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Transform Electric Power Curve into Dynamometer Diagram
Image Using Deep Recurrent Neural Network

Junfeng SHI†a), Wenming MA††b), Nonmembers, and Peng SONG††, Member

SUMMARY To learn the working situation of rod-pumped wells un-
der ground, we always need to analyze dynamometer diagrams, which are
generated by the load sensor and displacement sensor. Rod-pumped wells
are usually located in the places with extreme weather, and these sensors
are installed on some special oil equipments in the open air. As time goes
by, sensors are prone to generating unstable and incorrect data. Unfortu-
nately, load sensors are too expensive to frequently reinstall. Therefore, the
resulting dynamometer diagrams sometimes cannot make an accurate di-
agnosis. Instead, as an absolutely necessary equipment of the rod-pumped
well, the electric motor has much longer life and cannot be easily impacted
by the weather. The electric power curve during a swabbing period can
also reflect the working situation under ground, but is much harder to ex-
plain than the dynamometer diagram. This letter presented a novel deep
learning architecture, which can transform the electric power curve into the
dimensionless dynamometer diagram image. We conduct our experiments
on a real-world dataset, and the results show that our method can get an
impressive transformation accuracy.
key words: deep learning, embedding, recurrent neural network, computer
vision

1. Introduction

The equipments of a rod-pumped well are always divided
into two parts: some are on the ground, and the others
are under the ground. We cannot know the working con-
dition under ground directly, because we cannot frequently
take the equipments out [1]. Due to the bad physical and
chemical environments, we cannot install sensors to moni-
tor the working condition under ground either. Usually, we
make diagnosis indirectly by analyzing the dynamometer di-
agrams [2].

To generate the dynamometer diagrams, we need to in-
stall load sensor and displacement sensor on some special
equipments of the rod-pumped well. These two kinds of
sensors simultaneously collect data with the same sample
rate. The load and displacement within the same swab-
bing period form a dynamometer diagrams. The X-aixs is
the displacement and the Y-aixs is the load. The raw dy-
namometer diagram generated by sensors is known as sur-
face dynamometer diagram (SDD). However, this kind of
dynamometer diagram cannot directly be used for diagno-
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sis. We must transform the SDD into another kind of dy-
namometer diagram, which is known as pump dynamome-
ter diagram (PDD), through a series of mechanical calcula-
tions.

The shape of a PDD is closely related to at least one
type of working conditions. Making diagnosis using a PDD
is a typical process of image recognition. We don’t really
care about the real coordinate values of a PDD. Therefore,
we actually use the dimensionless PDD (DPDD) to make
diagnosis.

If we cannot collect correct data from sensors, we
would get the incorrect SDDs, which would impact the
shape of DPDD images. If we cannot get correct shape of
DPDD images, we might get a totally different conclusion
on the working condition under ground. Load sensors and
displacement sensors are installed in the open air. The sen-
sor accuracy can be impacted by the extreme weather, such
as too cold or too hot. As time goes by, sensors are prone
to generating unstable and incorrect data. One might expect
that we could install new sensors every once in a while, but
sensors, especially load sensors, are too expensive to fre-
quently be replaced with new ones.

The electric motor, which is an essential equipment for
a rod-pumped well, usually has a longer life than sensors,
and is not easily impacted by the weather. Interestingly, the
electric power curve (EPC) within a swabbing period can
also reflect the working condition under the ground. In fact,
the information in EPC (Fig. 1 left) is as much as DPDD
(Fig. 1 right), but the shape of the former is too hard to ex-
plain, although the former can be directly used to make diag-
nosis. Therefore, as long as we transform a EPC into DPDD
image, we can not only make diagnosis but also give an rea-
sonable explanation. To the best of our knowledge, there is
no literature that has studied this problem. Recently, Deep
learning technologies have yield remarkable success on sev-
eral domains [3]. Neural networks can almost approximate
any non-linear function. The aim of this letter is using deep
learning methods to do such transformation.

