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Jing ZHAO†a), Nonmember, Yoshiharu ISHIKAWA††b), Member, Lei CHEN†††c), Chuan XIAO††††d),
and Kento SUGIURA††e), Nonmembers

SUMMARY As big data attracts attention in a variety of fields, research
on data exploration for analyzing large-scale scientific data has gained pop-
ularity. To support exploratory analysis of scientific data, effective summa-
rization and visualization of the target data as well as seamless cooperation
with modern data management systems are in demand. In this paper, we
focus on the exploration-based analysis of scientific array data, and define
a spatial V-Optimal histogram to summarize it based on the notion of his-
tograms in the database research area. We propose histogram construction
approaches based on a general hierarchical partitioning as well as a more
specific one, the l-grid partitioning, for effective and efficient data visual-
ization in scientific data analysis. In addition, we implement the proposed
algorithms on the state-of-the-art array DBMS, which is appropriate to pro-
cess and manage scientific data. Experiments are conducted using massive
evacuation simulation data in tsunami disasters, real taxi data as well as
synthetic data, to verify the effectiveness and efficiency of our methods.
key words: spatial histograms, exploratory analysis, array DBMSs

1. Introduction

User-driven analysis is designed for traditional database
systems, which assume that users are aware of exactly what
they are looking for and have good knowledge of the con-
tents of the database. However, as big data has made great
success in a variety of fields, it leads to another type of anal-
ysis, data-driven analysis, in which it is not necessary for
users to have prior knowledge about the target dataset or be
aware of the type of queries they want to pose. Users often
explore massive data by navigation or visualization tools to
find interesting patterns. As a result, research on data explo-
ration for sophisticated analytic processing of large amount
of data has gained popularity [13].

As one of the common data types of big data, spatio-
temporal data has been widely applied in various domains
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such as mobile applications and scientific research [8]. For
instance, in scientific fields, simulations are conducted for
the purpose of predictions, decision making, etc. As one
of the typical simulations, disaster simulations like human
evacuation simulation are conducted for effective humani-
tarian relief and disaster management [25]. Such kind of dis-
aster simulations generates large scale spatio-temporal data,
which contains spatial and temporal information of evacuees
on the target area during a period of time. Analysis of dis-
aster simulation data can achieve various objectives, such as
discovery of interesting patterns and shelter location sugges-
tion [12]. Consequently, researches on enabling exploratory
analysis of spatio-temporal data has been increasing in de-
mand. Moreover, since a large amount of simulation data is
generated by simulations with different conditions and pa-
rameters (e.g., time when earthquake occurs), data ware-
housing techniques that enabling massive data storage and
exploration are also important [30].

In this paper, we focus on the exploration-based anal-
ysis of spatio-temporal array data, which is based on the
array representation for large-scale scientific data compu-
tation. While the traditional relational model cannot han-
dle such array data, we exploit the functionality of array
database management systems (array DBMSs) [2], to sup-
port scientific computing and exploratory analysis. A moti-
vating example is as follows. Consider an earthquake ana-
lyst intends to explore the evacuation simulation data after
an earthquake. A query like “return the spatial distribution
of evacuees during the first hour after the earthquake oc-
curs” is used to understand the movement of evacuees dur-
ing the given period of time. There are two main challenges
of exploration-based analysis of spatio-temporal array data:
1) Spatio-temporal data has characteristics on spatial and
temporal scales because of the semantic meanings of differ-
ent granularities, such as one day, one hour and one minute
on the time dimension, as well as country, city and district
on the spatial dimension. However, instead of exhausting
exploration by drill down and roll up operators, more ad-
vanced operators such as effective summarization and visu-
alization that navigates users to find interesting knowledge
are required. 2) Since the target spatial area of simulation
data is usually quite large, it is difficult for users to deter-
mine which part of the area should be focused on. In this
case, a succinct summary of the overall region is considered
to be useful.

In order to summarize the spatio-temporal array data
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to show the overall data distribution, we use the notion of
histogram [14], which is widely used in database systems
to summarize relations for query selectivity estimation and
approximate query answering [1], [4], [15], [22]. Such his-
tograms provide a concise summary of the target data, and
the accuracy depends on the chosen partition rules. Other
techniques for data summarization, such as wavelets [17],
which is important for image compression, has also been
used extensively for approximate query answering in the
database area, while it is not the focus of this paper.

Existing work on histograms generally focus on the
accuracy of histograms or approximation of query results
(such as selectively estimation), while our work considers
the quality of histograms as well as the efficiency of his-
togram construction, which is important for visualization
and data exploration. In this paper, we define a spatial V-
optimal histogram to represent the array data on the two-
dimensional spatial area, as an extension of one-dimensional
V-optimal histogram [15]. However, building histograms is
often very time consuming, especially for spatial V-optimal
histogram, which is proved to be NP-hard [18]. Unlike
the error-bounded V-optimal histogram construction prob-
lem studied in [18], we focus on the space-bounded his-
togram construction, and propose exact and approximate al-
gorithms based on dynamic programming for hierarchical
histogram construction. We prove that the exact and approx-
imate algorithms have approximation bounds with respect to
the arbitrary partitioning method. In order to enable inter-
active analysis of large-scale array data, we also propose a
heuristic approach based on l-grid partitioning, which is a
specific hierarchical partitioning, to speed up the histogram
construction further. In addition, we implement our pro-
posed histogram construction methods on SciDB [26], [27],
an open source array-oriented DBMS for the efficient stor-
age and manipulation of large array data. We perform ex-
perimental evaluation on evacuation simulation data as well
as real taxi trajectory data to show the effectiveness and the
efficiency of the proposed methods.

Our contributions can be summarized as follows:

• We study the problem of constructing histograms that
summarize the data distribution of a specific spatial
area during a time interval (Sect. 2).

• We propose both exact and approximate algorithms to
construct the spatial V-optimal histogram. In addition,
we also propose a heuristic algorithm based on l-grid
partitioning for fast histogram construction (Sect. 3).

