieve high classification performance. In natural lan-
guage, words comprising a phrase are adjacent to each other,
but in malware communications, communications consist-
ing of a malicious activity are not necessarily adjacent. For

example, a communication for testing Internet connection
can be sent between communications with a C&C server
when a malware sample sends communications for periodi-
cally testing Internet connection. This makes classification
difficult because methods for NLP prioritize closer words.
However, the RNN [10] is expected to be unaffected by this
challenge. The RNN performs classification on the basis
of inferred recursive structure: a tree-structured neural net-
work. If we construct tree-structured neural networks con-
sidering the recursive structure of malware communications,
the RNN can accurately classify malware communications.
Therefore, we apply the RNN to our proposed system and
empirically discuss its efficiency at collecting novel HTTP
requests using 42,856 malware samples collected over six
months.

The main contributions of this paper are as follows.

• We propose a system that identifies malware samples
whose analyses should be continued on the basis of the
network behavior in their short-period analyses. In our
evaluation, we show that our system can efficiently col-
lect novel HTTP requests in a limited amount of time
by keeping the number of malware samples that are an-
alyzed for long period to a minimum.
• To the best of our knowledge, we are the first to apply

the RNN to malware communication analysis and to
show that it can effectively capture the characteristics
of malware communications.

2. Recursive Neural Network

The RNN is a tree-structured neural network. It is used
for parsing natural language sentences [13] and sentiment
analysis [10] in the field of NLP. Our proposed system uses
the recursive neural tensor network (RNTN) [10], which im-
proves on the performance of the RNN by using a tensor.
The tensor enables the RNTN to calculate high-order com-
position of input features. The RNTN is a tree-structured
network similar to the RNN, as shown in Fig. 1. When the
input sequence x1, x2, x3, . . . is given, these inputs are as-
signed to leaf nodes in sequence.

Each node has an n-dimensional feature vector and a
label. The feature vectors of parent nodes are calculated us-

Fig. 1 Recursive neural tensor network.

SHIBAHARA et al.: EFFICIENT DYNAMIC MALWARE ANALYSIS FOR COLLECTING HTTP REQUESTS USING DEEP LEARNING
727

ing the feature vectors of their child nodes. For example, the
feature vector of p1 is calculated using the feature vectors x1

and x2:

p1 = f

⎛⎜⎜⎜⎜⎝
[
x1

x2

]T
V [1:n]

[
x1

x2

]
+W

[
x1

x2

]⎞⎟⎟⎟⎟⎠ , (1)

where V [1:n] ∈ R2n×2n×n and W ∈ Rn×2n. The label lx1 , which
is the label of node x1, is calculated as

lx1 = softmax(Wsx1), (2)

where Ws ∈ Rd×n and d is the number of labels. Tensor
V and matrices W and Ws are commonly used in all nodes.
The objective with this method is to estimate these variables.
The extension of backpropagation on the basis of the predic-
tion error of labels is applied to this process.

The feature vectors of parent nodes have two charac-
teristics. The first is that they are calculated on the basis of
the sequence of words. The second is that they represent
the semantics of phrases. This enables phrases to be found
that have similar meanings by finding similar feature vec-
tors. In other words, the RNN can infer the same semantics
of phrases composed of different words.

3. Proposed System

In this section, we first discuss the design of our proposed
system and then describe its implementation.

3.1 System Design

To improve the efficiency of dynamic analysis, systems
based on static features [14] and host behavior [15] have
been proposed. However, no system based on network be-
havior has been proposed, but similar systems have, e.g.,
malware detection or classification systems based on net-
work behavior. In system design, even if no system has
been proposed for the same purpose, referring to systems
proposed for a similar purpose is beneficial. The similar
systems are divided into network-signature-based [5], [6],
correlation-based [16], [17] and statistics-based [18], [19]
systems. Network-signature-based systems detect bots by
signature matching. Correlation-based systems detect bot-
nets on the basis of the correlation of network behavior such
as communications with C&C servers and attacks by in-
fected hosts. Nevertheless, it is assumed with these systems
that network behavior is collected over a long period. In par-
ticular, with network-signature-based systems, the probabil-
ity of signature matching decreases as the period of network-
behavior collection shortens. Analogously, with correlation-
based systems, the number of communications with C&C
servers and attacks decreases. Therefore, it is difficult to
determine whether dynamic analysis should be continued
by using these systems. On the other hand, statistics-based
systems extract statistical features from not only communi-
cations with C&C servers and attacks but also other com-
munications and classify them with machine learning. For

Fig. 2 Overview of proposed system.

this reason, such systems are more suitable for classification
based on a short period of network-behavior collection than
other systems. Therefore, we apply machine learning to our
proposed system.

The conventional statistics-based system [18], [19] ex-
tracts statistical features such as the number of communica-
tions for each application protocol and n-grams of network
events. The effectiveness of these features also depends on
the number of communications sent in the short-period anal-
ysis. If only a few communications are sent, the features
will not be meaningful. To overcome this problem, we fo-
cus on the change in communication purposes. For example,
a malware sample accesses a popular web page for testing
the Internet connection, receives the command from the at-
tacker, and then conducts a secondary attack. To this end,
we use the sequence of communications to model malicious
activities and apply the RNN to our proposed system.

Figure 2 shows the overview of our proposed system.
In the training phase, our system receives pairs of malware
communications and a label as input. Malware communica-
tions are collected by analyzing malware samples for a short
period. The label indicates whether the analysis should be
continued or suspended. In the end of the training phase, our
system outputs the trained classifier of the RNN. In the test
phase, our system receives new malware communications as
input and outputs the determination of whether the analysis
should be continued or suspended. The communications are
collected by analyzing new malware samples for a short pe-
riod. In both phases, a feature vector is extracted from each
communication, and the neural network is constructed on
the basis of communication purposes. The feature vectors
and neural network are used for training and classification.
We describe details of these components in the following
subsections.

3.2 Feature Extraction

The first step involves extracting features from communi-
cations collected with dynamic analysis. To achieve high
classification performance, we must extract features rep-
resenting a part of malicious activities, e.g., Internet con-
nection tests, updates, and command reception. To this
end, we extract 7 general features, 4 hostname-based fea-
tures, and 7 HTTP-based features, totaling 18 features as

728
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.4 APRIL 2019

Table 1 List of features.

