
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.10 OCTOBER 2018
2547

LETTER

Twofold Correlation Filtering for Tracking Integration∗

Wei WANG†,††a), Student Member, Weiguang LI†,††, Zhaoming CHEN†, and Mingquan SHI†b), Nonmembers

SUMMARY In general, effective integrating the advantages of different
trackers can achieve unified performance promotion. In this work, we study
the integration of multiple correlation filter (CF) trackers; propose a novel
but simple tracking integration method that combines different trackers in
filter level. Due to the variety of their correlation filter and features, there is
no comparability between different CF tracking results for tracking integra-
tion. To tackle this, we propose twofold CF to unify these various response
maps so that the results of different tracking algorithms can be compared,
so as to boost the tracking performance like ensemble learning. Experiment
of two CF methods integration on the data sets OTB demonstrates that the
proposed method is effective and promising.
key words: object tracking, correlation filter, end-to-end represent learn-
ing, complementary features, trackers integration

1. Introduction

Recent survey of trackers shows that single tracking method
may be not effective enough to tackle complicated back-
ground and fast variations of target appearance [1], [2].
Many improvements like multiple tracking algorithm inte-
grating and multiple features fusing have been proposed for
the CF based tracking method. As the use of features inte-
gration, Staple [3] proposes complementary method that is
inherently robust to both color changes and deformations.
Ma [4] et al. explores the hierarchies of different CNN lay-
ers and interpret them as a nonlinear counterpart of an im-
age pyramid representation for tracking. Danelljan [5] et al.
utilize the fusing of hierarchical multiple features with the
features dimension reduction to improve the performance
and speed. In [6] the authors propose a novel visual track-
ing sampler that can robustly handle in challenging scenar-
ios. STRCF [7] handles boundary effects with less loss in
efficiency and achieves remarkable performance by incor-
porating both temporal and spatial regularization. DRT [8]
jointly models the discrimination and reliability information
to reduce the tracking model degradation caused by the un-
expected salient regions on the feature map. LCT [9] trains
an online random fern classifier to re-detect objects in case
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of Correlation tracking failure. A multiple tracker [2] com-
bines KCF and TLD based on complementary measure with
strategic model updates, which takes advantages of both and
outperforms them.

Despite these above improvement, there are also some
drawbacks need to be mentioned. On one hand, simple fus-
ing of multiple features may not really integrate the advan-
tage of both individual features. On the other hand, complex
tracking method integration suffers from relatively expen-
sive computing costs, which make a hurdle to improve the
ensemble based visual tracking. In this work, we simplify
the complex tracking fusing task; propose a novel but sim-
ple twofold CF method to dig out the strengths of different
tracking methods and complementary features. Our method
makes a unified way in filter level not only for different
features fusing but also for different tracking methods in-
tegrating. Moreover, to balance the tracking speed of fusing
complementary features and various tracking method, we
choose two typical trackers with equivalent tracking speed,
named CFnet [10] and Staple [3]. Our twofold CF method
integrates the two CF trackers with complementary features
and various tracking tricks, which run at 41 fps and outper-
form both the algorithms. Noted that the proposed method
is flexible and promising for the integration of other tracking
method.

The contributions of this paper can be summarized as
follows:
• Selection of two state-of-the-art tracking methods

with complementary performance in handling tracking chal-
lenges.
•A simple but efficient twofold CF method is proposed

for the integrating of different CF trackers, which unifies in-
compatible CF response maps to adapt relevant better track-
ing result.

2. The Proposed Method

2.1 Correlation Filter Tracking

The CF model is trained through dense sampling from an
image patch, which uses Fast Fourier Transform (FFT) to
improve the computational efficiency. The appearance of a
target object is given by using a filter w trained on an image
patch x of M × N pixels. The correlation filter w can be
learned by minimizing the ridge regression loss:

w∗=argmin
∑
m,n

‖w · ϕ(x(m, n))−y(m, n)‖2+λ‖w‖2 (1)
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Where λ is a regularization parameter for reducing over-
fitting, · is the inner product symbol; ϕ is the mapping to
a kernel space. The ideal response y ∈ R∧(M×N) is given by
the following equation:

y(m, n) = e−
(m−M/2)2+(n−N/2)2

2σ2 (2)

where σ is the kernel width. All the circular shifts of
x(m,n), where (m, n)∈{0, 1, · · · ,M − 1} × {0, 1, · · · ,N − 1},
are generated as training samples with Gaussian function
label y(m, n). Using FFT to compute this problem, this
objective function can be identically expressed as w =∑

m,n α(m, n)ϕ(m, n), the coefficient a is defined as:

a = F−1

(
F(y)