• We implement the proposed histogram construction al-
gorithms on SciDB, the state-of-the-art array DBMS
(Sect. 4).

• We conduct extensive experiments on massive simula-
tion data, real taxi data as well as synthetic data with
different distributions, to verify the effectiveness and
the efficiency of the proposed methods (Sect. 5).

The rest of the paper is organized as follows: Sect. 2
introduces preliminaries and the problem definitions in this
paper. Section 3 presents our method for constructing hi-

erarchical spatial histograms for array data analytics. Sec-
tion 4 discusses the implementation of our method on an
array DBMS, SciDB. Experimental results and analyses are
reported in Sect. 5. Section 6 introduces the related work on
histograms and data visualization. Section 7 concludes the
paper.

2. Preliminaries

In this section, first we introduce the basic definition of
spatio-temporal arrays. Then, we formally define the his-
togram construction problem that we are going to investi-
gate in this work.

Definition 1 (Spatio-temporal Array): A spatio-temporal
array A(Dim, Attr) is a three-dimensional array with nu-
meric attribute values. Dim consists of dimensions x, y
and t, while Attr contains a list of attributes (a1, · · · , a|Attr|).
Dimensions x and y correspond to a two-dimensional spa-
tial grid structure, and dimension t is represented by a se-
ries of time stamps with equal time interval τ. Each el-
ement ex,y,t in the spatio-temporal array contains a tuple
of numeric attribute values corresponding to the position
(x, y, t), that belongs to the domains of dimensions, i.e.,
x ∈ Dimx, y ∈ Dimy and t ∈ Dimt.

Note that the time interval τ can be one minute, one hour,
etc., and depends on the dataset and the purpose of analysis.

In order to catch an insight of spatio-temporal ar-
rays, we use the notion of histograms from the studies
on selectivity estimation and query optimization in the
database area [1], [4], [15], [22]. In this paper, we for-
mulate the problem of constructing histograms for array
data exploration based on the space-bounded V-optimal his-
togram [15], which is defined as follows. For a given
number of buckets, a V-optimal histogram is the one with
the number of buckets bounded by the specified thresh-
old, but having the least variance, where variance is the
sum of squared differences between the actual and approx-
imate frequencies. While [15] proposed algorithms with a
quality guarantee for unidimensional V-optimal histograms,
the problem becomes totally different even in the two-
dimensional case.

In our work, we focus on the two-dimensional space-
bounded V-optimal histogram because of its bound on the
number of buckets, which is able to enhance the usability of
visualization. More precisely, the number of buckets in the
result histogram affects the quality of the visualization, since
visualizing the objective data by a histogram with too many
buckets will confuse an analyst and increase the inefficiency
of exploratory analysis [6]. Therefore, a space bound (i.e.,
the number of buckets) is considered to be important for the
usability of visualization.

Definition 2 (Spatial V-optimal Histogram): Given a spa-
tial-temporal array A, an attribute a, an integer B defining
the limit number of buckets, and an error metric E(), the spa-
tial V-optimal histogram H of A consists of a set of buck-
ets {b1, b2, · · · , bB} with the minimum error. The histogram
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is generated by partitioning the whole spatial region into B
non-overlapping buckets. Each bucket bl (1 ≤ l ≤ B) has
a corresponding rectangle area bl.area and an aggregated
value bl.val. The value of bl.val is calculated by averaging
the attribute values of elements in A, the area of which is
covered by bl.area.

Next, we define the error function. It is based on the
notion of sum of squared error (SSE), which is a common
error metric for measuring difference between two data dis-
tributions.

Definition 3 (Error Function): The error function E of a
spatial V-optimal histogram H is defined as

EB(H) =
B∑

l=1

∑

e∈A∧e.(x,y)∈bl.area

(e.a − bl.val)2. (1)

The defined error function has two properties, mono-
tonicity and superadditiveness. An error function is mono-
tonic if E(r) ≤ E(R) for two buckets r and R, where r ∈ R.
We say an error metric is superadditive if E(r) + E(R) ≤
E(r ∪ R), where r and R are two disjoint buckets.

[18] proved the problem of minimizing the heft (i.e.,
error metric value) of the partitioning with p tiles on two
dimensional array is NP-hard for some measures, where the
metric of sum of squared error (SSE) is one of those met-
rics. The problem of constructing a spatial V-optimal his-
togram defined in this paper is intrinsically the same as the
proved NP-hard problem, and the proof is based on a re-
duction from the Planar 3-SAT problem (shown to be NP-
complete in [16]).

In general, the histogram construction problem
changes with different partitioning strategies. For a two-
dimensional array, there are many types of partitioning.
Here, we show the three commonly used ones in Fig. 1 [18].
Arbitrary partitioning is the one with no restrictions on the
sub-rectangles shown in Fig. 1 (a). It is obvious that the
computation cost of arbitrary partitioning is the most ex-
pensive one, which is proved to be NP-hard as described
above. In this paper, we consider the hierarchical partition-
ing shown in Fig. 1 (b). A general hierarchical partitioning
can be represented by a binary tree in which each node rep-
resents a subarray, and the root represents the whole region
of the computed array. The p × p partitioning conducts p
times of partitions on each dimension, as shown in Fig. 1 (c).
It is a special case of the hierarchical one if the sibling nodes
of the hierarchical tree are the same along one dimension.

We propose both exact and approximate algorithms for

Fig. 1 Types of partitioning

hierarchical partitioning, and prove that compared to the ar-
bitrary partitioning method, the errors introduced by the ex-
act or the approximate algorithm are bounded. In order to
enable interactive analysis of large-scale array data, we also
propose heuristic approaches based on the l-grid partition-
ing, which is a special case of hierarchical partitioning.

3. Hierarchical Histograms

In this section, first we propose an exact histogram construc-
tion algorithm based on dynamic programming for general
hierarchical partitioning. Since the computational cost of
dynamic solution is expensive, we propose an approximate
solution with an approximation bound. Both of the two al-
gorithms are proved to have approximation bounds with re-
spect to the arbitrary partitioning, in which no restrictions
on the arrangement of buckets. In addition, we also propose
a heuristic algorithm for the efficiency.