Type No. Feature Reference

1 Protocol [18], [19]
2 Elapsed time [22]
3 Interval [22]

General 4 Existence of [22]
the identical communication

5 Data size of request [19]
6 Data size of response [19]
7 Port number [19], [21]
8 TLD rank [21]

Hostname 9 Presence of “ip” in FQDN [20], [21]
10 Presence of IP address [20], [21]
11 Presence of subdomain [21]
12 HTTP method [5]
13 Status code [19]
14 Presence of .exe in filename [5]

HTTP 15 Presence of .zip in filename [5]
16 Depth of file path [5]
17 # of query parameters [5]
18 User agent [5], [22]

shown in Table 1. We design these features by referring
to not only the statistics-based systems [18], [19] but also
the network-signature-based system [5], malicious URL de-
tection systems [20], [21], and malware download detection
system [22].

General features are the protocol, elapsed time, inter-
val, existence of the identical communication, data size of
request, data size of response, and port number (Nos. 1–7).
The elapsed time is the difference between the analysis start
time and the time when the target communication is sent.
The interval is the difference between the time when the
last and the target communications are sent. We set 1 for
the existence of the identical communication if the identical
communications have already been collected in the analysis
and 0 if they have not. Hostname-based features include the
top level domain (TLD) rank, presence of “ip” in the fully
qualified domain name (FQDN), presence of IP address, and
presence of subdomain (Nos. 8–11). We use the highest
Alexa† rank among domains with a certain TLD as the TLD
rank. HTTP-based features include the HTTP method, sta-
tus code, presence of .exe in filename, presence of .zip
in filename, depth of file path, number of query parameters,
and use agent (Nos. 12–18).

We vectorize categorical features by using one-hot en-
coding; we create a vector whose dimension is the num-
ber of categories and whose component corresponding to
the vectorized category is 1 and other components are 0.
Categorical features are protocols, HTTP methods, status
codes, and user agent. Protocols are categorized into DNS,
HTTP, HTTPS, other known protocols, and unknown ones.
The HTTP methods are categorized into three types: GET,
POST, and others. Status codes are divided into six groups
on the basis of their 100 placement. For example, the first
group includes 100, 101, and 102, and the second group in-
cludes 200, 201, 202, etc. The user agents are divided into
three types: Mozzilla, unset, and others.

†https://www.alexa.com/topsites

3.3 Neural Network Construction

To capture the malicious activities, we focus on the change
in communication purposes. We construct a neural network
in which communications related to the same purpose com-
pose the same subtrees. We consider the relationship be-
tween the same communication purposes and the relation-
ship between different communication purposes. The initial
situation is that each node is composed of one communica-
tion. We select a set of nodes depending on the below three
criteria and create their parent nodes. The selected nodes are
removed from the selection candidates, and their top node is
added to the candidates. We repeat this process to construct
a tree-structured neural network. The first and second cri-
teria are the relationships between the same communication
purposes. The third criterion is the relationship between dif-
ferent communications purposes.

Hostname. Malware samples successively send communi-
cations related to a hostname, i.e., FQDN or IP address, to
accomplish a purpose such as Internet connection tests, up-
dates, and command reception. For example, a malware
sample sends a DNS query to obtain the IP address of a
FQDN and then sends a HTTP request to communicate with
a C&C server. We combine all communications related to
the same hostname. If the number of communications is
more than two, we combine communications on the basis of
time ordering because they are successively sent to accom-
plish the same purpose. Specifically, we combine the two
earliest communications and make their parent node. Then
we combine the parent node and the earliest communica-
tions next to the combined ones. This process is repeated
until all communications related to a certain hostname are
combined.

Identical URL Path and URL Query Parameters. If
communications with C&C servers fail, malware samples
frequently attempt to communicate with backup or alter-
native C&C servers. If the communication purpose with
the backup servers is the same as that with the original
C&C server, the path and query of these communications
are assumed to be identical. Occasionally, malware sam-
ples change the URL query value. Therefore, if the path and
query parameters of two communications are identical, they
are supposed to be of the same purpose. However, com-
munications that have different purposes can have the same
general path such as /index.php. We thus take into ac-
count communications that have one or more query param-
eters. If the path and query parameters of the descendant
nodes of A and that of the descendant nodes of B are identi-
cal, we combine nodes A and B.

Time Difference of Communications. After nodes are
combined on the basis of the first and second criteria, can-
didate nodes have several descendant nodes. That is to say,
communications are divided into several groups of commu-
nications. If the two communication groups have depen-

SHIBAHARA et al.: EFFICIENT DYNAMIC MALWARE ANALYSIS FOR COLLECTING HTTP REQUESTS USING DEEP LEARNING
729

dency, one group is sent subsequently to the other group. In
other words, periods when communication groups are sent
do not overlap. Hence, the communication groups, whose
periods do not overlap, are supposed to have different pur-
poses. Therefore, we combine two communication groups
that have the closest periods. Let the set of times when com-
munications of group A are sent be TA = {tAi} and let that of
group B be TB = {tB j}. The difference in periods of groups
is calculated as d =

∑
i
∑

j |tAi− tB j|. This process is repeated
until all communications become the descendant nodes of
one node. In this manner, the tree-structured neural network
is constructed.

3.4 Training and Classification

Since we obtain only the label of malware samples for train-
ing, we set the training labels to only the root nodes. After
the training, the feature vectors of root nodes are calculated
in accordance with (1). Finally, classification results are de-
termined in accordance with (2).

4. Experimental Setup

We evaluate our proposed system in terms of efficiency for
collecting novel HTTP requests. Here, we describe the ex-
perimental setup.

