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SUMMARY  The-state-of-the-art neural quality estimation (QE) of ma-
chine translation model consists of two sub-networks that are tuned sep-
arately, a bidirectional recurrent neural network (RNN) encoder-decoder
trained for neural machine translation, called the predictor, and an RNN
trained for sentence-level QE tasks, called the estimator. We propose to
combine the two sub-networks into a whole neural network, called the
unified neural network. When training, the bidirectional RNN encoder-
decoder are initialized and pre-trained with the bilingual parallel corpus,
and then, the networks are trained jointly to minimize the mean absolute
error over the QE training samples. Compared with the predictor and es-
timator approach, the use of a unified neural network helps to train the
parameters of the neural networks that are more suitable for the QE task.
Experimental results on the benchmark data set of the WMT17 sentence-
level QE shared task show that the proposed unified neural network ap-
proach consistently outperforms the predictor and estimator approach and
significantly outperforms the other baseline QE approaches.

key words: natural language processing, machine translation, neural
quality estimation, recurrent neural network (RNN), bidirectional RNN
encoder-decoder with attention mechanism

1. Introduction

Quality estimation (QE) of machine translation estimates
the quality of translation outputs without the use of hu-
man references. It plays an increasingly important role in
the post-editing of machine translations and computer-aided
translations.

The traditional methods formalize the problem of QE
using supervised regression/classification models. One of
the widely used frameworks is QuEst[1], which extracts
many features to describe the translation quality, such as flu-
ency indicators, adequacy indicators, and translation com-
plexity indicators, and it exploits a support vector regression
algorithm to score the translation output. However, feature
extraction requires part-of-speech analysis, syntactic parse,
or semantic role labeling, yet these linguistic analyses relate
to the target language types, which limits their application
in other languages.

With the great success of deep learning that has been
achieved in word distributed representations [2], language
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modeling [3], and machine translation [4]-[6], some re-
searchers have proposed deep learning approaches to ad-
dress the QE problem. Shah et al.[7]-[9] and Chen et
al. [10] leverage neural features, such as word embed-
ding and the recurrent neural network (RNN) language
model, to improve the correlation between the automatic
QE and human assessment [7]-[10]. Kim and colleagues
established the-state-of-the-art bidirectional RNN encoder-
decoder-based predictor and RNN-based estimator to es-
timate the translation quality [11]-[13]. Their approach
achieved the best performances in the evaluation of the
WMT17 sentence-level QE shared task [14], [15].

In this article, we propose to directly build and train
a single, large end-to-end neural network for sentence-level
QE, which reads a pair of source sentence and its machine
translation and outputs a score indicating translation quality.

2. Related Work

QE methods exploiting deep learning can be classified
into two categories. One is neural-aware QE, which in-
tegrates the neural features into a QE system. Shah et
al. [7], [8] combine word embedding features and neural lan-
guage model features generated from a continuous space
language model training [16] with features extracted by
QuEst[7], [8]. Shah et al. [9] further enrich the features with
translation condition probabilities produced by a neural net-
work machine translation system [9]. Chen et al. [10] exploit
the continuous bag-of-words model [2] and RNN language
model [3] to extract word embedding features and the cross-
entropy feature for QE [10]. In these neural-aware QE ap-
proaches, the neural features effectively improve the system
performance.

To more efficiently model, some approaches, called
pure neural QE, build a neural network for QE. Kim and
Lee [11] explored building RNNs for sentence-level QE, and
the inputs of the networks are quality vectors produced by
a bidirectional RNN encoder-decoder with attention mech-
anism[11]. Thus, the neural model consists of two sub-
networks that are tuned separately. Kim et al.[12] further
formalize the two sub-networks as an estimator and a pre-
dictor and extend the model to word-level QE and phrase-
level QE [12]. To effectively train the RNNs, Kim et al. [13]
exploited a stack propagation algorithm [17] to jointly tune
the RNNs for word-level QE tasks, phrase-level QE tasks,
and sentence-level QE tasks [13].