3.1 Exact Algorithm

Recall that the problem is to find a histogram which has at
most B buckets with minimum error. We define E∗B(R) as the
minimum error of region R([i · · · j], [k · · · l]) with at most B
buckets. The computation strategy of the exact algorithm is
based on the following equation.

E∗B(R) = min
i≤x< j,k≤y<l,1≤b<B

{
E∗b(i · · · x, k · · · l)

+ E∗B−b(x + 1 · · · j, k · · · l), E∗b(i · · · j, k · · · y)
+ E∗B−b(i · · · j, y + 1 · · · l)} (2)

That is, the minimum error of region R is the minimum
error among the possible partitions along x (horizontal) and
y (vertical) dimension with possible number of buckets. As
shown in Eq. (2), b represents the possible number of buck-
ets assigned to each subregion by a partition. For each parti-
tion, there are B−1 possible values of b, i.e., 1, 2, . . . , B−1.
Furthermore, there are j − i possible partitions along x di-
mension, and l − k possible partitions for y dimension. For
instance, given a 4×4 arrayA shown in Fig. 2 (a), the whole
region of A is represented as R([1 · · · 4], [1 · · · 4]). There
are 3 possible partitions along y dimension (lines in blue),
each of which splits the whole region into two subregions,
as shown in Fig. 3. Note that, for each subregion, there are
also several possible partitions to split it into further smaller
subregions. The same holds for x dimension.

Fig. 2 An example array with its optimal histogram
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Fig. 3 Possible partitions along y dimension

The exact algorithm is based on dynamic programming
using Eq. (2) as described above. Consider the whole region
of the input array is represented as R, in order to compute
the optimal result of R, we incrementally compute the pos-
sible subregions of R by increasing the side length of each
dimension. E.g., for array A with region R([1, 4], [1, 4]),
we incrementally compute the subregions with side lengths
of 1, 2, 3 and 4, for each dimension. As a result, there are
102 possible subregions of the whole region for two dimen-
sions. Figure 2 (b) shows an optimal histogram of A when
the number of buckets B = 8, the error of which is 0.

3.1.1 Complexity Analysis and the Approximation Bound

The total computation time is computed by O(n4(nB2 + tE)),
where O(n4) represents the possible number of subregions,
and O(nB2 + tE) represents the cost of computing candidate
histograms for each subregions. tE is an upper bound on the
time taken to calculate the error metric value of any given
bucket. For each subregion, we compute O(B) optimal result
histograms with bucket number b ∈ [1, B]. Moreover, for
the result histogram with one bucket, one calculation of the
error of the target region is necessary, which is tE , while
computing the result histograms with bucket number b (1 <
b ≤ B), O(nB) computation cost is needed based on Eq. (2).
Since the error of a given bucket can be computed in O(1)
by efficient methods such as holding the statistic information
of subregions for further computation, tE can be reduced to
O(1). Therefore, the total computation time is O(N2.5B2),
where N is the size of the computed array (i.e., N = n2).

In order to compute the optimal histogram of a target
region with a given bucket number B, the optimal results
(i.e., a list of optimal solutions with the possible number of
buckets) of its subregions are temporally held. Since there
are totally O(N2) possible subregions for the whole region
R, the space complexity of the algorithm is O(N2B).

In what follows, we argue that the proposed exact al-
gorithm for hierarchical histogram construction can approx-
imately solve the problem of arbitrary partitioning with the
approximation bound.

Lemma 1: Consider any arbitrary partitioning of an array
A with superadditive error metric at most δ and B buckets.
There exists a hierarchical histogram ofA with error metric
at most δ and at most 4B buckets.

Proof. It is proved that any rectangular partition can be
converted into a hierarchical one by splitting each rectangle
to at most four disjoint rectangles [5]. Consider a given his-

togram which has B buckets with error δ, it can be converted
into a hierarchical one with at most 4B buckets. Moreover,
since the error metric is superadditive, the metric value of
this resulting hierarchical histogram is at most δ. �

Based on the above observation with the construction
algorithm of hierarchical histograms, we can obtain the fol-
lowing result.

Theorem 1: Let δ0 be the minimum error of the arbitrary
partitioning problem with at most B0 buckets under a su-
peradditive error metric. Then, in O(N2.5B2) time, we can
compute a histogram consists of at most B buckets with er-
ror δ ≤ δ0 and B ≤ 4B0.

3.2 Approximate Algorithm

Since the proposed exact algorithm for hierarchical parti-
tioning is quite computationally expensive, next we propose
an approximation algorithm to improve the running time of
dynamic programming algorithm by limiting the permissi-
ble side intervals of buckets. Moreover, the approximation
algorithm can control the approximation bound in a struc-
tured manner as described below.

Given a set of positive integers L0, L1, L2, . . . , Lk,
which is a geometric progression of values, such that L0 = n
and Li+1 divides Li, for 0 < i < k. For each Li, there is a set
of permissible intervals S i that the length of each interval in
S i is a multiple of Li. In other words, the permissible inter-
vals of Li are intervals [ jLi+1, lLi+1], for some positive inte-
gers j < l, such that lLi− jLi+1 < Li−1. For instance, if L0 =

3L1, the permissible intervals of L1 for each dimension com-
prise the following intervals with side lengths L1 and 2L1:
[1, L1], [L1 + 1, 2L1], [2L1 + 1, 3L1], [1, 2L1], [L1 + 1, 3L1].
For Lk, since we aim to compute the optimal result for the
intervals with length Lk, there’s no constraints on the inter-
val length. Therefore, the permissible intervals of S k contain
intervals in S i for i = k as defined above, as well as all their
subintervals.

In the same example of a two dimensional array A in
Fig. 2 (a), each dimension corresponds to the target spatial
region of interval [1, 4]. Each element of the array contains a
numeric attribute value at the corresponding position. Given
L0 = 4 and Lk = L1 = 2, the permissible intervals of each
dimension (x or y) for L0, represented as S 0 is [1, 4]. For
L1, which is also Lk, the permissible intervals S 1 consists of
[1, 2] and [3, 4] with side length 2, as well as all the subin-
tervals of them, i.e., [1, 1], [2, 2], [3, 3], [4, 4].