4.1 Dataset of Malware Samples

We conduct the evaluation with a dataset composed of mal-
ware samples collected from VirusTotal† in Jul.–Dec. 2017.
We collect the malware samples that have different SHA1
hashes and that are detected by at least one anti-virus en-
gine. We use AVClass [23] to refine our dataset by eliminat-
ing samples falsely detected by anti-virus engines. AVClass
identifies the family name of a malware sample if several
anti-virus engines label it with virtually the same family
name. AVClass further identified potentially unwanted pro-
grams (PUPs) on the basis of certain keywords in labels out-
put by anti-virus engines. We use malware samples that are
identified by their family names and are not identified as
PUPs by AVClass. Finally, we collected 42,856 unique mal-
ware samples.

We analyze all malware samples for 30 minutes with
a safe dynamic analysis system called BotnetWatcher [24]
to estimate when the determination should be made. Al-
though we should ideally analyze them for a longer time,
we selected 30 minutes as a sufficiently long time. Figure 3
shows the cumulative distribution function (CDF) of time
when the last HTTP request was sent. On the basis of the
data in Fig. 3, most malware samples stop sending HTTP
requests within five minutes, and we can collect most HTTP
requests in 30 minutes. In addition, Fig. 3 shows that it is
appropriate that determination be made five minutes after
analysis starts. Hence, we selected five minutes as the de-
termination time. We label a malware sample as suspension

†https://www.virustotal.com/

Fig. 3 CDF of time when the last HTTP request was sent.

Table 2 Dataset.

Suspension Continuation Period

Training 24,988 1,003 Jul.–Oct. 2017
Test 16,335 530 Nov.–Dec. 2017

if all HTTP requests, which are collected in the last 25 min-
utes of its analysis, are collected in the first 5 minutes. On
the other hand, we label a malware sample as continuation if
all HTTP requests, which are collected in the last 25 minutes
of its analysis, are NOT collected in the first 5 minutes.

In our evaluation, we use malware samples collected
during Jul.–Oct. 2017 as training data and those collected
during Nov.–Dec. 2017 as test data as shown in Table 2. As
mentioned above, many more samples are labeled as sus-
pension than continuation because many malware samples
stop sending HTTP requests within five minutes. Note that
we analyze all malware samples for 30 minutes for labeling,
but we use communications sent in the first 5 minutes of
analyses for training and classification. The average num-
ber of communications in the first 5 minutes was 98.7.

4.2 Conventional Systems for Comparison

We compare our proposed system with two naive systems,
the unknown request-base system, and two behavior-based
systems.

One naive system, which we call the continuation sys-
tem, continues all analyses. The other, which we call the
suspension system, suspends all analyses. The unknown
request-based system continues the analysis if one or more
HTTP requests not included in the reference set of the re-
quests are collected in the short-period analysis. We use the
set of HTTP requests collected in analyses of training data
as the reference set.

The behavior-based systems make a determination on
the basis of network behavior in the short-period analysis.
Note that our proposed system also belongs to this type
of system. Our system makes a determination on the ba-
sis of a sequence of feature vectors representing commu-
nications, but other types of features vectors can be lever-
aged for determination. One behavior-based system, which
we call the overall system, leverages feature vectors repre-

730
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.4 APRIL 2019

senting all communications sent in the short-period analy-
sis. The overall system extracts feature vectors used in the
statistics-based method [18]: the number of application pro-
tocols, the number of communications related to a certain
domains, etc. The other behavior-based system, which we
call the individual system, leverages feature vectors repre-
senting individual communications. The individual system
extracts feature vectors used in our proposed system, clas-
sifies them individually, and makes a determination by in-
tegrating individual classification results of all communica-
tions sent in the short-period analysis. Specifically, if one
or more communications are classified as continuation, the
analysis is continued. If no communication is classified as
continuation, the analysis is suspended. Random forest [25]
is utilized as the machine learning algorithm for these clas-
sifications because it performs nonlinear classification with
high accuracy.

4.3 Hyperparameter Optimization

We split training data into prior-training and validation data
to optimize hyperparameters of the RNN. We select the
combination of parameters that have the highest F-measure
(see Sect. 5 for definition). For optimization, we conduct
grid search by changing the batch size, initialization inter-
val of adagrad, and learning rate. A batch size is selected
from 50, 100, and 500, an initialization interval from 1, 10,
and 100, and a learning rate from 0.01, 0.001, and 0.0001.
We set the number of iterations for training as 100. The best
combination of parameters was 100 for the batchsize, 100
for the initialization interval, and 0.001 for the learning rate.

The hyperparameters of random forest for conventional
systems, i.e., the number of decision trees and the number
of features for each decision tree, are optimized by using the
tuneRF function of the randomForest package in R [26]
when a classifier is trained. For the individual system, the
number of decision trees was 473 and that of features for
each decision tree was 20. For the overall system, the num-
ber of decision trees was 91 and that of features for each
decision tree was 2.

5. Experimental Results

We now report the experimental results. In Sect. 5.1, we
show the results of the evaluation on classification. We com-
pare our system with two other behavior-based systems in
terms of classification performance. We further investigate
the effectiveness and limitations of the RNN for classifica-
tion by analyzing the classifier in detail. In Sect. 5.2, we
show the results of the evaluation on HTTP request collec-
tion. We compare our system with all conventional systems
in terms of collection efficiency and calculation time. In
Sect. 5.3, we report the network behavior of malware sam-
ples from which novel HTTP requests are successfully col-
lected on the basis of our system but not collected on the ba-
sis of the unknown request-based system. These case stud-
ies show the effectiveness of our system for HTTP request

collection.

5.1 Evaluation on Classification

We evaluate the classification performance of our system by
comparing it with those of the overall and individual sys-
tems. We further analyze the classifier of the RNN in terms
of the contribution of features, important behavior for clas-
sification, and false positives/negatives. In this subsection,
malware samples whose analysis should be continued and
suspended are referred to as positive and negative samples,
respectively.

Classification Performance. We evaluate classification
performance by using widely used metrics: true positive
rate (TPR), false positive rate (FPR), accuracy, area under
the receiver operating characteristics (ROC) curve (AUC),
precision, and F-measure. Note that TPR is also known as
recall. Each index is defined as follows:

T PR = T P/(T P + FN),

FPR = FP/(T N + FP),

Accuracy = (T P + T N)/(T P + FN + T N + FP),

Precision = T P/(T P + FP),

F-measure = 2 × T P/(2 × T P + FP + FN),

where T P denotes the number of true positives, FN false
negatives, T N true negatives, and FP false positives. Note
that a malware sample is classified as positive if the predic-
tion probability is higher than a commonly used threshold,
i.e., 0.5, in the training phase and evaluation of classification
performance.