In line with this research, we combine the RNN and
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bidirectional RNN encoder-decoder with attention mecha-
nism into a single, large neural network, called the uni-
fied neural network for sentence-level QE tasks (UNQE).
Compared with the estimator and predictor approach [11]—
[13], the proposed approach trains the networks together,
rather than training the estimator and predictor separately.
This means that the parameters of the bidirectional RNN
encoder-decoder model are synchronously updated when
fed QE instances, and the trained networks are more suited
to sentence-level QE.

3. Methodology

The neural networks as depicted in Fig.1 comprise two
sub-networks: a bidirectional RNN encoder-decoder [6] and
a QE RNN. The bidirectional RNN encoder-decoder is
used to extract quality vectors given the translation context,
which can be regarded as a feature extraction module, and
the QE RNN uses the quality vector to predict the quality
of the translation output, which can be regarded as a super-
vised regression module. The basic idea of combining these
two sub-networks into one is to obtain a fine-grained net-
work for QE tasks by jointly training to maximize the QE
performance with QE samples.

3.1 Model Architecture

The bidirectional RNN encoder-decoder is a dominant
sequence-to-sequence model widely used in machine trans-
lation [4]—-[6]. The encoder maps an input source sentence
(x1,...,Xx,) to a fixed-length vector. Given the vector, the
decoder then generates a translation output (yy,...,y,) of
symbols one word at a time. The generated conditional

Bidirectional RNN x;,
Encoder-Decoder

Fig.1  An illustration of the proposed model architecture of the neural

QE.
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probability of each word can be written as follows:

,Vie1h X) = gj-1, 8j-1,¢;)
exp(y] W)

= 2K
Zk'zl exp(y,{ Wotj)

where g denotes a nonlinear, potentially multi-layered func-
tion, c; is the context vector, s;_; is the hidden state of the
RNN, y; € RE*1 g the one-hot representation of the tar-
get word, K, is the vocabulary size of the target language,
W, € RK*d is the weight matrix, #; € R™! is the inter-
mediate representation, and d is the dimension of the target
language word.

The intermediate representation #; can be inferred from
the forward direction by the following formula:

Pl - -.

6]

1= tanh(Uosj_l + VaEyj—l + COC]') 2)

where U,, V,, and C, denote the model parameters. E €
Ry is the word embedding matrix for the target language.

To describe the translation quality regarding the target
word-generated conditional probability, the quality vector is
calculated as follows:

a, = [T Wy o] 3)

where © denotes an element-wise multiplication. The pro-
cess of calculating the quality vector is depicted in Fig. 2.

Given the quality vectors, the most common approach
is to use RNN as depicted in Fig. 3 such that

vi=fvj-1,qy,) “4)

where v; is a hidden state at time j and f is a nonlinear
function. Here, we use a GRU [5] as f to learn long-term

Fig.2  An illustration of the calculation of quality vectors.
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Fig.3  Anillustration of the RNN for QE.
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dependencies of the translation outputs.

Because the last hidden state v,, sums up all the quality
vectors of the translation output, it is used to predict the QE
score as follows:

QEcore = WQE X vy (5)

where Wy is a weight matrix. To make the QE score rea-
sonable, we clip the score to range from O to 1 when this
value is less than O or greater than 1. Note that our approach
is different from that of Kim and Lee [11], in which the lo-
gistic sigmoid function was used to predict the QE score.
The reason that we used the naive score is that this approach
had a better QE performance than using the logistic sigmoid
function in the experiment.