We define a k-hierarchical histogram based on the fol-
lowing partition rules for each dimension.

1. For intervals with side lengths in S i (0 ≤ i < k), the
permissible partitions split the interval into subintervals
in S i+1, the lengths of which are multiples of Li+1.

2. For intervals with side length of Lk, all the subintervals
are permissible by partitions with no constraint.

For instance, Fig. 4 shows the possible partitions (lines
in blue) for intervals with length L0 = 4. Based on the par-
tition rule (1), there’s only one possible partition along x
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Fig. 4 Possible partitions for side length of L0 = 4

Algorithm 1: AprDP(A, B, S )
Input: A: input array, B: maximal number of buckets,

S = {Lk, Lk−1, · · · , L0}: permissible side lengths
Output: Result histogram HB(A)

1 C ← ∅, C′ ← ∅; // Initialize the candidates
2 foreach xl ∈ S do
3 C ← C′, C′ ← ∅; // Update C with the

results of the previous loop, clear C′
4 foreach yl ∈ S do
5 Divide the whole region ofA evenly into

subregions R with size (xl, yl);
6 foreach r ∈ R do
7 foreach b ∈ [1, B] do
8 if xl = yl = Lk then
9 Compute Hb(r) by the exact

algorithm;

10 else if xl = Lk ∨ yl = Lk then
11 Compute Hb(r) by Eq. (2) based on

partition rules (1) and (2);

12 else
13 Compute Hb(r) by Eq. (2) based on

partition rule (1);

14 C′ ← C′ ∪ Hb(r); // Update
candidates

15 return HB(A);

and y dimension, respectively, since the subintervals should
equal to L1 = 2. For Lk = 2 (rule (2)), consider a subregion
r([1, 2], [1, 2]), the shaded area shown in Fig. 2 (a), the pos-
sible partitions along x and y dimension are also two (one
for each dimension).

Based on the partition rules described above, we pro-
pose an approximation algorithm to efficiently construct his-
tograms, which is again based on dynamic programming.
The basic idea is to incrementally compute the candidate re-
sults of possible subregions by increasing side lengths. The
pseudo-code is illustrated in Algorithm 1.

We incrementally compute the result histograms of
subregions with side lengths in S i for each dimension, where
i ∈ {k, k − 1, · · · , 0} (Line 2–14). For each subregion r,
we compute the result histogram Hb(r) with bucket number
b ∈ [1, B] based on Eq. (2) (Line 6–14). As different parti-
tion rules are conducted according to different side lengths
of target regions, we consider three cases as follows. First,
we call the exact algorithm for the subregions with both of
the two side lengths equal to Lk (Line 8–9). The second case

is that, only one of the side lengths equals to Lk (Line 10–
11). In this case, we partition on the dimension with side
length larger than Lk by partition rule (1), while for the di-
mension with side length of Lk, we use partition rule (2).
The final case is that both of the side lengths are larger than
Lk, in which case we partition the target region based on
partition rule (1). After we compute the result histograms of
the whole region ofA, the result HB(A) is returned.

3.2.1 Complexity Analysis and Approximation Bounds

There are O( n2

L2
k
) possible subregions, for each of which, we

compute O(B) result histograms with the possible bucket
number b ∈ [1, B]. The computation cost of each Hb(r) is
O(L5

k B), calculated by the cost of exact algorithm as men-
tioned in the last section, which is larger than the cost of
other cases (i.e., Line 10–13 in Algorithm 1). As a result,
the computation cost for all of the generated subregions is
O(n2L3

k B2). We assume that Lk is bounded by nε , where ε is
a small positive constant factor, then the total computation
cost is represented as O(N1+1.5εB2).

For space complexity, as shown in Algorithm 1, the
candidates of subregions with region size (xl, yl), for each
xl and all yl ∈ S are temporally held in C′. There are
the O( n2

L2
k
) possible subregions, for each of which, there are

O(B) possible candidate results with different bucket num-
bers, as well as O(Lk) candidate results of subregions with
one side length equals to 1, are needed for further computa-
tion. Therefore, the total space complexity is O( n2

Lk
B), repre-

sented as O(N1− ε2 B).
In the following part, we also argue that the proposed

approximation algorithm can approximately solve the hier-
archical partitioning problem as well as arbitrary partition-
ing problem with the approximation bounds.

Lemma 2: Consider an optimal hierarchical histogram of
an array A with superadditive error metric at most δ and B
buckets. There exists a k-hierarchical histogram of A with
error metric at most δ and at most (2k + 1)2B buckets.

Proof. Consider the optimal histogram of arrayA with
B buckets is known as H∗ with error δ, and the optimal k-
hierarchical histogram of A is represented as H. For any
arbitrary bucket b∗ in H∗, there are at most (2k + 1)2 buck-
ets generated in H with the same error reduction as b∗ in
H∗. The reason is basically based on the fact of possible
partitions of the k-hierarchical histogram are constrained by
the given k integers, i.e., L1, L2, · · · , Lk. In detail, consider
the side interval of b∗ along one dimension is [a, b] with
length larger than L1, where n is a multiply of L1, as shown
in Fig. 5. For the endpoint a, there are at most k parti-
tions that are necessary if we use the approximate algorithm
based on the binary partitioning, since each partition is con-
ducted only on the positions specified by Li as mentioned.
As shown in Fig. 5, there are at most P1, P2, . . . , Pk parti-
tions for a, and the same holds for endpoint b. Therefore,
there are totally 2k + 1 intervals generated in H for interval
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Fig. 5 Number of partitions for [a, b]

[a, b], so that there are at most (2k + 1)2 buckets generated
in H for each bucket in H∗. Moreover, since the error metric
is monotonic and superadditive, the error of H is not big-
ger than E(H∗). Based on the above mentioned observation,
there are at most (2k+ 1)2B buckets in H, with an error of at
most δ. �

Based on the analysis described above, we can con-
clude as follows.