Table 3 shows the classification performance of each
system. Our system outperformed conventional systems for
most metrics. It is noteworthy that only our system achieved
a high TPR and a low FPR. This resulted in our system hav-
ing a high F-measure, which is defined by the number of
true positives and false positives. Figure 4 shows the ROC
curve from 0.0 to 0.1 FPR. Considering our dataset includes
a small number of malware samples labeled continuation,
i.e., positive samples, the classification performance at low
FPRs is important. For example, to improve the collection
rate (see Sect. 5.2 for the definition) at a TPR of 1.0, the
FPR must be lower than 0.023. We selected a sufficiently
wide range of FPRs for Fig. 4. Our system stably achieved a
higher TPR than conventional systems in this range of FPRs.
Specifically, the TPRs of the overall, individual, and pro-
posed system at an FPR of 0.01 were 0.06, 0.454, and 0.738,
respectively. The TPRs at an FPR of 0.05 were 0.366, 0.745,
and 0.817. The TPRs at an FPR of 0.10 of FPR were 0.582,
0.817, and 0.847. Not only Table 3 but also Fig. 4 shows
that only our system achieved a high TPR and low FPR.

Contribution of Features. To understand how the classifi-
cation is conducted, the contribution of each feature to clas-
sification is informative. We evaluate how much each fea-
ture improves accuracy of the RNN. Specifically, we eval-
uate the accuracy of the RNN using all features and using

SHIBAHARA et al.: EFFICIENT DYNAMIC MALWARE ANALYSIS FOR COLLECTING HTTP REQUESTS USING DEEP LEARNING
731

Table 3 Classification performance.

System TPR (Recall) FPR Accuracy AUC Precision F-measure

Overall 0.350 0.047 0.933 0.769 0.199 0.253
Individual 0.794 0.064 0.932 0.932 0.288 0.423
Proposed 0.755 0.016 0.977 0.945 0.623 0.683

Fig. 4 ROC curve.

Table 4 Contribution of features.

Order Type Feature Improvement

1 General Elapsed time 0.068
2 General Data size of request 0.010
3 General Existence of the identical comm. 0.006
4 Hostname Presence of “ip” in FQDN 0.006
5 Hostname Presence of subdomain 0.005
6 HTTP Depth of file path 0.004
7 General Data size of response 0.003
8 General Protocol 0.003
9 Hostname TLD rank 0.003

10 HTTP Status code 0.003

all but one of features. We then calculate their difference.
Table 4 shows the ten most contributed features based on
accuracy improvement. All types of features contributed to
the classification, but general features contributed the most
among the three feature types. These results show that ap-
plication protocols other than HTTP or HTTPS are also im-
portant for classification.

Important Behavior for Classification. To more clearly
identify the reason the RNN achieved the highest classifica-
tion performance, we analyze important network behavior
for classification. Since a small number of malware samples
is labeled as continuation in our dataset, these samples need
to be accurately detected to achieve high classification per-
formance. For this reason, we analyze network behavior of
malware samples classified as continuation. To this end, we
take advantage of the fact that the RNN can output predic-
tion probability of every node as well as the root node. Note
that the RNN classifies malware samples as continuation
if the prediction probability of the root node is larger than
0.5. We identify nodes satisfying the following three con-
ditions and analyze communications that are descendants of
the nodes.

1. The prediction probabilities of all descendants are

Fig. 5 Network behavior and predicted probabilities. Predicted proba-
bility is written in each node.

lower than 0.5.
2. The prediction probabilities of all ancestors are larger

than 0.5.
3. The prediction probability of the node is much larger

than those of its children.

One important behavior is a pair of a DNS query and
HTTP request in the latter half of the short-period analysis
as shown in Fig. 5 (a). These communications are related to
a FQDN with which the malware sample has not communi-
cated before. The malware samples from which novel HTTP
requests are collected by continuing their analyses succes-
sively send communications related to several FQDNs to
accomplish different purposes such as Internet connection
tests, updates, and command reception. On the other hand,
the malware samples that stop activities in the middle of
their analyses send communications related to only a few
FQDNs right after starting their analyses or repeatedly send
communications related to a FQDN. The RNN is supposed
to learn that the behavior of starting to send communica-
tions related to a new FQDN in the latter half of the analysis
indicates continuation of malicious activities.

Another important behavior is a few DNS queries right
after starting the analysis as shown in Fig. 5 (b). These DNS
queries are related to different FQDNs and are properly re-
solved. Since this malware sample sent a DNS query and
HTTP request related to a different FQDN after five minutes,
it is supposed to test the Internet connection with DNS and
sleep a certain period of time to conceal malicious activities.
On the other hand, the malware samples that stop activities
in the middle of their analyses send a DNS query and HTTP
request right after starting their analyses. The RNN is sup-
posed to learn that a few successfully resolved DNS queries
indicate continuation of malicious activities and are likely
to be followed by other malicious activities after a certain
period of time.

False Positives and False Negatives. We analyze false pos-
itives and negatives to understand limitations of the RNN.
The false positives, i.e., malware samples falsely classified

732
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.4 APRIL 2019

Table 5 HTTP request collection efficiency.

System Number Ratio Time (min.) Reduction Collection rate

Suspension 14,467 77% 84,325 83% 0.172
Continuation 18,676 100% 505,950 0% 0.037

Unknown request 18,550 99% 332,650 34% 0.056
Overall 14,467 77% 84,325 83% 0.172

Individual 14,467 77% 84,325 83% 0.172
Proposed 17,534 94% 94,100 82% 0.186

Oracle 18,676 100% 99,150 80% 0.188

as continuation, sent many DNS queries and HTTP requests
in the latter half of the short-period analysis. As mentioned
above, this behavior is similar to that of malware samples
from which novel HTTP requests are collected by continu-
ing their analyses. This is why false positives occur. The
false negatives, i.e., malware samples falsely classified as
suspension, sent a few HTTP requests right after starting the
analyses and slept about five minutes. As mentioned above,
this behavior is similar to that of malware samples that stop
activities in the middle of their analyses. This is why false
negatives occur. These examples show that the RNN can-
not accurately classify all malware samples. However, the
RNN achieved high classification performance by learning
common network behavior.