3.2 Model Training

Assume that the training set for the QE task consists of N
source sentences x, the translation outputs y™, and the
corresponding gold standard labels HTER™ (n = 1,...,N).
The training objective is to minimize the mean absolute er-
ror over the training data:

1 N
- — ™ M gy _ ()
J(O) = N,;:l |QE core(x™, ™, 0) — HTER™| (6)

where 8 denotes the parameters of the network. In our ap-
proach, the quality vectors are intermediate variables that
connected the bidirectional RNN encoder-decoder and the
QE RNN. Thus, they changed with 8. This means that
we can train the quality vectors for QE tasks. However, in
the estimator and predictor approach that was proposed by
Kim and Lee [11], the bidirectional RNN encoder-decoder
trained for the machine translation task had constant quality
vectors. This is why our approach is more reasonable.

Because the size of the training set for the QE task is
too small to train the entire UNQE, the bidirectional RNN
encoder-decoder and the QE RNN were pre-trained and ini-
tialized with the bilingual parallel corpus and QE training
corpus, respectively. Then, the parameters of the networks
were trained jointly with the QE training corpus.

4. Experimental Results

To test the performance of the proposed UNQE model, we
conducted experiments on the WMT17 sentence-level QE
task [15]. The statistics of the dataset are shown in Ta-
bles 1 and 2. The task involved estimating the quality of
the translation outputs from English-to-German (en-de) and
German-to-English (de-en) directions. The test set of the
en-de direction consisted of a new test set, test set 2017, and
an old test set used to measure the progress over the year,
test set 2016.

4.1 Experimental Setting

To initialize the parameters of the bidirectional RNN
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Table 1  Statistics of the en-de dataset of the WMT17 sentence-level QE
task.
Sentences Words
Training data 23,000 404,198
Development data 1,000 19,487
Test data (test set 2016) 2,000 34,531
Test data (test set 2017) 2,000 35,577
Table 2 Statistics of the de-en dataset of the WMT 17 sentence-level QE
task.
Sentences Words
Training data 25,000 453,666
Development data 1,000 18,152
Test data 2,000 36,119

encoder-decoder, the bilingual parallel corpus officially re-
leased by the WMT17 Translation task [15] was used, in-
cluding Europarl v7, Common Crawl corpus, News Com-
mentary v12, and Rapid corpus of EU press releases. Then,
the networks were tuned using the training data released by
the sentence-level QE task.

Pearson’s correlation coeflicient (Pearson’s r) was used
to evaluate the linear correlation between the automatic
scores and the true HTER scores, while Spearman’s rank
correlation coefficient (Spearman’s r) was used to evaluate
whether the rankings generated from the automatic scores
were similar to the true rankings generated from the true
HTER scores. The higher the value of Pearson’s r and
Spearman’s r, the more closely the model correlated with
the human judgments.

The proposed UNQE model was contrasted with the
traditional QE framework QuEst[1], the neural-aware QE
models SHEF/QUEST-EMB [9] and JXNU/Emb+RNNLM
+QuEst+SVM [10], and the pure neural QE model
Predictor-Estimator [13]. The performances of the baseline
models are cited from the officially released results of the
WMT17 QE task [15].

4.2 Experimental Results

Tables 3-5 summarize the performances of the proposed
UNQE models and the baseline models on the WMT17
sentence-level QE test set. On each table, the models were
ordered by the value of Pearson’s r.

