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Self-Supervised Learning of Video Representation for Anticipating
Actions in Early Stage

Yinan LIU†a), Member, Qingbo WU†, Nonmember, Liangzhi TANG†, and Linfeng XU†b), Members

SUMMARY In this paper, we propose a novel self-supervised learning
of video representation which is capable to anticipate the video category
by only reading its short clip. The key idea is that we employ the Siamese
convolutional network to model the self-supervised feature learning as two
different image matching problems. By using frame encoding, the proposed
video representation could be extracted from different temporal scales. We
refine the training process via a motion-based temporal segmentation strat-
egy. The learned representations for videos can be not only applied to ac-
tion anticipation, but also to action recognition. We verify the effectiveness
of the proposed approach on both action anticipation and action recogni-
tion using two datasets namely UCF101 and HMDB51. The experiments
show that we can achieve comparable results with the state-of-the-art self-
supervised learning methods on both tasks.
key words: action anticipation, video frame encoding, convolutional neu-
ral network

1. Introduction

Action anticipation [1], aims to find out the action cate-
gories of a given video when only its small fraction is avail-
able, which is common in various streaming video services.
In the real-world applications, action anticipation can be
used in the situation such as autonomous navigation, sports
analysis and forecasting dangerous. However, teaching the
machine to anticipate video is not an easy task. The tra-
ditional supervised approaches tend to manually annotate
videos for each segment, or crop the video frames to en-
sure consistency, which are often very time consuming. To
develop a cost-efficient representation for the video, recent
researches [2], [3] tend to explore the spatial-temporal in-
formation from unlabeled video. Following this objective,
in this paper, we propose a video representation learning
method based on the self-supervised learning paradigm [4].
The self-supervised learning treats the structure or relation-
ship of the videos as a supervisory signal (e.g., video tem-
poral order, appearance similarity), thus it can use the su-
pervised manner to train without video labels. Our main
goal in this work is to anticipate the action categories of a
video in early stage. Thus we need to model the relation-
ship between videos and sub-videos. The core idea behind
our work is: by employing different video frame encoding
techniques, we could compress arbitrary length videos into
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fixed-sized images, these images will then be embedded into
feature space by the Siamese networks [4], [5]. In the fea-
ture space, the sub-videos from the same video should be
close (similar) to its neighbor, and the video should be close
to its sub-video as well, otherwise, they should be far from
each other. The network is designed based on the above
assumptions. Then we design a motion-based temporal seg-
mentation to refine the training process. In the end, our ap-
proach can learn representative features which indicate the
relationship of videos and sub-videos in a self-supervised
manner. The learned video representation can then be used
in both action anticipation and action recognition. In the re-
mainder of this paper, we first illustrate the core idea of the
proposed approach, then we given details on how we process
the video frames. Next we present the self-supervised learn-
ing framework, and show how we can improve the training
by designing a motion-based temporal segmentation strat-
egy. The proposal is evaluated by two challenging datasets
UCF101 [6] and HMDB51 [7].

2. Self-Supervised Learning of Video Representation

The main idea behind our self-supervised learning is shown
in Fig. 1. We model the learning process as two different
self-supervised learning tasks. Both of these tasks take en-
coded video pairs as inputs. The work contains three com-
ponents: first we convert the arbitrary length videos to a
fixed-sized data structure for the network, we employ three
different video frame encoding techniques to achieve this.
Second we build a network to accomplish our tasks by learn-
ing from the videos. We employ a Siamese architecture,
which perfectly fits the tasks in our work. Third, by utiliz-
ing the motion information from the videos, we give the idea
on how to refine the training process.

2.1 Video Frame Encoding

In our work, we employ three different video frame encod-
ing strategies. We adopt them to the videos and sub-videos.

2.1.1 Sum of Frame Difference Encoding

Given a video V = {I1, . . . , IT }, where It is the t-th frame of
the V. We first compute the difference of consecutive frames
dt = It+1−It in video V. Then we compute the weighted sum
of all the frame differences in V, this is shown in Eq. (1).
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Fig. 1 Illustration of the learning scheme in our work. Best viewed in colors. (a) Two random videos
Vi and V j, the colored dash boxes inside the videos indicate sub-videos. (b) The relationship between
a video and a sub-video. (c) The relationship between two sub-videos. We will give more details in
Sect. 2.2.

D =
∑

wtdt, where wt = T + 1 − 2t (1)

By adopting the sum of frame difference, the video V ∈
Rh×w×3×T has been compressed to D ∈ Rh×w×3.