Fig. 1 Illustration of ECP (left ) and DPDD (right)
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The main contributions of our work are as follows:

• We presented a novel deep recurrent neural network ar-
chitecture to transform EPCs to a DPDD images, which
is termed as DeepE2D, as well as some special meth-
ods of feature engineering.
• We conducted the experiment on a real-world datasets

to demonstrate the performance of our model. The ex-
perimental results show that our model can get encour-
aging transformation accuracy.

The rest of this paper is organized as follows: In
Sect. 2, we elaborate on our deep learning method of EPC-
to-DPDD transformation. Section 3 describes our experi-
ments and Sect. 4 concludes this paper.

2. Proposed Methodology

2.1 Architecture

Our deep recurrent neural network for EPC-to-DPDD trans-
formation (DeepE2D) is shown in Fig. 2. There are totally
four parts of this network: Input Layers, a Recurrent Layer,
a Dense Hidden Layer and an Output Layer.

The role of Input Layers is transforming the raw data
x into a embedding feature xem, which has more general in-
formation than the original feature. It is worth noting that
each EPC has its own magnitude, and we must standardize
x before embedding. The standardized feature is denoted as
xsd.

One might expect that xem could be used as the input
of the Dense Layer directly, just like many typical cases.
However, for this case, there is no fixed meaning for each
data point in the EPC. The motor power keeps running with
a variable speed. When collecting the EPC data, we cannot
know the exact locations of the data points. What we obtain

Fig. 2 Deep recurrent neural network for EPC-to-DPDD transformation
(DeepE2D model)

is only a sequence of electric power curve data. Therefore,
recurrent neural layers are suitable for handling such data.
In this paper, we used gated recurrent unit (GRU) as the
Recurrent Layer [4], [5].

Dense Layers are used to learn more complex abstract
features. We used the rectified linear unit ReLU as the ac-
tivation function of each dense layer. The major benefits
of ReLU are sparsity and a reduced likelihood of vanishing
gradient. The definition of ReLU is as follows [6], [7]:

h = max(0,Wx + b) (1)

What we care about is how to lean the shape of a DPDD
image from a EPC. A DPDD image is always a closed curve.
For convenience of learning, we filled in these closed curves
with black color, and each DPDD became a binary image,
the shape of which is m × n. We then flattened them as
vectors of dimension r, where r equals m × n.

We treated our task as a multi-label classification prob-
lem [8], [9], so the activation function of the Ouput Layer is
sigmoid, and the number of neurons in the Ouput Layer is
also m × n.

ŷbin = σ(Whn + b) (2)

When training, the flatten vector of each DPDD image, de-
noted as y, is need to be transformed into ybin, which has
only 0s and 1s. The 0s in ybin stands for the pixels with
white color, and the 1s for the pixels with black color in the
original DPDD binary image. However, when predicting,
we also need to transform ŷbin into ŷ, the values of which
stand for the pixels of the image. Finally, we must reshape
the vector ŷ to a matrix, the size of which is m × n. This
matrix is just the DPPD image transformed from the EPC.

2.2 Feature Engineering

The original feature x from the raw data cannot be used to
train the network directly. Different electric motors have
different electric powers. We need to standardize x before
feeding it to the learning model:

xsd =
x − 1

|x|
∑

xi

var(x)
=

x − x̄√
1
|x|
∑

(x − x̄)2
, xi ∈ x (3)

where x̄ is the mean of vector x, and var(x) is the standard
deviation of x.