We first compared the single proposed UNQE model
with the single baseline models. The results showed that
the UNQE model significantly outperformed the traditional
QE approach QuEst and the two neural-aware QE models
on each direction at the p < 0.05 level, as well as performed
significantly better than the Predictor-Estimator model with
the stack propagation algorithm at the en-de translation di-
rection (including test set 2016 and test set 2017) at the
p < 0.05 level, and consistently outperformed the Predictor-
Estimator model at the de-en translation directions. The
UNQE model gained approximately 0.014-0.409 improve-
ment in the Pearson’s r value and 0.001-0.307 improvement
in the Spearman’s r value over the baseline models. The
results confirmed that the UNQE model that trained the net-
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Table 3  Performance of the models on the WMT17 sentence-level QE
en-de test set (test set 2016).
Scoring Ranking
Model
Pearson’s r  Spearman’s r
UNQE-Ensemble 0.717 0.746
Predictor-Estimator-Ensemble [13] 0.714 0.736
UNQE 0.708 0.737
UNQE with sigmoid 0.702 0.723
PredictorEstimator [13] 0.686 0.707
JXNU/Emb+RNNLM+QuEst+SVM 0.527 0.552
[10]
SHEF/QUEST-EMB [9] 0.499 0.527
QuEst [1] 0.399 0.438
Table 4  Performance of the models on the WMT17 sentence-level QE
en-de test set (test set 2017).
Scoring Ranking
Model
Pearson’s r Spearman’s r
UNQE-Ensemble 0.710 0.740
UNQE 0.700 0.732
PredictorEstimator-Ensemble [13] 0.695 0.725
UNQE with sigmoid 0.685 0.717
PredictorEstimator [13] 0.673 0.703
JXNU/Emb+RNNLM+QuEst+SVM [10] 0.522 0.545
SHEF/QUEST-EMB [9] 0.496 0.513
QuEst [1] 0.397 0.425
Table 5  Performance of the models on the WMT17 sentence-level QE
de-en test set.
Model Scoring Ranking
Pearson’s r Spearman’s r
UNQE-Ensemble 0.738 0.681
UNQE 0.729 0.671
PredictorEstimator-Ensemble [13] 0.728 0.690
PredictorEstimator [13] 0.715 0.670
UNQE with sigmoid 0.714 0.626
SHEF/QUEST-EMB [9] 0.558 0.560
JXNU/Emb+RNNLM+QuEst+SVM [10] 0.531 0.520
QuEst [1] 0.441 0.450

work is better than the predictor-estimator model that sepa-
rately trained two sub-networks. The reason is that the bidi-
rectional RNN encoder-decoder were trained regarding the
QE training samples in the UNQE model. Therefore, the
sub-networks generated more accurate features for the QE
task.

Next, we ensemble six likelihood-trained UNQE mod-
els by changing the dimension of the word embedding from
500 to 700 and the dimension of the RNN from 100 to
200 at intervals of 50, and we compared the results to the
predictor-estimator model, which also reported ensemble re-
sults. The results showed that the ensemble model, UNQE-
Ensemble, further improved the correlation between the au-
tomatic scores and the true labels compared to the single
model, UNQE, on each direction. In addition, in most
cases, the performance of the UNQE-Ensemble model was
superior to the-state-of-art ensemble model, the Predictor-
Estimator-Ensemble that included 15 single models [13].
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4.3 Effect of the Naive Score Approach

Tables 3-5 also provide the QE system performance of the
model using the naive score defined in formula (5) (UNQE)
and the model using the logistic sigmoid function (UNQE
with sigmoid). The results showed that the model using the
naive score consistently outperformed the model using the
logistic sigmoid function.

The reason may be that most of the QE score val-
ues which employed the naive score approach are already
among [0, 1], however, if the nonlinear logistic sigmoid ac-
tivation function was employed, it will reduce the QE score
value of the translation outputs. For example, given a source
sentence “Eine fungizide Wirkung von Caspofungin wurde
gegen Candida-Hefen nachgewiesen.” and the correspond-
ing human reference “One fungicidal action of caspofungin
has been demonstrated against candida yeast.” when esti-
mating the quality of the translation output “One fungicidal
action of caspofungin has been demonstrated to Candida-
Hefen.” in the de-en direction, it shows that the values
(0.247) generated by the naive scores approach are closer
to the true HTER score (0.250) than the values (0.190) gen-
erated by the sigmoid function.

5. Conclusion

We introduced a unified, end-to-end neural network for
sentence-level QE, which was built and trained as a whole.
On the WMT17 sentence-level QE task, the proposed single
model consistently outperformed the best single participated
model. In future work, we would like to simplify the struc-
ture of the networks to obtain better results.
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