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Strip-Switched Deployment Method to Optimize Single Failure
Recovery for Erasure Coded Storage Systems

Yingxun FU†a), Shilin WEN†, Li MA†, Nonmembers, and Jianyong DUAN†, Member

SUMMARY With the rapid growth on data scale and complexity, single
disk failure recovery becomes very important for erasure coded storage sys-
tems. In this paper, we propose a new strip-switched deployment method,
which utilizes the feature that strips of each stripe of erasure codes could be
switched, and uses simulated annealing algorithm to search for the proper
strip-deployment on the stack level to balance the read accesses, in order
to improve the recovery performance. The analysis and experiments re-
sults show that SSDM could effectively improve the single failure recovery
performance.
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1. Introduction

With the rapid growth of data in both scale and complexity,
more and more large-scaled systems store their data in mas-
sive inexpensive storage devices, such as Google GFS [1]
and Windows Azure [2]. However, the inexpensive de-
vices such as disks and SSDs usually suffer from hard fail-
ures causing permanently data lost. Storage systems should
equip some redundant information, in order to ensure the
data could be recovery from storage device failures. Today’s
storage systems usually adopt erasure codes to maintain the
data reliability, which forms the erasure coded storage sys-
tems.

When suffer from device failures, erasure coded stor-
age systems should recover the lost data. Current recovery
optimizing methods usually focus on optimizing the total
data accesses [3], sequentially data accesses [4], and parallel
data accesses [5], but they usually work on the stripe level.
Though [6], [7] focus on stack level (a series of consecu-
tive stripes) and provide good recovery performance, they
only focus on existing stacks and do not construct the rules
for generating the stack. [8] provides a construction rules
for the generation of stack to improve the recovery perfor-
mance, but it only fit for X-Coded storage systems.

In this paper, we propose a strip-switched deployment
method (SSDM) that fits for most of erasure coded stor-
age systems, in order to optimize the performance on single
failure recovery. The proposed SSDM is orthotropic with
existing optimizing methods, which first uses one or more
pre-defined recovery schemes for each stripe, and then uti-
lizes simulated annealing algorithm to search for the proper
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strip-deployment on stack level, in order to enhance the par-
allelism of read accesses, and thus improve the performance.
The analysis and experiment results show that, SSDM could
effectively improve the recovery performance.

2. Background and Related Work

Terms and Notations: We first give some frequently used
terms and notations based on [7]. The minimal unit of era-
sure coded storage system terms ”stripe”, which contains
data elements and parity elements, where the ”element” is
a chunk of information. The generation of the parity ele-
ments only depends on the elements of the current stripe.
Each column of the ”stripe” names ”strip”. To assure the
reliability, each strip of the same stripe should be mapped
to different physical devices. We use di, j and pi, j to denote
the i− th element of the j− th column, where di, j represents
data element, and pi, j denotes the parity element. We use Di

and Pi to represent data strip and parity strip, respectively.
Figure 1 shows an example of one stripe.

Erasure Code: Erasure code is a class of error correc-
tion code, which is commonly used in storage systems to
correct the data from storage device failures. Erasure code
is usually represented as one stripe, because the stripes are
independent for each other in logic. Figure 2 shows an ex-
ample of (4,2,2) LRC code.

A stripe of (4,2,2) LRC code has 4 data elements and 4
parity elements, where the first 2 parity elements are calcu-
lated based on 2 data elements, respectively, and the other 2
parity elements are computed based on all 4 data elements.
E.g., parity element p0,1 is calculated based on d0,0 and d0,1.
When suffer from disk failures, the system could reconstruct
the lost data elements by their related parity elements and
the surviving data elements.

Fig. 1 An example of one stripe.
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Fig. 2 An example of (4,2,2) LRC code.

Fig. 3 An example of rotated mapping and single failure recovery for
(4,2,2) LRC code.

Erasure Coded Storage System: The storage system
adopts erasure code techniques names erasure coded storage
system. The construction of erasure coded storage system is
to map the stripes into physical storage devices. In order
to assure the data reliability, each strip of the same stripe
should be mapped to different devices. The system assigns
a fixed size (i.e., 1MB) for each element, and then stores the
data and parities stripe by stripe. Strips could be mapped to
different devices.