Theorem 2: For any superadditive error metric, in
O(N1+1.5εB2) time, we can compute a histogram consists
of at most B buckets with error δ ≤ δ0 and B ≤ O((1 −
ε)2(log n)2B0), where δ0 is the minimum error of any arbi-
trary histogram with at most B0 buckets.

Proof. As we know, ε determines the time complex-
ity of the approximate algorithm, as well as the length of
Lk, which determines the possible permissible side lengths
by k = log n − log Lk. Since Lk = nε , then k = (1 − ε) log n.
Based on Lemma 2, we can know that, for an optimal hierar-
chical histogram of array A that has at most B0 buckets with
error δ0, in O(N1+1.5εB2) time, we can find a k-hierarchical
histogram that has at most O((1−ε)2(log n)2B0) buckets with
error δ0. Moreover, based on the above results and The-
orem 1, we can get the approximation bound for arbitrary
histograms as O(4(1 − ε)2(log n)2B0), which is represented
as O((1 − ε)2(log n)2B0) as well. �

By setting ε appropriately, the algorithm can be exe-
cuted in near linear running time and has a quality guaran-
tee as well. The smaller ε indicates less computation cost
but more unnecessary buckets, which means the worse re-
sult quality, vice versa.

3.3 Heuristic Algorithm Based on l-grid Partitioning

As described above, the computational cost of the approxi-
mate approach is still high, when the array size N and the
number of buckets B is large. Considering the usability
of visualization, which demands for immediate response of
queries, we also propose a heuristic algorithm based on a
more specific hierarchical partitioning, the l-grid hierarchi-
cal partitioning, which is introduced as follows.

The overall spatial region corresponds to the root of the
l-grid tree structure at depth 0, every partition evenly divides
the interval of target region into l sub-intervals for each di-
mension. For instance, the spatial V-optimal histogram is
considered as a 2-dimensional case, each partition of the
target region generates l × l sub-regions with the same di-
mension length. Figure 6 shows an example histogram con-
struction by l-grid partitioning when l = 2.

The heuristic algorithm follows a a top-down greedy
strategy to conduct the l-grid partitioning, until the number

Fig. 6 An example l-grid partitioning (l = 2)

of buckets is not less than B. We define the greedy criteria
as Max-Red, which chooses a partition with the maximum
error reduction at each time. As the example shown in Fig. 6
when l = 2, the first partition conducts with only one choice,
which is to partition the whole region into four subregions.
Then, the second partition conducts by comparing the four
possible partitions of current buckets. Since the error reduc-
tion of the right-down bucket is the largest one, we further
split this bucket into four subregions to construct the result
histogram when B = 7.

The number of additional buckets Δb generated by each
partition, is computed as l2 − 1, if no empty cell exists, e.g.,
3 additional buckets are generated when l = 2. Then, the
total partition time is computed by B−1

l2−1 , since the maxi-
mum number of buckets is B. As the whole region is con-
sidered as 1 bucket, the first partition divide the whole re-
gion into l2 subregions, further partition generates l2 − 1
additional buckets as mentioned above. Therefore, the list
of bucket numbers generated by each partition is shown as
(l2 − 1) + 1, 2(l2 − 1) + 1, · · · , B. For each partition, the
greedy strategy is conducted by comparing all the buckets
that can be split. As a result, the total computation cost is
O(B2l−2tE), where tE is an upper bound cost of computing
the error metric value of a given bucket.

4. Implementation on Array DBMS

Since scientific data typically have spatio-temporal struc-
ture, indexed arrays are often used to represent scientific
data, while the traditional relational model cannot handle
such array data [23]. Some array database management sys-
tems are developed to support scientific computing and on-
line analytical processing (OLAP), such as RasDaMan [3],
ArrayDB [2], SciDB [24], [26], [27], etc. In this paper, we
implement the proposed histogram construction methods on
SciDB, one of the state-of-the-art array DBMSs.

4.1 Overview of SciDB and Our Configuration

SciDB is a parallel database system based on the shared
nothing architecture, and designed specifically for scientific
data management and analysis. In SciDB, array data is or-
ganized on disks as chunks, which also work as the I/O
units. Chunking ensures that logically co-located cell val-
ues are clustered into the same physical block, and enables
efficient query processing. Chunks are distributed among all
instances of a SciDB cluster. SciDB uses a variety of func-
tions for chunk mapping, and the default is the hash-based
distribution. During query execution, each instance node ex-
ecutes query locally with the partial array data, and transfers
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intermediate results across nodes when global computing is
necessary.

SciDB supports a variety of operators for array data,
such as data extraction (e.g., slice, between) and aggrega-
tion (e.g., aggregate, regrid). For aggregate operators, a
lot of aggregate functions (e.g., sum, min, and max) are
supported. In addition to built-in operators and aggregate
functions, users are also allowed to implement user-defined
operators (UDOs) and user-defined aggregates (UDAs) us-
ing C++ language based on the plugin mechanism. Once a
plugin operator is loaded into the SciDB library system, it
can perform in the similar way with the built-in operators
of SciDB for data processing. SciDB also support a python
interface, SciDB-Py, that leverages data-parallel computing
of scientific data on Python, while SciDB acts as a back-
end database server. The details of implementation will be
explained in the following section.

Our experiments are performed on a SciDB cluster,
which consists of a coordinator server (CPU: Intel Xeon
E5-2637 v4 @ 3.50GHz × 2, RAM: 128GB, OS: Ubuntu
14.04 LTS 64bit) and three worker servers (CPU: Intel Xeon
E5620 @ 2.40GHz × 2, RAM: 32GB, OS: Ubuntu 14.04
LTS 64bit), each with three instances. There are totally 10
SciDB instances that work in parallel. The used version of
SciDB is 16.9.

