
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019
637

LETTER

Software Engineering Data Analytics: A Framework Based on a
Multi-Layered Abstraction Mechanism

Chaman WIJESIRIWARDANA†a), Member and Prasad WIMALARATNE†, Nonmember

SUMMARY This paper presents a concept of a domain-specific frame-
work for software analytics by enabling querying, modeling, and integra-
tion of heterogeneous software repositories. The framework adheres to a
multi-layered abstraction mechanism that consists of domain-specific op-
erators. We showcased the potential of this approach by employing a case
study.
key words: software analytics, mining software repositories, domain spe-
cific frameworks

1. Introduction

With the increase in standard processes and productivity tool
support, both the number of artifacts created in the soft-
ware development process and the amount of available data
has significantly grown. These vast amounts of data con-
tain valuable information that could help supporting soft-
ware developers, but it is impossible to examine everything
manually. As a result, recent years have witnessed exten-
sive studies on mining software repositories (MSR) to dis-
cover various types of valuable information about software
projects [1], [2]. However, even with the existing MSR
tools, software developers often suffer from a scarcity of
techniques necessary for flexible querying and integration of
custom data stored in such repositories towards accomplish-
ing complex analysis tasks [3], [4]. Therefore, software re-
searchers have to spend considerable time on integrating and
synthesizing the information stored in repositories to per-
form software evolution analysis tasks. This has identified
as an essential future direction in mining software reposito-
ries [5].

Existing frameworks that support MSR based on either
generic query languages such as SQL or domain-specific
languages that specifically designed for MSR. Approaches
such as Gitana [6], AlitheiaCore [7] and MetricMiner [8] are
based on the standard SQL syntax. These attempts are not
explicitly facilitating MSR specific complex tasks such as
finding the number of critical issues resolved by the most
frequent committer in a project or finding the bug introduc-
ing changes between two successful builds. Boa [9] and
QWALKEKO [10] are domain specific languages specifi-
cally designed for MSR. However, these approaches are
built for querying particular data sources. Beyond that, such

Manuscript received April 5, 2018.
Manuscript publicized December 4, 2018.
†The authors are with School of Computing, the University of

Colombo, Reid Avenue, Colombo, Sri Lanka.
a) E-mail: chaman@uom.lk

DOI: 10.1587/transinf.2018EDL8070

domain-specific languages are lacking the rich features of
well-established generic query languages and not easily ex-
tended to facilitate heterogeneous data sources.

As a solution, we introduce a conceptual foundation of
a domain-specific framework to support flexible querying
and analysis of software engineering data. The framework
adheres to an extensible multi-layered abstraction mecha-
nism that consists of a collection of domain-specific opera-
tors. The domain-specific operators are built on top of the
operators derived from relational algebra. The framework
helps both researchers and practitioners in effectively ex-
ploring various kinds of information stored in both tradi-
tional and non-traditional repositories.

2. Approach

Software data analytics typically consists of three phases: It
starts with collecting required data, e.g., by extracting data
available on software repositories. Then the data needs to be
preprocessed using various operations such as data cleaning
or data filtering. Finally, the actual analysis task required for
accomplishing the analysis goals can perform. To facilitate
this workflow, this paper introduces a collection of software
analytics specific operators, which could be meaningfully
composed to build up the logic to accomplish analysis tasks.

2.1 Operator Stack

As depicted in Fig. 1, the operator stack consists of several
layers, which could be extensible with new layers and a col-
lection of corresponding operators. In the following, we
briefly describe each layer and the rationale for separating
it into multiple layers.

Basic operators: These operators directly derived
from relational algebra. Relational algebra is a procedural
query language, which operates on input relations. It con-
sists with a set of fundamental operators such as select,
project, union and cartesian product. Though sev-
eral relational algebra theorems do not strictly hold in query
languages such as SQL and LINQ, they are the native im-
plementations of the underline concept of relational algebra.
Therefore, we borrowed some ideas from such languages to
identify basic operators supported by relational algebra. In
this paper, operators such as filter, select, join, sort,
count, etc. has been categorized as basic level operators.
Such operators are useful in generating queries to perform
simple tasks such as counting the number of commits of par-

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers



638
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

Fig. 1 Operator stack and the examples of supported scenarios.

ticular developer or finding the successful builds within a
particular period.