5.2 Evaluation on HTTP Request Collection

We compare our system with all conventional systems in
terms of collection efficiency and calculation time.

Collection Efficiency. We evaluate efficiency for collect-
ing novel HTTP requests, which have not been collected
in the analyses of training data. Table 5 shows the num-
ber of novel HTTP requests, analysis time, and collection
rate, i.e., the number of novel HTTP requests per minute.
The analysis time is the summation of time for which mal-
ware samples are analyzed. A malware sample is analyzed
for 5 minutes if the analysis is suspended. On the other
hand, a malware sample is analyzed for 30 minutes if the
analysis is continued. The analysis time does not include
the time of activating the dynamic analysis system [24] and
for feature extraction and classification. Since the contin-
uation system continued all analyses, its analysis time was
30 × 17,302 = 505,950. The analysis time of the suspen-
sion system was 5 × 17,302 = 84,325 because it suspended
all analyses. As a reference, we also show the collection
efficiency of the classifier whose accuracy is 1.0 (oracle in
Table 5). We further calculate the ratio of collected HTTP
requests and time reduction compared with the continuation
system. In this evaluation, we optimize the threshold of pre-
diction probability above which malware samples are clas-
sified as continuation because the best threshold in terms of
classification performance is different from that in terms of
collection efficiency. Specifically, we select the best thresh-
old in terms of collection rate.

The unknown request-based system collected most
novel HTTP requests but did not sufficiently reduce analysis
time. The overall and individual system could not improve

Fig. 6 HTTP request collection efficiency with different thresholds.

the collection rate by determination due to the low classifi-
cation performance. Consequently, their best collection rate
was the same as that of the suspension system. Our system
could improve the collection rate by determination and thus
collected a large number of novel HTTP requests in a short
analysis time. Our system had a higher collection rate than
the conventional systems.

To precisely understand the collection efficiency of
behavior-based systems, we investigate the number of novel
HTTP requests, analysis time, and collection rate with dif-
ferent thresholds as shown in Fig. 6. When a higher thresh-
old is used, both the number of novel HTTP requests and
analysis time increase because more malware samples are
classified as continuation. To draw Fig. 6, we analyzed all
malware samples for 30 minutes beforehand. If a malware
sample is classified as suspension we use the first 5 minutes
of its analysis. On the other hand, if a malware sample is
classified as continuation we use 30 minutes of its analysis.
We calculated the number of novel HTTP requests, analysis
time, and collection rate with different thresholds and plot
them in Fig. 6. Since our system achieved higher classifica-
tion performance, it collected more novel HTTP requests in
the same analysis time than other systems and successfully
increased the collection rate by determination. The over-
all and individual systems could not sufficiently increase the
number of novel HTTP requests even with longer analysis
time. This resulted in the decrease in the collection rate.

Calculation Time. Considering deployment, calculation
time must be much shorter than the analysis period. Hence,
we investigate calculation time for feature extraction and
classification as shown in Table 6. More precisely, the cal-
culation time is the time of executing programs for feature
extraction and classification per sample in the test phase.
Our proposed system took more time than the conventional

SHIBAHARA et al.: EFFICIENT DYNAMIC MALWARE ANALYSIS FOR COLLECTING HTTP REQUESTS USING DEEP LEARNING
733

Table 6 Calculation time (sec./sample).

System Feature extraction Classification

Overall 0.0007 0.00001
Individual 0.0008 0.00006
Proposed 0.6730 0.00387

Table 7 Network behavior of a malware sample whose secondary mal-
ware sample behaves differently.

Time Protocol FQDN or URL Novel

0’05 DNS example1.com
0’06 HTTP http://example1.com/malware.exe
0’20 DNS example2.com
0’30 HTTP http://example2.com/config
5’20 DNS example3.com
5’40 HTTP http://example3.com/?sid=xxx �

systems, but the calculation time was much shorter than that
when a malware sample is analyzed. Specifically, a mal-
ware sample is analyzed for 5 minutes if a malware sample
is classified as suspension and analyzed for 30 minutes if
a malware sample is classified as continuation. Therefore,
our proposed system can be deployed for efficient dynamic
analysis.

5.3 Case Study

We confirm the effectiveness of our system by analyzing
the network behavior of malware samples from which novel
HTTP requests are successfully collected on the basis of
our system but not collected on the basis of the unknown
request-based system. These malware samples did not send
novel HTTP requests for the first 5 minutes. This is why the
unknown request-based system did not collect novel HTTP
requests. The network behavior shown here is simplified
due to space limitations.

Different Behavior of Secondary Malware. Our proposed
system collected novel HTTP requests from a malware sam-
ple whose secondary malware sample behaves differently
than in the past analysis, as shown in Table 7. This mal-
ware sent communications related to example1.com at first
and downloaded an executable, which is supposed to be a
secondary malware sample. Next, it sent communications
related to example2.com. Since one of their URLs in-
cluded config, the malware sample is supposed to obtain
the configuration of its secondary malware sample. Com-
munications for obtaining the configuration are typical for
malware samples that continue to send communications, as
with the behavior shown in Fig. 5 (a). Since the RNN prop-
erly learned such behavior, this malware sample was classi-
fied as continuation. Then, the secondary malware sample
successively sent a DNS query and HTTP request related to
another FQDN. Since the training dataset included a mal-
ware sample that performed the same malicious activities as
the analyzed one, the HTTP requests to example1.com and
example2.com had already been collected. However, sub-
sequent HTTP requests were novel because their secondary

Table 8 Network behavior of a malware sample using DGA.

Time Protocol FQDN or URL Novel

0’20 DNS random1.com
0’30 HTTP http://random1.com/
3’35 DNS random2.com
3’40 DNS random3.com
6’40 DNS random4.com
6’45 HTTP http://random4.com/ �

Table 9 Network behavior of a malware sample that sleeps a long time.