Figure 3 shows an example of rotated mapping for
(4,2,2) LRC code. We use the lowercase and strip number to
represent both strip and element, because each strip of LRC
code has only one element. For example, the d0 and p0 in
Fig. 3 is equivalent to d0,0, p0,0 in Fig. 2 and D0, P0 in Fig. 1,
respectively.

Single Failure Recovery: When suffer from disk fail-
ures, erasure coded storage systems should retrieve the sur-
viving information to recover the lost data/parity elements.
Since most of device failure patterns are single failure (more
than 99.75%) [7], [9], researchers usually focus on sin-
gle failure recovery, including recovery optimizing meth-
ods [3], [4] and new erasure codes [3], [10] that aim to im-
prove the recovery performance. Figure 3 also shows a re-
covery example for (4,2,2) LRC code [10] when the first de-
vice fails. The system uses p0 and p1 to recover the lost data
elements, and uses the constructing rules reconstructing par-
ity elements, until all lost elements are reconstructed.

3. Design of SSDM

In this paper, we propose a new recovery optimizing method
named stripe-switched deployment method (SSDM), in or-
der to further optimize the performance on single failure re-

Algorithm 1 Strip Switched Deployment Method
1: initial stripe recovery methods Ri

2: initial parameters K, T , M
3: for stripeindex = 0 to 2 · strip number do
4: generate S tack contains stripeindex stripes
5: S olution← Ri

6: de = cal energy(S olution, S tack)
7: remain times = M
8: while remain times > 0 do
9: generate random numbers a, b, c

10: S tacknew = stack switch(a, b, c)
11: S olutionnew = solution switch(a, b, c)
12: denew = cal energy(S olutionnew, S tacknew)
13: ∆t = denew − de
14: if ∆t > 0 or exp(∆t/T ) > rand()/rand max then
15: S tack = S tacknew

16: S olution = S olutionnew

17: de = denew

18: remain times = M
19: if ∆t < 0 then
20: T = K ∗ T
21: end if
22: else
23: remain times − −
24: end if
25: end while
26: S tackall.add(S tack)
27: S olutionall.add(S olution)
28: end for
29: Return S tackall and S olutionall

coveries. SSDM utilizes the feature that strips of each stripe
of erasure codes could be switched, and then adopts simu-
lated annealing algorithm to search for the proper strip de-
ployment on the stack level to balance the read accesses.

3.1 Pre-Define Recovery Scheme for Each Stripe

SSDM adopts pre-defined recovery schemes for each stripe,
which implies SSDM is orthogonal with most of existing
recovery optimizing method. For example, we could choose
local parities for LRC code and the schemes optimized by
the methods in [3], [5] for XOR-based erasure codes, acting
as SSDM’s pre-define recovery schemes.

3.2 Generate the Switched Strip-Deployment

SSDM uses the simulated annealing algorithm to produce
stacks. Simulated annealing algorithm is a generic prob-
abilistic algorithm for addressing the global optimization
problem in a large and discrete solution space, which is usu-
ally more efficient than enumeration-based algorithms, be-
cause it only search for the acceptable solution. Algorithm
1 gives the details.

In SSDM algorithm, line 1 initials the stripe recovery
methods for all strip broken cases. E.g., if a stripe con-
tains n strips, then Ri has n different recovery methods rep-
resenting the potential n possible strip broken cases, where
0 ⩽ i ⩽ n − 1. Line 2 initials the key parameters of simu-
lated annealing algorithm, where K and T control the tem-
perature decreasing, and M means the end condition. Line 3
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launches a for cycle, which tries that one stack contains 1 to
2 · n stripes presenting by stripeindex. Line 4-5 generate the
initial stack (S tack) and the initial recovery solution for the
stack (S olution). Line 6 calculates the energy of the initial
stack and recovery solution based on the ”balance” among
disks. Line 7 sets the variable remain times to record the
remaining iteration times. Line 9-11 generate three random
numbers a, b, c, which means to switch the b − th strip and
c− th strip in the a− th stripe, and then adjust these strips in
the stack-based recovery solution. Line 12-13 calculate the
new energy and the energy subtraction. Line 14-25 give the
simulated annealing process. Specifically, line 14-18 illus-
trate that if the energy substraction is above zero or a random
condition has been triggered, the algorithm will replace the
S tack and S olution by S tacknew and S olutionnew, respec-
tively, and reset remain times to M. If the energy subtrac-
tion is below zero and the replacing process occurs, SSDM
then reduces the temperature by parameter K and T (line 19-
21). Else if the replacing process does not occur, SSDM then
decreases the remain times, until the remain times equals to
zero (line 22-24). At last, the algorithm produces S tack and
S olution for the stack contains from 1 to 2 ·n stripes, SSDM
adds them into S tackall and S olutionall and returns S tackall