4.2 Implementation Details

The proposed methods, i.e., exact algorithm, approxi-
mate algorithm and greedy algorithm, are implemented on
SciDB as UDAs, represented as DPMerge, AprMerge and
LGreedy, respectively. The UDAs are executed by employ-
ing the aggregate operator that conducts aggregation on the
input array. An example of the aggregate query is shown as
follows:

aggregate(array_name,UDA(atr_name))

where array name is the name of input array, and atr name
is the name of the aggregated attribute.

Using the UDAs described above, users are able to
conduct the proposed histogram construction methods on
any target array by setting it as the input array. More-
over, parallel computation is available by the regrid oper-
ator, which conducts aggregation on the sub-regions with
specified block sizes at the same time. An example of the
regrid operator is as follows:

regrid(array_name,blk_x,blk_y,UDA(atr_name))

where blk x and blk y represent the specified block sizes for
each dimension. In addition, using the SciDB-Py interface,
visualization and interactive analysis of histograms are also
available.

5. Experiments

5.1 Objective datasets

The objective datasets consist of an evacuation simulation

data in the event of large-scale earthquakes in Kantou area
of Japan, a real dataset of taxis’ trajectory data in Bei-
jing [28], [29], and synthetic datasets with three different
distributions. The simulation data, represented as Dataset-1,
contains abount 194 millions records of evacuees’ mobility
data during 24 hours after an earthquake occurs. The real
trajectory data, represented as Dataset-2, contains about 15
million data points of 10,357 taxis during the period of Feb.
2 to Feb. 8, 2008.

The records of Dataset-1 and Dataset-2 are both in the
format of (id, time, x, y): id denotes user ID; time, a time
stamp; x, y, the location of a user. We preprocess the two
datasets by dividing the spatial regions with a maximum
grain size of 4,096 × 4,096, while the number of objects
in each cell is aggregated by every minute and ten minutes,
respectively. The aggregated data resulting from the prepro-
cessing are loaded to SciDB and are subjected to the query
processing. The schemas of the generated spatio-temporal
array stored in SciDB are represented as follows.

Dataset-1<Num:int64>

[X=1:4096;Y=1:4096;T=1:1440]

Dataset-2<Num:int64>

[X=1:4096;Y=1:4096;T=1:900]

Both of the two above arrays consist of 3 dimensions as X,
Y , T , and the attribute Num is the sum of objects of each
grid cell.

In addition, we generate synthetic data that contains
an array with the uniform distribution of interval (0, 1), as
well as others with the Gaussian distribution. We generate
two Gaussian distribution array data with the same mean (0)
and different variances (0.25 and 1), which is represented as
Gaussian-1 and Gaussian-2, respectively.

5.2 Experimental Setup

We perform extensive experiments to evaluate the quality
and efficiency of the proposed methods on a SciDB clus-
ter, the details of which is introduced in Sect. 4.1. First, we
compare the proposed approximate and heuristic algorithms
with exact algorithm, as well as GHBH (grid hierarchical bi-
nary histogram), which is proposed in [10]. Since the com-
putation cost of the exact algorithm is extremely expensive,
we generate array data with lengths from 16 to 128 for each
dimension, and set the number of buckets varying from 10
to 50. Then, we conduct experiments on large datasets, each
dimension length of which varies from 64 to 1024, to evalu-
ate the scalability of the proposed algorithms and GHBH on
efficiency and quality. In addition, we conduct experiments
on synthetic data to measure the robustness of the proposed
algorithms under different distributions.

The compared methods are represented in short as in
Table 1. To evaluate the result quality of Apr, we set the
parameter Lk as 4 and 16 to compare the errors of result
histograms with ground truth, which is computed by the ex-
act algorithm. For the l-grid heuristic algorithm, we set l as
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Fig. 7 Efficiency (Execution time)

Fig. 8 Quality (Error)

Table 1 Symbols of compared methods

Proposed methods Symbol
Exact algorithm Exact
Approximate algorithm Apr
Heuristic algorithm based on l-grid partitioning LPG
Grid hierarchical binary histogram GHBH

2, which is a general grid-based partitioning, i.e., quadtree-
based partitioning. Also, we show the results of GHBH
when parameter k is set as 2, which performs best. We use a
hyphen to concatenate algorithm names and parameter set-
tings, e.g., Apr-4 means the approximate algorithm with an
Lk of 4.

The quality of the algorithms is measured by the errors
of result histograms in terms of the input array. We use the
sum of squared error (SSE), which is defined in Eq. (1) to
measure the quality. The efficiency is evaluated by the exe-
cution time of the algorithms. We evaluate the efficiency and
quality of the proposed methods by varying the dimension
length n of the computed array and the number of buckets
B.

5.3 Comparing with Exact Algorithm

5.3.1 Evaluation of Efficiency

Figure 7 shows the execution time of the compared methods
by varying the dimension length n (i.e., array size of n × n),
as well as the number of buckets B. The result shows that
Exact is the most time consuming one, and it becomes in-
executable when n is larger than 128, as shown in Fig. 7 (a)
and Fig. 7 (b). The reason of its unavailability is that, the
generated candidate results by the dynamic programming
algorithm exceeds the main memory. As shown in Table 2,
the space complexity of Exact is O(N2B), which is the most
expensive one than other methods.

The result also demonstrates that the approximate and

Table 2 Computation cost of proposed methods

Proposed methods Time complexity Space complexity
Exact O(N2.5B2) O(N2B)
Apr O(N1+1.5εB2) O(N1− ε2 B)
LPG O(B2l−2tE) O(B)

heuristic algorithms are more efficient than Exact. For the
approximate algorithm, Apr-16 is much slower than Apr-4,
since the large parameter Lk indicates larger ε of Theorem 2
in Sect. 3.2, which affects the time complexity of the approx-
imate algorithm. Also, Apr runs slowly than the heuristic
algorithms GHBH-2 and LPG-2, but the distinction is mi-
nor when data size is small and the parameter Lk is small.
As shown in Fig. 7, the execution time of Apr-4 is close to
GHBH-2 when data size is small (n < 128), and it is not
affected by the increase of the bucket number B. Moreover,
we can improve the efficiency of Apr by decreasing the pa-
rameter Lk at the expense of quality.