Time Protocol FQDN or URL Novel

0’02 DNS example1.com
0’03 DNS example2.com

25’02 DNS example3.com
25’03 HTTP http://example3.com/e?xxx �

malware samples or their configurations were periodically
changed by attackers depending on their purpose.

DGA. The next example is a malware sample using the
domain-name generation algorithm (DGA) as shown in Ta-
ble 8. This malware sample sends many DNS queries re-
lated to randomly generated FQDNs using DGA and then
sends HTTP requests to properly resolved FQDNs. The ac-
tual strings of randomx in Table 8 were randomly gener-
ated by concatenating some words. Attackers use DGA to
evade blocking based on blacklists of FQDNs by generat-
ing different FQDNs at different times and using a few of
them. Malware samples leveraging DGA typically continue
to send communications. Therefore, the RNN learned such
behavior and classified this malware sample as continuation.
Properly resolved FQDNs differ depending on the time of
the analysis, and random4.com was used at the time of the
analysis for the first time. Therefore, our system collected
novel HTTP requests from this malware sample.

Long Sleep. The last example is a malware sample that
sleeps a long time after sending a few DNS queries, as
shown in Table 9. This malware sample sends a DNS query
and HTTP request related to another FQDN about 25 min-
utes after sending the DNS query related to example2.com.
This malware sample is supposed to test the Internet connec-
tion right after starting the analysis and sleep a long time to
conceal malicious activities. For this reason, the unknown
request-based system cannot continue the analysis. How-
ever, as shown in Fig. 5 (b), the behavior of this malware
sample is common for malware samples that continue to
send communications. Based on this behavior, the RNN
classified this malware sample as continuation, and our pro-
posed system successfully collected a novel HTTP request.

6. Discussion

We discuss our focus, the validity of the evaluation, and the
limitation of our system in this section.

Our Focus. Our system would not be able to increase col-
lection efficiency if malware samples belonging to the same

734
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.4 APRIL 2019

family were input. Hence, the selection of input malware
samples is also important to increase efficiency. However,
suitable samples can be selected by simply selecting diverse
malware families. For this reason, we consider how to in-
crease collection efficiency after malware samples are se-
lected.

Validity of Evaluation. We propose a system for efficiently
collecting novel HTTP requests to enhance detection per-
formance of the network-based methods such as malicious
communication detection [5], [6] and blacklist-based detec-
tion. In Sect. 5, we showed that our proposed system effi-
ciently collects novel HTTP requests, but we have not inves-
tigated whether it enhances detection performance. Since
the effect of our system differs depending on the methods,
we cannot conduct a uniform evaluation. However, we show
in case studies that our system collects novel HTTP requests
useful for detection.

In terms of maintaining classification performance, the
classifier of the RNN needs to be retrained periodically.
Considering the computational cost of retraining, the RNN
should keep classification performance high for a long pe-
riod. In our evaluation, we use test data collected for two
months, which is a reasonable interval for retraining, and
show that our system achieved high classification perfor-
mance for two months. Hence, our system is expected to
maintain high classification performance by retraining at
most every two months.

Limitation. If malware samples sleep a long time after dy-
namic analysis starts, our proposed system cannot be ap-
plied. In this case, we have two options. One is continuing
analysis until malware samples send communications. The
other is suspending analysis. Both decrease efficiency or
exhaustiveness. However, the percentage of these malware
samples is reported to be only 5.39% [27]. In our evalua-
tion, we could not apply our proposed system only to 0.4%
of malware samples. Therefore, the efficiency of our system
is not significantly decreased by these malware samples.

7. Related Work

7.1 Analysis, Detection, and Countermeasure

The methods for analysis, detection, and countermeasure
have been extensively studied from the following view-
points.

Static feature: One of the main methods used by mod-
ern anti-virus software is signature-based scanning. Griffin
et al. proposed a string signature generation system coun-
tering variants of malware families to reduce signature
database size [28]. However, almost all recent malware sam-
ples are obfuscated by the packer, and their characteristic
strings are enfolded. Therefore, malware samples should be
unpacked before they are applied to signature-based meth-
ods [29]–[32].

Host behavior: On an infected host, the analysis of
system call or API call events is useful to detect mal-

ware samples [33]–[35]. However, there are now malware
samples that circumvent or interfere with monitoring such
host-based events on the analysis environment, i.e., mal-
ware sandbox. To counter sandbox-aware malware, Kirat
et al. proposed an efficient analysis system running on ac-
tual hardware [36].

Network behavior: The communications initiated by
malware, e.g., C&C, are useful to build countermeasures
such as blacklisting and network-based signature genera-
tion [5], [37].

7.2 Appropriate Sample Selection to Avoid Full Analysis

Bayer et al. proposed a technique that avoids analyzing
the same polymorphic programs and reduces the amount of
time required for analyzing malware samples [15]. To de-
tect polymorphic malware samples, it analyzes them for a
short time and finds the most behaviorally similar sample.
It can successfully avoid the full analysis of about 25.3%
of malware samples. Neugschwandtner et al. proposed a
system leveraging both the behavioral clustering of Bayer
et al. [15] and static feature-based clustering that selects
the malware sample, which is most likely to yield relevant
information (e.g., C&C communication), without actually
running it [14]. We infer that analyzing malware samples
generated by the same toolkit, e.g., polymorphic malware
samples, and controlled by different attackers are also im-
portant for collecting informative communication because
those malware samples may access different malicious sites.
In our study, however, the time reduction of analysis was su-
perior, although we did not eliminate polymorphic malware
samples, e.g., our proposed system avoids the full analysis
of 98% of malware samples and reduces analysis time by
82%.