and S olutionall (line 26-29). System designers could choose
proper S tack and S olution to design the system to further
improve the performance on single disk failure recoveries.

3.3 An Example of (4,2,2) LRC Code

We now give a (4,2,2) LRC code example. Figure 4 gives
the deployment of one stack produced by SSDM. Since the
last two physical disks for LRC code store the global pari-
ties, which are used for recovery from more than one disk
failures, we store them in special parity disks that may lo-
cate far away from the data. SSDM algorithm generates a
stack with 10 stripes, where the strip-deployment of each
stripe are different. We do not consider about the load bal-
ancing on write operations, because LRC codes are usually
used for cloud storage systems in which the random write
operations are not permitted.

When suffers from a single disk failure, if the failed
disk is global parity disk, the system only need to find a
leisure time to recompute the parities, because this failure

Fig. 4 Deployment and recovery from the first failure for (4,2,2) LRC
code over SSDM algorithm.

pattern is not important for erasure coded storage systems
due to the fact that all data elements are surviving. Oth-
erwise, the system needs to reconstruct the lost elements by
local parities. Figure 4 also shows the recovery process from
the first disk failure. We can easily observe that all disks ex-
cept for the failed disk and global parity disks should read 4
elements, which is well balanced. In fact, no matter which
data disk fails, all other data disks need to read only 4 ele-
ments for recovery under this pattern.

4. Simulation Analysis

4.1 Analysis of Search Time

We analyze the time complexity of SSDM by comparing
with reference [3]’s method and STP method [7], which are
popular recovery method for today’s erasure coded stor-
age systems. Reference [3]’s method is stripe-based, which
searches for all potential stripe-based solutions for each
stripe, so that the search time will be exponentially increased
with the scale. STP method and SSDM utilize simulated an-
nealing concept to search for feasible solution in stack-level,
where the time cost is major in the initial process of simu-
lated annealing and usually polynomially increased with the
scale. If the scale is small, reference [3]’s method runs fast;
otherwise, STP method and SSDM run fast. STP method
and SSDM have similar time cost, because they have simi-
lar scale and utilize the same concept.

We also implement reference [3]’s method, STP
method, and our proposed SSDM based on C++ language
over visual studio 2010, and use LRC codes and Cauchy
RS codes [11] with different parameter to evaluate the real
search time. The machine has a Intel i7 6820 CPU and
32GB memory. As shown in Table 1, the search time well
matches above analysis and illustrates that the time com-
plexity is very close to STP method. On the other hand,
since the search algorithm only runs on the stage of stor-
age system initialization with very low frequency, the search
time of SSDM is acceptable for today’s storage systems.

4.2 Analysis of Recovery Speed

We compare the single disk recovery balance among LRC
codes and Cauchy RS codes with standard form, rotated
form (as shown in Fig. 3) and SSDM based form, and im-
plement them by Jerasure library [12], which is commonly
used for erasure coded storage system implementations. We
use notation u and v to represent the number of stripes in

Table 1 Time overhead for different recovery methods over different era-
sure codes (unit: seconds).

