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Reward-Based Exploration: Adaptive Control for Deep
Reinforcement Learning

Zhi-xiong XU†a), Lei CAO†, Xi-liang CHEN†, Nonmembers, and Chen-xi LI†, Student Member

SUMMARY Aiming at the contradiction between exploration and ex-
ploitation in deep reinforcement learning, this paper proposes “reward-
based exploration strategy combined with Softmax action selection” (RBE-
Softmax) as a dynamic exploration strategy to guide the agent to learn.
The superiority of the proposed method is that the characteristic of agent’s
learning process is utilized to adapt exploration parameters online, and
the agent is able to select potential optimal action more effectively. The
proposed method is evaluated in discrete and continuous control tasks on
OpenAI Gym, and the empirical evaluation results show that RBE-Softmax
method leads to statistically-significant improvement in the performance of
deep reinforcement learning algorithms.
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1. Introduction

Reinforcement learning (RL) studies that how an agent
maximize rewards in a previously unknown environment
through trial and error. An agent can hardly find an optimal
policy unless it has sufficiently explored the environment.
As a result, how to balance the ratio between exploration and
exploitation is one of core challenges in RL, which has great
effect on the agent’s learning process. On the one hand,
too much exploration prevents the agent from maximizing
short-term reward because selected exploration actions may
yield negative reward from the environment. On the other
hand, exploiting uncertain environment knowledge prevents
from maximizing long-term reward since selected actions
may remain suboptimal. This problem is well known as the
dilemma of exploration and exploitation [1].

Most of the recent state-of-the-art RL algorithms have
been using simple exploration strategies such as ε-greedy
method [2]. Compared with uniform sampling [3] and inde-
pendent identically distributed/correlated Gaussian noise [4]
method, whose sample complexity grows exponentially
with state space size in tasks, ε-greedy method is more ef-
ficient and requires little memory space for environment.
However, the disadvantage exists in this method is obvious,
ε-greedy exploration strategy highly depends on the careful
setting of meta-parameters, which are usually tuned by hand
instead of taking advantage of the agent’s learning process.
In fact, it’s unclear for agent when to adapt the parameters
ε in a given learning task. As a result, how to tune ε for
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a better performance becomes a time-consuming work es-
pecially in the face of relatively complex problems. Value-
Difference Based Exploration combined with Softmax ac-
tion selection (VDBE-Softmax) [5] is one of methods to
solve this problem, which utilizes the temporal-difference
error as a measure of the agent’s uncertainty about the envi-
ronment to adapt exploration parameters, but it rely on the
statistics of different states of the ε value and can’t operate
on the tasks with large-scale continuous state space. Count-
based exploration [6] method uses a hash table to record the
state visited, thus adjusting the direction of exploration, but
the division of the state of the problem requires high. Varia-
tional Information Maximizing Exploration (VIME) [7] en-
courage agent to explore by acquiring information about en-
vironment dynamically, but only for simple environment.
Those exploration strategies can only be specific to their
own problem domain, we haven’t seen a simple and fast
method that can work across different domains.

In this paper, we present a reward-based exploration
method called RBE-Softmax exploration strategy, which
combines reward-difference method and Softmax explo-
ration strategy. Our exploration strategy not only take ad-
vantage of agent’s learning process to adapt exploration pa-
rameters dynamically, but also can solve the problems with
discrete and continuous state or action space.

We validated our proposed method on OpenAI Gym
with the discrete and continuous control tasks. By com-
bining different deep reinforcement learning algorithms, we
present empirical evidence that RBE-Softmax exploration
strategy is able to guide the process of learning and improve
the performance of basic algorithms.

2. Reward-Based Exploration Combined with Softmax
Action Selection Method

Currently, one of the most common deep reinforcement
learning algorithms is the DQN (Deep Q Networks) algo-
rithm [3], which introduce two necessary methods to ensure
the stability and efficiency. One is experience replay, ob-
served transitions are stored in memory bank and sampled
uniformly to update the network. The other one is the target
network, which aims at improving the stability of the DQN
algorithm.

However, while DQN solves problems with high-
dimensional observation spaces, it can only handle discrete
and low-dimensional action spaces. Lillicrap [8] proposes
an actor-critic algorithm called Deep DPG (DDPG) based
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on the deterministic policy gradient, which can operate over
continuous action spaces and robustly solves more than 20
simulated physics tasks.

2.1 Basic Exploration/Exploitation Strategies

Two widely used methods for balancing the ratio between
exploration and exploitation are ε-greedy and Softmax. For
ε-greedy exploration strategy, the agent selects a random ac-
tion with a fixed probability ε, 0 ≤ ε ≤ 1, the exploration
strategy in detail is

π(s) =

{
random action from A(s) if ξ < ε
arg maxa∈A(s) Q(s, a) otherwise

(1)

Where π(s) is an agent’s policy, Q(s, a) is the value function,
ε is a uniform random number drawn at each time step.