However, the length of xsd is very small, which is 144
in our case, but the DPDD we need to learn has a large
size. To obtain more complex and structural information
from the original feature, we adopted embedding techniques
[10]–[12] in this letter. We can discretize xsd as follows:

xdsd = round(
xsd −min(xsd)

max(xsd)
×C) (4)

Now, each item in xdsd is an integer, the value of which
ranges from 0 to C − 1. We then transform each item, de-
noted as xi

dsd, into a one-hot feature, the length of which is
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C:

xi
dsd ⇒ xi

oh (5)

All the elements in xi
oh are 0s, except that the cth element is

1.
For each element one-hot vector xi

oh , we want to lean a
hash function that can transform it into a dense real-valued
vector:

xi
em = ϕ(x

i
oh) = Wxi

oh + b (6)

The parameters are learned during procedure of training the
whole network.

Similarly, the flattened vector y also need to be stan-
dardized. Because a DPDD image is binary, the value of
each element in y is around 255 or 0. For a classification
problem, we need to limit the value of labels in [0,1]. There-
fore, we have:

ysd =
255 − y

255
(7)

When predicting, instead, we must transform the output into
a binary image:

D = reshape(255 − 255 ∗ ŷ, [m, n]) (8)

2.3 Algorithms

We used a grammar like Keras framework to describe our
algorithms here [13]. To speed up training time, we adopted
ADAM as the optimizer [14].

Algorithm 1 describes the procedure how to build our
deep neural model. xdim is the length of discretized and stan-
dardized vector xdsd, while ydim is the length of standardized
and flattened vecotr ysd. C is the number of integer values
that the elements of Xdsd can be assigned to. L is the size of
embedding feature xi

em. R is the dimensionality of the GRU
output space.

Algorithm 2 shows the procedure of training our
model. Here, we used the binary cross-entropy as the loss
function. The number of data points in each electric power
record is 144 in this letter, and the size of each DPDD im-
age is 80 × 60, which is a appropriate size that can make
the model fit better. To get statistical significant results, we
shuffled the training dataset at each epoch.

3. Experiments

The key contribution of our work is on designing deep recur-
rent neural models for transforming EPCs to DPDD images.
We conduct experiments with the aim of answering the fol-
lowing two questions:

Q1: Since we treat the transforming process as a multi-
label classification problem, do our proposed method out-
performs the existing classification algorithms?

Q2: Would different settings of the network have dif-
ferent impact on the performance?

Algorithm 1: Build Model
1 Function buildModel(xdim,ydim,C,L,R):
2 Xdsd = Input(shape=(xdim,), dtype=’float32’);
3 Xem = Embedding(input dim = C, output dim = L,

input length=xdim)( Xdsd);
4 GRU=GRU(units=R,return sequences=False)(Xem);
5 HD = Dense(units=Nh1, activation=’relu’,name =

’H D’)(Xem);
6 prediction = Dense(units=ydim,

activation=’sigmoid’)(HD);
7 model= =Model(Xsd , output=prediction);
8 return model;
9 end

Algorithm 2: Train the Model
1 Function trainModel(trainX,trainY,t, b):
2 Transform each row of trainX into a discretized and

standardized vector according to (7) and (8), and then we
get matrix trainXdsd;

3 Transform each row of trainY into a standardized vector
according to (11), and then we get matrix trainYdsd;

4 model = buildModel(144, 4800);
5 model.compile(optimizer=Adam(lr=learning rate),

loss=’binary crossentropy’,metrics=[’accuracy’]);
6 model.fit(trainXdsd trainYsd batch size=b, epochs=t,

shuffle=True);
7 SaveModel(model,Path);
8 end

We first present the experimental settings, followed by
answering the above research questions one by one.

We collected about 2295 ECP-PDD samples of 10 rod-
pumped wells in the same oil field. We then reprocessed
these data and made a ECP-DPDD dataset. The length of a
ECP vector is 144, and the size of a DPDD image is 80×60.

By default, the embedding size is 16, the output size of
recurrent layer is 64, and we have only one dense layer here,
which has 1024 neurons. We used the GNU recurrent layer
by default in our model. We used emphbinary crossentropy
loss function and ADAM optimizer to train our model, and
the learning rate is 0.01. The epoch is 80 and the batch size
is 128. We used a 5-fold cross validation to evaluate the
performance of models.