2.1.2 Dynamic Image Encoding

The core idea of dynamic image is to compress multiple
video frames into one single image by considering the tem-
poral order constraints. For a given video X = {x1, . . . , xT },
where xt is the frame-level feature at time t. This can be
done by modeling a ranking function as follows:

w∗ ∈ arg min
w

⎧⎪⎪⎨⎪⎪⎩
1
2
‖w‖2 + C

2

J∑

t=1

[|t − w�vt | − ε]2
≥0

⎫⎪⎪⎬⎪⎪⎭ (2)

where vt =
1
‖mt‖mt, and mt =

1
t

∑t
τ=1 xτ, Eq. (2) can be op-

timized by [8]. The parameter w∗ is the compressed video-
level representation which has the same dimension as xt. If
we set xt as a vectorized video frame, then we could reshape
the parameter w∗ to the size of h × w × 3. For complete
derivation of Dynamic image we refer the readers to [2].

2.1.3 Dynamic Optical Flow Encoding

This is similar to dynamic image encoding. We employ the
iDT [9] to compute the optical flows, then normalize them to
the range of [0, 255]. We compute the motion magnitude at
each pixel then add this as a third channel to the optical flow.
The dynamic optical flow can be computed using Eq. (2),
and the size of dynamic optical flow is h × w × 3.

2.2 Network Architecture

We show our network architecture in Fig. 2. The network is
trained to accomplish two different tasks: (a) whether a sub-
video is related to a full video, and (b) whether two sub-
videos are related to each other. More specifically, given
two videos V1 = {s1

1, . . . , s
1
p} and V2 = {s2

1, . . . , s
2
q}, where si

k
is the k-th sub-video in video Vi. We build the {sub-video,
video} pairs as the input for task (a). We set a binary label

Fig. 2 The network architecture for {video, sub-video} relationship
reasoning, and {sub-video, sub-video} relationship reasoning.

for the video pair, which is defined as:

yR(Vi, s
j
k) =

⎧⎪⎪⎨⎪⎪⎩
1, if i = j

0, otherwise
(3)

For a {sub-video, video} pair, if they are from the same
video, we define the pair as positive sample, otherwise, the
pair is negative sample. Task (b) has a similar setting. We
define the binary label for the video pair {sub-video, sub-
video} as:

yr(si
p, s

j
q) =

⎧⎪⎪⎨⎪⎪⎩
1, if i = j and |p − q| < n, n = 2

0, otherwise
(4)

The only difference is we take the temporal relationship into
consideration in task (b). To accomplish the two tasks, we
employ the Siamese architecture [5] in our work. The net-
work takes the encoded video pair as input. After the last
pooling layer we concatenate the output from both streams.
The fully-connected layer will compute a binary probability,
which indicates the relationship of the video pair. We use
the similar settings as [5]. The network can be trained by
minimizing binary cross-entropy loss function. We jointly
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train the two tasks by using a joint loss in a weighted sum,
the learned convolutional layer weights are shared among all
the four streams. Different from [5], we set the number of
neurons in the fully connected layers as 4096/2048. During
test, we use the feature from FC7 as the video representa-
tion. The learned representation can be used as a feature
extractor in both action anticipation and action recognition.

2.3 Motion-Based Temporal Segmentation

Given a video V = {I1, . . . , IT }, we first compute the opti-
cal flow using iDT [9]. The motion magnitude at each pixel
can be computed as m(x, y) =

√
(u(x, y)2 + v(x, y)2), where

u(x, y) and v(x, y) are the horizontal- and vertical-component
of the optical flow at position (x, y). We compute the mo-
tion intensity as M(I) =

∑
(x,y)∈I m(x, y). Then we segment

the video according to the motion intensity: each sub-video
should begin and end with a local minimum motion inten-
sity. We use the segmented sub-videos to build video pairs
and train the network, we call this motion-segment pre-train.
Then we divide training videos into fixed-sized sub-videos,
and build video pairs to train the network again, we call this
uniform-segment fine-tune.

3. Experiments

3.1 Datasets

We evaluate our proposed approach on two challengine
datesets: UCF101 [6] and HMDB51 [7]. UCF101 con-
tains 13k clips, and are collected in 101 action categories.
HMDB51 contains 6849 clips, in 51 action categories. We
use the train/test splits provided by the author for both
datasets.

3.2 Implementation Details

We use the training data from UCF101 and HMDB51 with-
out any annotations. In the motion-segment pre-train stage,
the batch size is 48, the learning rate starts at 10−3, changes
to its 1

10 every 5K iterations, the process ends at 15K it-
erations. In the uniform-segment fine-tune stage, we use
three temporal scales to generate {25, 15, 10} sub-videos
with equal length. The batch size is 48, the learning rate
starts at 10−4, changes to its 1

10 every 3K iterations, the
process ends at 12K iterations. Different frame encoding
strategies are trained separately. For HMDB51, we use
the model pre-trained on UCF101, then follow the same
process as UCF101, the training ends at 10K and 9K in
the motion-segment pre-train and uniform-segment fine-tune
stages. We employ scale-jittering [10] in four spatial scales
{240, 224, 192, 168}. For joint training, we set the weight
of {video, sub-video} and {sub-video, sub-video} networks
to 0.7 and 0.3. The self-supervised network is implemented
using MatConvNet [11] toolbox. When testing, a video/sub-
video is first compressed to an image by frame encoding,
the image is used as input to the corresponding network. We

use the output of FC7 as the representation of the video, we
show how to utilize this representation in Sect. 3.3.