On the other hand, the proposed heuristic algorithm
(LPG-2) is faster than GHBH-2, and it is the most efficient
one, even when l = 2. As the time complexity of LPG
shown in Table 2, the larger the l is, the more efficient of
LPG. Moreover, the increasing of bucket number B does not
affect the efficiency of the approximate and heuristic algo-
rithms, since B is much smaller than N.

5.3.2 Evaluation of Quality

We also compare the corresponding errors of result his-
tograms (i.e., SSE) as shown in Fig. 8. The errors increase as
n increases or B decreases, which is intuitive. For Dataset-1
as illustrated in Fig. 8 (a), the errors of the compared meth-
ods are all 0 when n is 16, due to the small size of array.
For the approximate algorithm, the result demonstrates that
increasing the parameter Lk makes the result error decrease.
It verifies Theorem 2 in Sect. 3.2, since large Lk indicates
large ε, which means the high time complexity as well as



796
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.4 APRIL 2019

Fig. 9 Varying n (B = 50)

Fig. 10 Varying B (n = 128)

high approximation of results. Moreover, both of Apr-4 and
Apr-16 perform better than LPG-2 and GHBH-2, and the
larger the parameter Lk, the closer the results of Apr to the
ground truth.

Figure 8 (a) and Fig. 8 (b) show the influence of the ar-
ray size n on the result errors. When data size is small (e.g.,
n = 32 in Dataset-1 and n = 16 in Dataset-2), the errors
of GHBH-2 and LPG-2 differ slightly, which depends on
the target data. As data size becomes larger, the errors of
GHBH-2 and LPG-2 are almost the same, and their differ-
ence with Apr also becomes smaller. This indicates that, the
larger the array size, the influence of the partitioning strat-
egy becomes weaker on the result errors.

Figure 8 (c) and Fig. 8 (d) demonstrate that, the distinc-
tion between the approximate algorithm and heuristic algo-
rithms becomes larger when B increases. The reason is that,
for the heuristic algorithms LPG and GHBH, larger B indi-
cates more times of partitions, which causes more imprecise
on the results. In addition, when B is small (B ≤ 30), LPG-2
and GHBH-2 perform similar with each other, while when B
becomes larger, GHBH-2 performs better than LPG-2, due
to the flexible structure of GHBH with respect to LPG.

5.4 Comparing Proposed Methods and GHBH

In what follows, we evaluate the efficiency and quality of
the proposed approximate and heuristic algorithms as well
as GHBH, using large size of data, where the length of each
dimension varies from 64 to 1024, and the number of buck-
ets changes from 10 to 100.

5.4.1 Varying the Array Size (n × n)

Figure 9 demonstrates the results of execution time and er-
rors of the compared algorithms by varying n, which is the
length of each dimension. In Fig. 9 (a) and Fig. 9 (c), the
execution time of the approximate algorithm with different

Lk increases with the increase of n. The smaller the Lk is,
the faster the approximate algorithm. The reason is also the
same with the one explained in the previous section, which
is determined by the time complexity O(N1+1.5εB2), where
small Lk indicates small ε. The result also verifies that the
efficiency of the heuristic algorithm LPG is the best one, and
GHBH-2 is slightly slower than LPG-2. On the other hand,
Fig. 9 (b) and Fig. 9 (d) show that, the quality of results gen-
erated by LPG-2 and GHBH-2 is worse than the approxi-
mate algorithm, and the distinction between them becomes
smaller when array size becomes larger. One of the reasons
of the reduced distinction is that the larger the array size
is, the more imprecise of the approximate algorithm is, ac-
cording to Theorem 2 The other reason is that, the larger the
array size, the influence of the partitioning strategy becomes
weaker on the result quality.

5.4.2 Varying the Number of Buckets (B)

Figure 10 (a) and Fig. 10 (c) show the execution time of the
compared methods are not sensitive to the number of buck-
ets B. This can be explained their time complexity results in
Table 2. Since the value of B is a small constant value (here,
we consider it as [10, 100]), which is much smaller than ar-
ray size N, the execution time is not sensitive to B. The
errors of the results are shown in Fig. 10 (b) and Fig. 10 (d).
The approximation of the approximate algorithm is also ver-
ified by the fact that Apr-16 performs better than Apr-4.
However, the distinction between them is not obvious since
the array size is large. Meanwhile, the accuracy of the ap-
proximate algorithm is better than LPG-2 and GHBH-2, and
the larger the B is, the bigger the gap between them. This
can be also explained by the imprecise of results caused
by the increase of partitions as mentioned before. The re-
sult of Dataset-2 is less obvious than Dataset-1, because its
larger data density, which leads to the imprecise of result
histograms.
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Fig. 11 Data distributions, varying B (n = 16)

5.5 Performance on Different Data Distributions

Further, we perform experiments to measure the approxi-
mate algorithm (Apr-4) and heuristic algorithm (LPG-2) on
different data distributions. The quality of the methods is
measured by the error ratio with the ground truth E0, i.e.,
(E − E0)/E0, where E is the SSE value of the result his-
togram, and E0 is computed by Exact. Figure 11 (a) demon-
strates that the quality of the two algorithms with Uniform
data and Gaussian-1 (Gaussian data with smaller variance)
is better than Gaussian-2 (the one with larger variance).
This is because the error (SSE) of Gaussian-2 is intrinsi-
cally large, which leads to the result with more deviation.
Meanwhile, the quality of algorithms on the uniform data
and Gaussian-1 is similar. Furthermore, the execution time
of them with the three distributions are similar with each
other, as shown in Fig. 11 (b).

5.6 Discussion

The experimental results verify the efficiency and quality of
the proposed approximate and heuristic algorithms. Com-
paring to the exact algorithm, the execution time of the ap-
proximate and heuristic algorithms is faster, and not as space
consuming as the exact algorithm. Meanwhile, the qual-
ity and efficiency of the approximate algorithm, which is
proved in Theorem 2, is also verified by the fact that the
larger the parameter Lk is, the more accuracy of the result
and more time consuming. We also observed that, when
data size is small (e.g., n < 128), the efficiency of Apr-4
is close to the existing heuristic method GHBH-2, with sig-
nificant quality improvement. Moreover, the increase of the

number of buckets B makes the distinction of quality more
obvious.