8. Conclusion

We have proposed a system for efficiently collecting novel
HTTP requests with dynamic malware analysis. Specifi-
cally, we analyze a malware sample for a short period and
then determine whether its analysis should be continued or
suspended. Our system identifies malware samples whose
analyses should be continued on the basis of the network
behavior in their short-period analyses. To make an accu-
rate prediction, we focus on the fact that malware commu-
nications resemble those of natural language from the view-
point of data structure. For this reason, we applied the re-
cursive neural network to our proposed system. In the eval-
uation with 42,856 malware samples, our proposed system
collected 94% of novel HTTP requests and reduced analy-
sis time by 82% in comparison with the system that con-
tinues all analyses. We further found that our system effec-
tively collected novel HTTP requests from a malware sam-
ple whose secondary malware sample behaves differently, a
malware sample that uses a domain generation algorithm,
and a malware sample that sleeps for a long period.

SHIBAHARA et al.: EFFICIENT DYNAMIC MALWARE ANALYSIS FOR COLLECTING HTTP REQUESTS USING DEEP LEARNING
735

References

[1] T. Shibahara, T. Yagi, M. Akiyama, D. Chiba, and T. Yada, “Effi-
cient dynamic malware analysis based on network behavior using
deep learning,” Proceedings of the 59th Annual IEEE Global Com-
munications Conference, pp.1–7, 2016.

[2] I. You and K. Yim, “Malware obfuscation techniques: A brief
survey,” Proceedings of the 2010 International Conference on
Broadband, Wireless Computing, Communication and Applications,
pp.297–300, 2010.

[3] A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, and
A. Hamze, “Malware detection based on mining api calls,” Pro-
ceedings of the 2010 ACM Symposium on Applied Computing,
pp.1020–1025, 2010.

[4] H. Father, “Hooking windows api-technics of hooking api functions
on windows,” CodeBreakers J, vol.1, no.2, 2004.

[5] T. Nelms, R. Perdisci, and M. Ahamad, “Execscent: Mining for new
c&c domains in live networks with adaptive control protocol tem-
plates,” Proceedings of the 22nd USENIX Conference on Security,
pp.589–604, 2013.

[6] D. Chiba, T. Yagi, M. Akiyama, K. Aoki, T. Hariu, and S. Goto,
“Botprofiler: Profiling variability of substrings in http requests to
detect malware-infected hosts,” Proceedings of the 2015 IEEE Trust-
com/BigDataSE/ISPA, pp.758–765, 2015.

[7] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on auto-
mated dynamic malware-analysis techniques and tools,” ACM com-
puting surveys, vol.44, no.2, 2012.

[8] Symantec, “Internet security threat report,” 2017. https://www.
symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.
pdf.

[9] J.D. Rennie and N. Srebro, “Loss functions for preference lev-
els: Regression with discrete ordered labels,” Proceedings of the
IJCAI multidisciplinary workshop on advances in preference han-
dling, pp.180–186, 2005.

[10] R. Socher, A. Perelygin, J.Y. Wu, J. Chuang, C.D. Manning, A.Y.
Ng, and C. Potts, “Recursive deep models for semantic composition-
ality over a sentiment treebank,” Proceedings of the Conference on
Empirical Methods in Natural Language Processing, p.1642, 2013.

[11] I. Sutskever, O. Vinyals, and Q.V. Le, “Sequence to sequence learn-
ing with neural networks,” Advances in Neural Information Process-
ing Systems, pp.3104–3112, 2014.

[12] Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1408.5882, 2014.

[13] R. Socher, C.C. Lin, C. Manning, and A.Y. Ng, “Parsing natural
scenes and natural language with recursive neural networks,” Pro-
ceedings of the 28th International Conference on Machine Learning,
pp.129–136, 2011.

[14] M. Neugschwandtner, P.M. Comparetti, G. Jacob, and C. Kruegel,
“Forecast: skimming off the malware cream,” Proceedings of
the 27th Annual Computer Security Applications Conference,
pp.11–20, 2011.

[15] U. Bayer, E. Kirda, and C. Kruegel, “Improving the efficiency of
dynamic malware analysis,” Proceedings of the 2010 ACM Sympo-
sium on Applied Computing, pp.1871–1878, 2010.

[16] G. Gu, J. Zhang, and W. Lee, “Botsniffer: Detecting botnet com-
mand and control channels in network traffic,” Proceedings of the
15th Annual Network and Distributed System Security Symposium,
2008.

[17] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer: Clustering
analysis of network traffic for protocol-and structure-independent
botnet detection,” Proceedings of the 17th USENIX Conference on
Security, pp.139–154, 2008.

[18] S. Nari and A.A. Ghorbani, “Automated malware classification
based on network behavior,” Proceedings of the 2013 Interna-
tional Conference on Computing, Networking and Communications,
pp.642–647, 2013.

[19] A. Mohaisen, A.G. West, A. Mankin, and O. Alrawi, “Chatter: Clas-
sifying malware families using system event ordering,” Proceedings
of the 2014 IEEE Conference on Communications and Network Se-
curity, pp.283–291, 2014.

[20] J. Ma, L.K. Saul, S. Savage, and G.M. Voelker, “Beyond black-
lists: learning to detect malicious web sites from suspicious urls,”
Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp.1245–1254, 2009.

[21] D. Canali, M. Cova, G. Vigna, and C. Kruegel, “Prophiler: a fast
filter for the large-scale detection of malicious web pages,” Pro-
ceedings of the 20th International Conference on World Wide Web,
pp.197–206, 2011.

[22] B.J. Kwon, J. Mondal, J. Jang, L. Bilge, and T. Dumitras, “The drop-
per effect: Insights into malware distribution with downloader graph
analytics,” Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pp.1118–1129, 2015.

[23] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “Avclass: A
tool for massive malware labeling,” International Symposium on Re-
search in Attacks, Intrusions, and Defenses, vol.9854, pp.230–253,
2016.

[24] K. Aoki, T. Yagi, M. Iwamura, and M. Itoh, “Controlling malware
http communications in dynamic analysis system using search en-
gine,” Proceedings of the 3rd International Workshop on Cyberspace
Safety and Security, pp.1–6, 2011.

[25] L. Breiman, “Random forests,” Machine learning, vol.45, no.1,
pp.5–32, 2001.

[26] R Core Team, R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria,
2016.

[27] G.N. Barbosa and R.R. Branco, “Prevalent characteristics in modern
malware,” BlackHat USA, 2014.