For Softmax method, it chooses action according to
action-selection probabilities, which depends on the rank of
the value function estimates using a Boltzmann distribution:

π(a|s) = Pr{at = a|st = s} = e
Q(s,a)
τ∑

a∈A e
Q(s,a)
τ

(2)

Where τ is a positive parameter called Boltzmann temper-
ature. All actions will be equiprobable if temperature τ is
high, whereas low temperature τ will cause greedy action
selections.

In fact, both exploration strategies have advantages
and disadvantages. ε-greedy method is efficient in prac-
tice but when it explores it choose equally among all ac-
tions, which might bring the worst action. Softmax method
varies the action probability according to estimated value,
but Boltzmann temperature is sensitive and difficult to ad-
just. Both policies have been reported as methods for de-
scribing the action-selection process in the deep reinforce-
ment learning algorithms.

2.2 Exploration Based on Reward

Previously VDBE and VDBE-softmax methods have been
applied in solving bandit problems by adapting exploration
parameters dynamically. However, one of drawbacks of
those exploration strategies is that they have to record ex-
ploration parameters for each state, it’s inefficient when en-
countered with large-scale continuous state or action space.
As a result, we propose a versatile method called RBE-
Softmax, which utilizes the difference between mid-term re-
ward and long-term reward to adapt exploration parameter ε
dynamically.

In order to control the exploration policy on the basis of
the learning process, the core idea of RBE-Softmax method
is to extend the ε-greedy and Softmax strategies by introduc-
ing a reward-dependent exploration probability, ε(r), instead
of hand-tuning a global parameter. As a result, we introduce
the mid-term reward rMT (t) at time t and the long-term re-
ward rLT (t) at time t are defined as follows:

rMT (t) =
rMT (t − 1)
τMT

+ r(t) (3)

rLT (t) =
rLT (t − 1)
τLT

+ rMT (t) (4)

Δr = |rLT (t) − rMT (t)| (5)

where Δr means the difference between mid-term reward
and long-term reward, r(t) refers to an instant reward at time
t, τMT and τLT represent the time constants for rMT (t) and
rLT (t) respectively. If an agent tends to take the desired ac-
tions than before, then the mid-term reward will be larger
than the long-term reward. If not so, the long-term reward
has a larger value than the mid-term reward.

Such a dynamic behavior is obtained by computing a
reward-dependent exploration probability, ε(r), according to
the difference in a Boltzmann distribution of the value be-
fore and after learning:

k(t, τ) =

∣∣∣∣∣∣∣
e

rMT (t)
τ

e
rMT (t)
τ + e

rLT (t)
τ

− e
rLT (t)
τ

e
rMT (t)
τ + e

rLT (t)
τ

∣∣∣∣∣∣∣ (6)

εt+1(Δr) = θ · k(t, τ) + (1 − θ) · εt(Δr) (7)

Where τ is a positive parameter called Boltzmann tempera-
ture and θ ∈ [0, 1) is a weighted parameter, which decides
the effect of reward difference on the selection of action.

Finally, we combine the ε-greedy method with Softmax
method as RBE-Softmax exploration strategy, we redefine
the RBE-Softmax method as follows:

π(s) =

{
Softmax action a according to (2) if ξ < ε
arg maxa∈A(s) Q(s, a) otherwise

(8)

Where ε comes from Eq. (7).
The framework of reward-based deep reinforcement

learning is shown in Fig. 1, which combines reward-based
module with deep reinforcement learning.

The details are described as below:

1) Deep reinforcement learning agent selects a reason-
able action according to exploration strategy and cur-
rent state, environment receives the action and give the
agent an instant reward, meanwhile, the state transi-
tions to a new state.

2) The reward-based module utilizes the instant reward

Fig. 1 Framework of reward-based deep reinforcement learning.
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from the environment to generate the long-term re-
ward and the mid-term reward, and controls the explo-
ration parameter ε in ε-greedy strategy by calculating
the value of reward difference.

3) Combining Softmax method and ε-greedy strategy as
a hybrid exploration strategy, the agent choose an opti-
mal action according to hybrid exploration strategy and
current state.

3. Experiments

We test our RBE-Softmax exploration strategy on OpenAI
Gym with high-dimensional state space, discrete and con-
tinuous action space [9].