Erasure Codes Ref. [3] STP SSDM
LRC (8,2,3) < 1s < 1s 1s
LRC (10,2,4) < 1s < 1s 2s

Cauchy RS (11,2) < 1s 8s 10s
Cauchy RS (13,3) 1s 26s 31s
Cauchy RS (16,4) 943s 234s 247s
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one stack and the number of disks storing the data and local
parities, respectively, and define max readi as the maximum
number of reads among all disks when the i − th (0 ⩽ i ⩽ v
) disk fails. We define recovery balance based on Eq. (1).

recovery balance =

∑v
i=0 max readi

u · v (1)

According to Eq. (1), recovery balance first calcu-
late the average number of max readi, and then divide
by u. Since u means the number of failed elements,
and v means the number of potential disk failure pat-
terns, recovery balance represents the average number of
max readi for all potential failure cases for recovering each
lost element. In today’s storage system, all disks could be
accessed in parallel, so that the disk with maximum read
accesses forms a bottleneck, and the total recovery speed
is due to the bottleneck disk accomplishing the read pro-
cess [7]. Therefore, recovery balance could directly reflect
the recovery speed.

We first consider LRC codes with parameters (4,2,2),
(6,2,3), (8,2,3), and (10,2,4), and show the results in
Fig. 5(a). For standard forms, the recovery balance is sta-
bilized in 1, because it only uses the same disks to recon-
struct lost data like RAID-4. For rotated forms, the recovery
balance is 0.5 to 0.67, which inclines better recovery perfor-

Fig. 5 Recovery balance for the tested erasure codes with different forms.

Fig. 6 The recovery speed for the tested erasure codes with different forms.

mance than standard forms, because the more disks partic-
ipate in recovery process causing better parallelism of read
accesses. For SSDM forms, the recovery balance is 0.4 to
0.5, which is 16.7% to 26.7% lower than rotated forms, re-
spectively. In addition, the lower bound of recovery balance

is
v
2−1
v−1 =

v−2
2v−2 , which are 0.4, 0.43, 0.44, 0.45 when v equals

to 6, 8, 10, 12. Therefore, For (4,2,2) and (6,2,3) LRC codes,
the SSDM forms achieve the lower bounds of the recovery
balance. For (8,2,3), and (10,2,4) LRC codes, the recovery
balance of SSDM forms are very close to the lower bounds.

We then consider Cauchy RS codes with different pa-
rameters (k,m), where k and m mean the number of data
strips and parity strips, respectively. For standard forms
and rotated forms, we use reference [3]’s method and STP
method [7] for optimization, respectively, and show the re-
sult in Fig. 5(b). Compared to rotated forms, SSDM forms
achieve 3.8% to 10.4% lower balance, which illustrates that
SSDM also performs well on Cauchy RS code.

5. Experiment Evaluation

We build a series of experiments in a real storage system to
evaluate the recovery performance. We use the same exper-
iment environment as [6], [7]. The experiments are run on
a machine and a disk array. The machine has an Intel Xeon
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X5472 processor and 12GB memory. The operation system
is SUSE with Linux fs91 3.2.16.

We consider LRC codes and Cauchy RS codes with
the same forms and parameters referred in Sect. 4. For each
form with different parameters, we evaluate the real recov-
ery speed under each potential data disk failure, and show
the average speed in Fig. 6. For standard forms, the recov-
ery speed for both LRC codes and Cauchy RS codes are
similar, because the recovery balance is stabilized. For ro-
tated forms and SSDM forms, the recovery speed varies in
proportion with the recovery balance referred in Sect. 4. In
statistics, SSDM forms gain 20.6% to 68.4% higher recov-
ery speed than that with rotated forms for LRC codes, and
achieve 5.9% to 16.1% higher recovery speed than that with
rotated forms for Cauchy RS codes, respectively. The re-
sults match analysis well and illustrate that SSDM could
effectively improve the performance on single disk failure
recoveries.

6. Conclusion

Single disk failure recovery problem is very important in
today’s storage systems. In this paper, we propose a new
strip-switched method termed SSDM, in order to further op-
timize the single disk recovery performance. SSDM utilizes
the concept that strips of each stripe of erasure codes could
be switched, and uses the simulated annealing algorithm to
search for the proper strip-deployment on the stack level to
balance the read accesses among local disks, in order to
utilize the parallelism of disk reads to optimize the recov-
ery performance. The analysis and experiment results show
that, SSDM provides very good performance on single disk
failure recoveries for erasure coded storage systems.
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