[28] K. Griffin, S. Schneider, X. Hu, and T.-C. Chiueh, “Automatic gen-
eration of string signatures for malware detection,” Proceedings of
the 12th International Symposium on Recent Advances in Intrusion
detection, vol.5758, pp.101–120, 2009.

[29] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P.G. Bringas, “Sok:
Deep packer inspection: A longitudinal study of the complexity of
run-time packers,” Proceedings of the 2015 IEEE Symposium on
Security and Privacy, pp.659–673, 2015.

[30] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, “A
generic approach to automatic deobfuscation of executable code,”
Proceedings of the 2015 IEEE Symposium on Security and Privacy,
pp.674–691, 2015.

[31] L. Martignoni, M. Christodorescu, and S. Jha, “Omniunpack: Fast,
generic, and safe unpacking of malware,” Proceedings of the 23rd
Annual Computer Security Applications Conference, pp.431–441,
2007.

[32] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee, “Polyun-
pack: Automating the hidden-code extraction of unpack-executing
malware,” Proceedings of the 22nd Annual Computer Security Ap-
plications Conference, pp.289–300, 2006.

[33] A.H. Sung, J. Xu, P. Chavez, and S. Mukkamala, “Static analyzer of
vicious executables (save),” Proceedings of the 20th Annual Com-
puter Security Applications Conference, pp.326–334, 2004.

[34] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J.C. Mitchell,
“A layered architecture for detecting malicious behaviors,” Proceed-
ings of the 11th International Symposium Recent Advances in Intru-
sion Detection, pp.78–97, 2008.

[35] C. Kolbitsch, P.M. Comparetti, C. Kruegel, E. Kirda, X. Zhou, and
X. Wang, “Effective and efficient malware detection at the end host,”
Proceedings of the 18th USENIX Conference on Security, pp.351–
366, 2009.

[36] D. Kirat, G. Vigna, and C. Kruegel, “Barecloud: bare-metal
analysis-based evasive malware detection,” Proceedings of the 23rd
USENIX Conference on Security, pp.287–301, 2014.

[37] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of http-
based malware and signature generation using malicious network

http://dx.doi.org/10.1109/glocom.2016.7841778
http://dx.doi.org/10.1109/bwcca.2010.85
http://dx.doi.org/10.1145/1774088.1774303
http://dx.doi.org/10.1109/trustcom.2015.444
http://dx.doi.org/10.1145/2089125.2089126
http://dx.doi.org/10.1145/2076732.2076735
http://dx.doi.org/10.1145/1774088.1774484
http://dx.doi.org/10.1109/iccnc.2013.6504162
http://dx.doi.org/10.1109/cns.2014.6997496
http://dx.doi.org/10.1145/1557019.1557153
http://dx.doi.org/10.1145/1963405.1963436
http://dx.doi.org/10.1145/2810103.2813724
http://dx.doi.org/10.1007/978-3-319-45719-2_11
http://dx.doi.org/10.1109/css.2011.6058563
http://dx.doi.org/10.1023/a:1010933404324
http://dx.doi.org/10.1007/978-3-642-04342-0_6
http://dx.doi.org/10.1109/sp.2015.46
http://dx.doi.org/10.1109/sp.2015.47
http://dx.doi.org/10.1109/acsac.2007.4413009
http://dx.doi.org/10.1109/acsac.2006.38
http://dx.doi.org/10.1109/csac.2004.37

736
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.4 APRIL 2019

traces,” Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation, pp.391–404, 2010.

Toshiki Shibahara is currently a researcher
at NTT Secure Platform Laboratories, Tokyo,
Japan. He is also a Ph.D. student at Osaka Uni-
versity. He received his B.E. degree in engi-
neering and M.E degree in information science
and technology from The University of Tokyo,
Japan in 2012 and 2014. Since joining Nippon
Telegraph and Telephone Corporation (NTT) in
2014, he has been engaged in research on cyber
security and machine learning.

Takeshi Yagi received his B.E. degree
in electrical and electronic engineering and his
M.E. degree in science and technology from
Chiba University, Japan in 2000 and 2002. He
also received his Ph.D. degree in information
science and technology from Osaka University,
Osaka, Japan in 2013. He joined the Nippon
Telegraph and Telephone Corporation (NTT) in
2002, where he is currently researching network
security, web security, honeypots, security-data
analysis based on machine learning, and secu-

rity intelligence technologies such as URL/domain/IP blacklisting and rep-
utation. He is now a senior research engineer in the Cyber Security Project
of NTT Secure Platform Laboratories. He is a member of the Institute of
Electrical and Electronics Engineers (IEEE) and the Institute of Electrical
Engineers of Japan (IEEJ) and IEICE.

Mitsuaki Akiyama received his M.E.
and Ph.D. degrees in information science from
Nara Institute of Science and Technology, Japan
in 2007 and 2013. Since joining the Nippon
Telegraph and Telephone Corporation (NTT) in
2007, he has been engaged in research and de-
velopment on network security, especially hon-
eypot and malware analysis. He is now with the
Cyber Security Project of NTT Secure Platform
Laboratories.

Daiki Chiba is currently a researcher
at NTT Secure Platform Laboratories, Tokyo,
Japan. He received his B.E., M.E., and Ph.D.
degrees in computer science from Waseda Uni-
versity in 2011, 2013, and 2017. Since joining
Nippon Telegraph and Telephone Corporation
(NTT) in 2013, he has been engaged in research
on cyber security through data analysis. He
won the Research Award from the IEICE Tech-
nical Committee on Information and Commu-
nication System Security in 2016 and the Best

Paper Award from the IEICE Communications Society in 2017. He is a
member of IEEE and IEICE.

Kunio Hato received his B.E. and M.E.
degrees in information processing from Tokyo
Institute of Technology in 1997 and 1999, re-
spectively. He joined the Nippon Telegraph and
Telephone Corporation (NTT) in 1999, where
he was previously engaged in research and de-
velopment of IP VPNs, wide area Ethernet. He
is now a Senior Research Engineer, Supervisor,
in Cyber Security Project of NTT Secure Plat-
form Laboratories. He was with the Network
Services of NTT communications from 2014 to

2017. He is a member of IEICE.