3.1 Acrobot-v1 and LunarLanderContinuous-v2

We choose Acrobot-v1 and LunarLanderContinuous-v2
tasks in OpenAI Gym to validate the proposed method.
We choose DQN and DDPG as the basic deep reinforce-
ment learning algorithm, use ε-greedy method and Soft-
max method for each algorithms. The parameters of DQN
and DDPG are same as the original paper, in the ε-greedy
method, we set ε = 0.1, in the Softmax method, set τ = 5,
and in the RBE-Softmax method, set τMT = τLT = 2, τ = 5.
Besides, We call the improved DQN and DDPG algorithms
as RB-DQN, RB-DDPG algorithms.

In the discrete Acrobot-v1 task, an under-actuated,
two-link robot has to swing itself into an upright posi-
tion [26]. It consists of two joints of which the first one has
a fixed position and only the second one can exert torque.
The observation of Acrobot-v1 task consists of two joint
angle, θ1 and θ2, and their velocities, v1 and v2, the ac-
tion is the torque applied at the second joint. The reward
is r(s, a) := −1 − cos(θ1) − cos(θ1 + θ2).

‘LunarLanderContinuous-v2’ is a video game to con-
trol a lander to land on the surface of moon safely which is
based on a 2D physics engine called ‘Box2d’. More details
can be found in homepage of OpenAI Gym.

We independently carried out each experiment 20 times
respectively. For each running time, the learned policy will
be tested 50 episodes respectively by every 100 training
episodes to calculate the average scores.

Figures 3 and 4 shows the average score of basic
algorithms and improved algorithms on Acrobot-v1 and
LunarLanderContinuous-v2.

Fig. 2 Example screenshots of environments.

3.2 Comparison and Discussion

Tables 1 and 2 records the average scores and standard
deviations after the convergence of the six algorithms on
the Acrobot-v1 and LunarLanderContinuous-v2 tasks, and
quantitatively analyzes the experimental results. Compared
with the DQN based on ε-greedy and DQN based on Soft-
max, the RB-DQN improves the scores by 13.6% and
15.9%. In terms of stability, the standard deviation is re-
duced by 27.5% and 47.3%. Compared with the DDPG
based on ε-greedy and DDPG based on Softmax, the RB-
DDPG improves the scores by 14.7% and 27.7 %, the stan-

Fig. 3 The average score of DQN with ε-greedy, DQN with Softmax and
RB-DQN in Acrobot-v1.

Fig. 4 The average score of DDPG with ε-greedy, DDPG with Softmax
and RB-DDPG in LunarLanderContinuous-v2.

Table 1 The average score and standard deviation of ε-greedy, Softmax
and RBE-Softmax method in Acrobot-v1.

Table 2 The average score and standard deviation of ε-greedy, Softmax
and RBE-Softmax method in LunarLanderContinuous-v2.
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Table 3 The hypothesis test of Acrobot-v1.

Table 4 The hypothesis test of LunarLanderContinuous-v2.

dard deviation is reduced by 32.5% and 50.8%. In contrast
to basic algorithms, the RB-DQN and RB-DDPG signifi-
cantly increases experimental scores, besides, the stability
of original algorithm has been improved greatly.

Furthermore, several kinds of experiments of deep re-
inforcement learning algorithm were tested for significance.
The significance level was set as α = 0.05. As shown in
Tables 3 and 4, the test of RB-DQN and RB-DDPG algo-
rithms all rejects original hypothesis and accepts alternative
hypothesis. It further shows that RBE-Softmax method in-
deed has improved experimental performance of basic deep
reinforcement learning algorithms.

During the learning process, in very first episode the
agents’ knowledge is little, the reward received by the agent
is unstable, and the reward difference is high in the initial
learning stage. The agent needs to increase exploration ef-
forts to accelerate the learning speed. As the agents’ knowl-
edge about environment increasing, the reward difference
slowly decreases, the agent should increase exploitation.
The proposed RBE-Softmax method not only utilizes the
characteristic of the agent’s learning process to adapt explo-
ration parameters dynamically, but also combines the Soft-
max strategy to choose exploration action better. On the
one hand, the proposed RBE-Softmax method adjusts the
exploration parameters more flexibly according to the re-
ward given by the environment, and helps agent to balance
the exploration and exploitation better. On the other hand, it
combines the Softmax method to choose potential optimal
action and improve learning efficiency.

4. Conclusions

This paper proposes a novel exploration strategy called

RBE-Softmax method. In contrast to the basic exploration
strategy, the proposed method not only takes advantage of
the reward difference produced during the learning process
to guide the balance between exploration and exploitation,
but also combines Softmax method to avoid blind explo-
ration of choice of action. Using the discrete and contin-
uous action control tasks in OpenAI Gym, we have shown
that RBE-Softmax method indeed has improvements in the
learned policies while combining with basic deep reinforce-
ment learning algorithms.
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