3.3 Baselines

To evaluate the learned representation, we set two different
baselines. We treat any test video as a combination of sub-
videos. To decide the category of a video, we follow two cri-
teria: (1) if none of the sub-videos are in the same category,
we choose the category with maximum probability. (2) if
multiple sub-videos are in the same category, we choose the
category which contains more sub-videos than the others.

Nearest Neighbor: For a test video, we first extract
its feature using our network, then find its nearest neighbor
from the training data using Euclidean distance.

FC: Inspired by [12], we replace the weights of the
deep network with the trained weights, we only fine-tune the
fully-connected layers while keep the convolutional layers
fixed. We follow the settings in [12] to fine-tune the fully-
connected layers. Note that we treat both video and sub-
video as training data in the supervised baselines, all sub-
videos from the same video share the same class label.

3.4 Comparison with State-of-the-Art

In this section, we compare the proposed self-supervised
learning to the state-of-the-art approaches on action antic-
ipation and action recognition. The results are shown in Ta-
ble 1.

To better evaluate the representative power of each ap-
proach, we adopt all these approaches under baselines. FD,
DI and DOF indicate frame difference, dynamic image and
dynamic optical flow with motion-segment pre-train. CN in-
dicates the representation concatenation of dynamic image
and dynamic optical flow in our work. MS indicates motion-
based temporal segmentation introduced in Sect. 3.2. The
percentage in the second row indicates how much of a video
we observed, in the case of 100%, this turns out to be a
action recognition problem. [12] propose a self-supervised

Table 1 Average accuracies of different video frame encoding (splits 1).

UCF101 [6] HMDB51 [7]
10% 50% 100% 10% 50% 100%

NN

OOO [12] 6.5 18.6 32.5 5.3 11.5 18.6
RkSm [4] 4.3 13.2 21.6 4.5 7.9 12.1
FVis [1] 3.7 11.6 19.4 3.6 7.8 11.5

FD 5.9 15.4 26.5 5.4 11.0 17.9
DI 6.4 17.9 31.2 5.9 12.1 18.9

DOF 5.8 16.6 29.4 5.2 11.4 18.5
CN w/o MS 6.2 17.6 29.7 5.5 11.7 18.5
CN w/MS 7.0 18.9 32.5 6.7 12.4 20.2

FC

OOO [12] 11.5 33.5 57.9 7.9 18.4 31.4
RkSm [4] 8.3 27.2 38.7 5.8 9.6 14.4
FVis [1] 7.5 25.7 34.3 4.4 8.9 13.7

FD 10.9 30.4 49.2 7.6 16.5 25.6
DI 13.5 34.5 53.6 8.6 20.2 30.5

DOF 12.7 33.1 52.5 8.0 19.7 28.4
CN w/o MS 13.6 33.8 53.9 8.2 19.5 29.2
CN w/MS 15.3 36.4 56.3 9.6 21.3 32.6
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Fig. 3 Action anticipation on UCF101 dataset. Our representation can
achieve better performance than the state-of-the-art self-supervised learn-
ing approaches.

framework, which uses the number of videos with correct
order as supervisory signal. [1] designs a self-supervised
network to predict the future visual representation of unla-
beled videos. [4] uses the distance ranking of objects sim-
ilarity in videos to train a self-supervised network. We im-
plement these approaches in our work, [12] and [4] can be
directly used as feature extractors. [1] in our work is also
used as a feature extractor, the only difference is that it ex-
tracts the future visual representation, for action recognition,
we do not use the full video as input for [1].

As shown in Table 1, our proposed representation
can achieve better results than the state-of-the-art self-
supervised learning approaches in action anticipation. We
think this is mainly because we model the relationship be-
tween the videos and sub-videos and design the network to
learn to reason about this relationship. And we can further
improve the results if we combine dynamic image and dy-
namic optical flow together. We think this is because both
appearance and motion are important cues in video process.
The results also show that adding a motion-segment pre-
train can help us to improve the final results. To show the
efficiency of the proposed representation in action anticipa-
tion, we illustrate a more detailed results on UCF101 dataset
in Fig. 3.

4. Conclusion

In this paper, we propose a self-supervised learning method
which aims to anticipate actions from only partially ob-
served videos. We use the abundantly available unlabeled
videos to train the proposed network. In the learning pro-
cess, the proposed network learns to reason about the re-

lationships between videos/sub-videos and sub-videos, this
will lead to better generalize the feature. The learned repre-
sentation can then be used in both action anticipation and
action recognition. Experiments show we could achieve
comparable results with the state-of-the-art self-supervised
learning approaches for both action anticipation and action
recognition.
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