For the heuristic algorithm (LPG), it runs faster than
GHBH even when l is 2, with similar result quality. More-
over, LPG has good efficiency even if we increase the array
size and the number of buckets. Although the accuracy of
the results are worse than the approximate algorithm, the
larger the array size, the distinction is less obvious. In ad-
dition, the efficiency of the approximate and heuristic algo-
rithms is not affected by different data distributions, while
the accuracy on data with the uniform distribution and Gaus-
sian distribution with a small variance is better than Gaus-
sian distribution with a large variance.

6. Related Work

A histogram is one of the popular approaches in summariz-
ing large datasets and often used in database systems [14].
One of the applications of histograms is query cost es-
timation based on cardinality estimation of a query re-
sult [1], [4], [15], [22]. Researches in the literature focus
on the histogram construction methods and the estimation
of attribute values or frequencies, which is not the focus of
this paper. For the construction of multi-dimensional his-
tograms, as the cost of constructing optimal histogram is
prohibitively large [18], existing techniques use heuristics
to partition the data space into buckets, while they do not
provide any guarantees on the quality of histograms.

MHIST [22] is based on a greedy strategy MaxDiff(v,a),
defined in [21], to partition the buckets in the most need of
partitioning. Each partition divides the two consecutive val-
ues with the largest “area gap” [21] along one dimension.
MHIST iteratively conducts partitioning until it reaches a
given number of buckets. [10] proposes a Grid Hierarchi-
cal Binary Histogram (GHBH) based on the binary parti-
tion schema, which is the most relevant one to our work. In
GHBH, each partition of a block is constrained to be laid
onto a grid, which divides the block into a number of equal-
size sub-blocks. This number is a parameter of the parti-
tion, given by k. The paper also proposes a greedy algo-
rithm to construct a histogram with a given storage bound.
Several greedy criteria are used, and the experimental re-
sults show that combination of the Max-Var and Max-Red
performs best than other state-of-the-art techniques, such as
MHIST and GENHIST [11].

Histograms considering spatial and temporal aspects
are also studied for approximate query answering [7], [9],
[20]. [9] proposed a framework for building and contin-
uously maintaining spatio-temporal histograms. The his-
togram has an N × N grid structure, which is progressively
refined by query feedbacks, to support continuous queries
on dynamic streaming data. [20] studied the approximate
query answering for future location-based query, using pre-
dictions based on spatio-temporal histograms. [7] evalu-
ated several spatial partitioning techniques by their effects
on the performance of spatial queries. However, their fo-
cused problems are different from ours and their methods
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are not adaptive to solve our problem.
In this paper, we consider a general hierarchical his-

togram based on binary partition, as well as a more specific
one (l-grid-based) for summarization. For the general hier-
archical structured histogram, we propose a k-hierarchical
histogram, which has different constraints on the buck-
ets with GHBH mentioned above. Moreover, we proved
and verified the approximation bound of k-hierarchical his-
togram with respect to the optimal histogram as mentioned
in Sect. 3.2. The comparison experiments of our proposed
methods and GHBH are shown in Sect. 5.

Another feature of our approaches is the use of an array
DBMS, such as RasDaMan [3], ArrayDB [2], SciDB [24],
[26], [27]. Since array DBMSs are now becoming pop-
ular in scientific computing and online analytical process-
ing (OLAP), their effective use is an important issue in the
database research area. We have used SciDB for implement-
ing the proposed three algorithms. Using the feature of user-
defined operators, we could easily implement our operators.

In addition, as data analytics has recently attracted in-
creasing attention, data visualization is found effective in
supporting interactive analyses and many studies on the sub-
ject are now underway. From the database perspective, tech-
nologies that can instantly visualize large-scale data or se-
lect data to be visualized are important. Since histograms
can present the overview of data distribution in a summa-
rized way, visualization is also another popular usage of his-
tograms [6], [19]. For example, MuVE [6] visualizes data
by bar graphs as a result of their consideration on the view-
points that will concentrate data into specified conditions re-
markably different from the whole data. SeeDB system for
the visualization of databases, though intended for category
attributes, is also closely related to this study [19].

7. Conclusions and Future Work

In this paper, aiming to realize the advanced analysis func-
tionality of large-scale spatio-temporal array data, we de-
fined a spatial V-Optimal histogram and propose histogram
construction algorithms for hierarchical partitioning. We
proposed exact and approximate algorithms with approxi-
mation bounds, as well as a heuristic approach to further
speed up the histogram construction for data exploration. To
improve the efficiency of the proposed methods on massive
data, we implemented them on SciDB, the state-of-the-art
array DBMS.

In order to verify the effectiveness and efficiency of our
methods, we conducted experiments on the massive evac-
uation simulation data and real taxi data, as well as syn-
thetic data with different distributions. Experimental results
demonstrate that the proposed approximate and heuristic al-
gorithms perform well in efficiency than the exact algorithm,
and also verify the approximation quality of the approximate
algorithm. The approximate algorithm performs best on
quality with similar efficiency comparing to other heuristic
algorithms when data size is small. As data size increases,
the proposed heuristic algorithm performs best on efficiency

with similar result quality with the approximate algorithm.
In this work, we treat the spatio-temporal data as a se-

ries of spatial data, and introduced aggregation and summa-
rization approaches by constructing histograms on spatial
data. However, methods for appropriately setting the time
interval adapting to the requests of analysis is on demand.
In future work, we consider to construct a three-dimensional
spatio-temporal histogram that deals with both spatial and
temporal dimensions, which has not been studied in the lit-
erature as far as we know. Moreover, we also intend to solve
the problem of updating histograms for continuous queries
of data exploration. To enable interactive analysis of large-
scale spatio-temporal array data, developing techniques on
array DBMS that improving the efficiency of query process-
ing is also in demand.
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