Level 1 operators: Level 1 operators derived by com-
bining basic operators without further processing to ease
MSR specific tasks. Consider an analysis task of finding
the most frequent committer in a project. It requires extract-
ing commit details from a VCS, filtering the required fields,
sorting them according to the number of commits, and se-
lecting the committer with the highest number of commits.
The whole process could be accomplished by using a sin-
gle FindMax operator, which is made up of three basic level
operators: filter, sort and select. Therefore, FindMax
is categorized as a Level 1 operator in the proposed oper-
ator stack. It can be used to find, for instance, finding the
developer who fixed the most number of bugs.

Level 2 operators: Software analysis tasks, by na-
ture, are more complex than the examples described in
the previous section. It may include complex tasks such
as issue-revision linking, change distilling or
detecting code smells. As a result, an operator such
as FindMax could be used to perform a sub-task in a more
complex analysis task. Therefore, we emphasize the criti-
cal need for more powerful operators as a single unit that is
made up of a combination of basic and Level 1 operators to
perform complex analytics experiments.

2.2 Repository of Operators

One of the main contributions of this paper is to introduce a
collection of frequently used operators that are used to per-
form software analytics experiments. Initially, a literature
review is conducted on the papers published on the Interna-
tional Conference on Mining Software Repositories† for the
last three years (2015–2017). We carefully investigated the
methodology section in each paper to identify the main an-
alytics tasks carried out during the experiments. Our study

†www.msrconf.org/

Fig. 2 Collection of operators derived from the literature.

was not limited to the baseline papers on the mentioned con-
ference and the duration. We further traced back to find re-
lated work published outside the selected papers to identify
the frequent nature of the operators. Figure 2 presents the
identified operators from the literature review categorized
into basic, level 1, and level 2. However, the operator repos-
itory would experience a continuous evolution with the time.

2.3 Prototype Implementation

As a proof-of-concept, the operators are built using java lan-
guages. As of now, users can accomplish a software analysis
task by writing a simple program by utilizing the available
operators in the operator library.

3. Case Study Based Evaluation

A case study is employed to demonstrate how to build the
logic to perform a software analysis task by utilizing the op-
erators from the operator stack. The following analysis task
showcases a possible interlinking of two software reposito-
ries by utilizing both the basic level and Level 1 operators
from the operator stack.
Analysis Task: Finding critical issues resolved by most fre-
quent committer in a project.
Measuring the performance of the developers is a non-trivial
task for project managers, especially when the team size and
project scope is large. Due to its subjective nature, find-
ing an accurate, quantifiable metrics is a holy grail for man-
agers. Simplistically, total lines of codes, number of com-
mits, number of bugs fixed, or a meaningful combination of
them could yield useful insights of performance.
Background: Software artifacts produced during the devel-
opment of a software project are disconnected from each
other. Establishing traceability links across artifacts is a



LETTER
639

Fig. 3 Finding the number of critical issues resolved by the most
frequent committer in a project.

Table 1 Summary of the experimental results.

Apache Project No: of
Commits

Frequent Developer No: of
bug fixes

Gora 1053 Developer A 52
Commons-lang 5171 Developer B 4
IO 2091 Developer C 0
Winx 1312 Developer D 2

key challenge in software maintenance [11]. To address this,
gold rush for querying the interrelationship data across au-
tonomous and heterogeneous software repositories has wit-
nessed in several recent studies.
Implementation using operators: Figure 3 presents how to
utilize the identified operators to perform the above analysis
task. It demonstrates how the data is integrated from both
version control and bug tracking repositories to find how
many critical bugs have fixed by the most frequent commit-
ter.

We further tested the above scenario with four open
source projects by using the prototype implementation. The
prototype allows users to utilize the operators to perform the
tasks directly. Therefore, it provides a great level of con-
venience to the users. Summary of the experimental results
present in Table 1. The names of the developers keep anony-
mous on the table, however, can be exposed to the reviewers.