3.1 Performance Comparison (Q1)

To show the prediction accuracy of our model, we compared
our proposed method with several other state-of-the-art ap-
proaches: Logistic Regression (LR), SVM (with linear ker-
nel), and Multilayer Perceptron (MLP). The MLP has two
hidden layers, the size of which are 1024 and 128 respec-
tively.

We can see from Table 1 that our DeepE2D method
got highest train accuracy and test accuracy, evaluated by a
5-fold cross validation. It is worth noting that MLP outper-
forms LR and SVM, which illustrates that deep models can
fit more complex data. In our case, mapping 144 points to
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Table 1 Performance comparison

Methods CV Train Accuracy CV Test Accuracy
LR 87.36% 87.17%

SVM 89.25% 89.08%
MLP 91.43% 90.71%

DeepE2D 93.29% 91.84%

Table 2 Impact of dense layer size

DL Size CV Train Accuracy CV Test Accuracy
32 84.80% 84.73%
64 84.76% 84.69%

128 92.47% 90.80%
256 91.50% 91.27%
512 92.72% 91.33%
1024 93.29% 91.84%
2048 94.29% 92.57%
4096 96.12% 93.17%

Fig. 3 DPDD images transformed by using SVM (left ) and DeepE2D
(right)

4800 points is so difficult that shallow architectures can not
capture the relationship between the input and output well.
However, the MLP doesn’t treat the EPC as sequential data,
which would cause incorrect mapping if similar DPDD im-
ages have very different EPC sequences in the dataset.

Although it seems that MLP and DeepE2D have only
a little change in terms of accuracy metric, but this metric
is borrowed from the multi-label classification tasks, which
is actually not suitable for our task. However, until now we
haven’t found a suitable metric to reflect the transformation
performance exactly. Fortunately, we found that a little im-
provement of such accuracy can significantly improve the
ECP-to-DPDD quality. As shown in Fig. 3, the DPDD im-
age transformed by using DeepE2D looks like more natural
than the one transformed by using SVM. An important work
of our future study would focus on the finding more suitable
transformation accuracy metrics.

3.2 Impact of Model Settings (Q2)

We changed the DeepE2D model settings to see which fac-
tors might have significant impacts on the prediction accu-
racy.

Firstly, we changed the size of Dense Layer from 25 to
212, and the other settings were set as default. It seems that,
from Table 2, larger Dense Layer could obtain higher accu-
racy. This is because the output of our task is too large, and
a smaller dense hidden layer below the output layer would
capture too general rules, which could transform all the EPC
vectors to very similar DPDD images.

Table 3 Impact of recurret layer size

RL Size CV Train Accuracy CV Test Accuracy
8 89.68% 89.71%
16 90.98% 90.41%
32 92.78% 91.31%
64 93.29% 91.84%
128 96.03% 92.96%
256 89.29% 89.19%

Similarly, we changed the output size of last state of
Recurrent Layer, and the other settings were set as default.
Interestingly, larger size doesn’t always get a better result.
Setting the size as 128 got the highest accuracy, but there
was a sudden decrease when we set the size as 256. It seems
that large state size of Recurrent Layer would try to cap-
ture more local rules, but we have so much data to train the
model.

4. Conclusion

In this letter, we presented a novel deep recurrent network
to transform EPCs to DPDD images, which includes a Em-
bedding Layer, a Recurrent Layer, a Dense Layer and a
Sigmoid Output Layer. The Embedding Layer can learn
more complex feature, which can capture the relationship
between each element in original input. The Recurrent
Layer treats the an EPC vector as sequential input, whereas
the Dense Layer learns distributed representations of raw
inputs. We adopted the GNU as the recurrent layer. Exper-
imental results show that, by choosing appropriate settings,
our DeepE2D outperforms the other existed classification
algorithms.
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