4. Conclusion

This paper presents a conceptual foundation of a domain-
specific framework based on a multi-layered abstraction
mechanism to support flexible querying and analysis of soft-

ware engineering data. The framework supports query-
ing, modeling, and integration of heterogeneous and au-
tonomous software repositories. Main building blocks of
the multi-layered abstraction mechanism are represented re-
garding a collection of basic and MSR specific operators.
As future work, we plan to enrich the operator stack with
more operators derived from the MSR research. Then the
framework will be evaluated with more case studies by in-
corporating a diverse set of analysis tasks.

Acknowledgements

The authors of this paper gratefully acknowledge the fi-
nancial support provided by the National Research Council
(Grant No: NRC 15-74).

References

[1] H. Hemmati, S. Nadi, O. Baysal, O. Kononenko, W. Wang, R.
Holmes, and M.W. Godfrey, “The MSR cookbook: Mining a decade
of research,” 2013 10th Working Conference on Mining Software
Repositories (MSR), pp.343–352, IEEE, 2013.

[2] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do profes-
sional developers comprehend software?,” Proc. 34th International
Conference on Software Engineering, pp.255–265, IEEE Press,
2012.

[3] A.E. Hassan, “The road ahead for mining software repositories,”
2008 Frontiers of Software Maintenance, FoSM 2008, pp.48–57,
IEEE, 2008.

[4] Y. Sakamoto, S. Matsumoto, S. Saiki, and M. Nakamura, “Visualiz-
ing software metrics with service-oriented mining software reposi-
tory for reviewing personal process,” 2013 14th ACIS International
Conference on Software Engineering, Artificial Intelligence, Net-
working and Parallel/Distributed Computing (SNPD), pp.549–554,
IEEE, 2013.

[5] J.M. Gonzalez-Barahona, G. Robles, and I. Herraiz, “Challenges in
software evolution: The libre software perspective,”

[6] V. Cosentino, J.L.C. Izquierdo, and J. Cabot, “Gitana: A SQL-based
git repository inspector,” International Conference on Concep-
tual Modeling, Lecture Notes in Computer Science, vol.9381,
pp.329–343, Springer, 2015.

[7] G. Gousios and D. Spinellis, “Conducting quantitative software en-
gineering studies with Alitheia core,” Empirical Software Engineer-
ing, vol.19, no.4, pp.885–925, 2014.

[8] F.Z. Sokol, M.F. Aniche, and M.A. Gerosa, “MetricMiner: Support-
ing researchers in mining software repositories,” 2013 IEEE 13th In-
ternational Working Conference on Source Code Analysis and Ma-
nipulation (SCAM), pp.142–146, IEEE, 2013.

[9] R. Dyer, H.A. Nguyen, H. Rajan, and T.N. Nguyen, “Boa: A
language and infrastructure for analyzing ultra-large-scale software
repositories,” Proc. 2013 International Conference on Software En-
gineering, pp.422–431, IEEE Press, 2013.

[10] R. Stevens and C. De Roover, “Querying the history of software
projects using QWALKEKO,” 2014 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pp.585–588,
IEEE, 2014.

[11] R. Witte, Y. Zhang, and J. Rilling, “Empowering software maintain-
ers with semantic web technologies,” The Semantic Web: Research
and Applications, Lecture Notes in Computer Science, vol.4519,
pp.37–52, Springer, 2007.

http://dx.doi.org/10.1109/msr.2013.6624048
http://dx.doi.org/10.1109/icse.2012.6227188
http://dx.doi.org/10.1109/fosm.2008.4659248
http://dx.doi.org/10.1109/snpd.2013.96
http://dx.doi.org/10.1007/978-3-319-25264-3_24
http://dx.doi.org/10.1007/s10664-013-9242-3
http://dx.doi.org/10.1109/scam.2013.6648195
http://dx.doi.org/10.1109/icse.2013.6606588
http://dx.doi.org/10.1109/icsme.2014.101
http://dx.doi.org/10.1007/978-3-540-72667-8_5