F(ϕ(x) · ϕ(x)) + λ

)
(3)

where F denotes the discrete Fourier operator. In the track-
ing process, patch z with the same size as x is cropped from
the new frame image. The response map is calculated by:

f̂ = F−1(F(a) � F(ϕ(z) · ϕ(x̂))) (4)

Where f̂ means f̂ = FFT(x) as well as other symbols.
The target can be located by searching for the position of
maximum value of the correlation response map.

2.2 Overview of Staple

Staple merges two CF model respectively using template-
based feature histogram features as complementary learn-
ers. Staple propose a linear combination of template and
histogram scores function:

f (x) = γtmpl ftmpl(x) + γhist fhist(x) (5)

where the subscript tmpl and hist denote the variables of the
template learner the histogram learner respectively. These
two response map are proposed by learning two independent
rigid-regression models with complementary features:

ht = argminh

{
Ltmpl(h; Xt) +

1
2
λtmpl‖h‖2

}

βt = argminβ

{
Lhist(β; Xt) +

1
2
λhist‖β‖2

}
(6)

where h and β indicates the parameters of the correlation
filter and the color model respectively. The function L( · )
represents a L2 loss.

For the target translation and various scales, Staple
search only in a region around the previous location during
search as well as for training.

2.3 Overview of CFnet

CFnet integrates the CF learner as a differentiable layer in
a deep CNN network and trains lightweight CNN features
to achieve state-of-the-art tracking performance. Such inte-
grating makes errors be propagated through the CF back to

the CNN features. There has closed-form expression for the
derivative of the Correlation Filter which can integrate the
correlation filters in an end-to-end network.

For the CF learner integration, CFnet use a fully-
convolutional Siamese framework to learn the feature maps
of search patch ϕ(z) with a Correlation Filter block, which
has formalized process:

L(θ) =
∥∥∥R(θ) − R̃

∥∥∥2
+ γ‖θ‖2

s.t. R(θ) =
d∑

l=1

ϕ(z, θ) ∗ f

f = F−1(F(a) � F(ϕ(z) · ϕ(x̂))) (7)

where is the ideal response generated around the real target
location by Gaussian distribution. The back-propagation of
loss about the image pair ϕ(x) and ϕ(z) are formulated as:

∂L
∂ϕ(x)

= F−1

(
∂L

∂(ϕ̂(x))∗
+

(
∂L
∂ϕ̂(x)

)∗)

∂L
∂ϕ(z)

= F−1

(
∂L

∂(ϕ̂(z))∗

)
(8)

The correlation filters can be formulated as a CF layer
in network by derived this back-propagation. The back-
propagation in correlation filter layer still can be computed
in Fourier frequency domain so that the CNN connected a
CF layers apply the offline training on large-scale datasets.
Since this ultra-lightweight CNN feature has approximately
the same number of parameters as hand-crafted features, we
use the two kinds of trackers to improve the whole tracking
performance.

2.4 Twofold CF Method for Tracking Method Integration

Single tracker may have not enough power to handle all the
tracking challenges and effective tracking methods integra-
tion may significantly improve the tracking performance [2].
Different from previous works [5], [9] which directly fuse
CNN, hog and color name features as single model to im-
prove the tracking performance, we propose a simple hy-
brid method that works on filter level to integrate the advan-
tage of multiple features and various tracking method. Our
proposed method considers the results of both two track-
ers and selects the best one by measuring the max response
map value that depends on correlation with the stored object
model sample patches. The proposed tracking architecture
consists of two base trackers, and is simple but effective to
integrate the advantage of the two trackers.

The key idea of our method is the twofold CF process,
which takes the result of one tracker as the previous frame
of another tracker. For the integration of the two trackers,
our method has two parallel streams and obtains the final re-
sults by integrating the response map of these two streams.
Firstly, each base tracker is working on its own line and
makes their individual response map. Subsequently, we get
the twofold response map based on the result of CF1 by us-
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Fig. 1 Flow chart of the proposed method for one frame progress: (the final result is obtained by
choosing the response map with higher value.)

Fig. 2 The precision and success plots of OPE on the OTB2015 benchmark.

ing the filter of CF2. As shown in Fig. 1, two unified re-
sponse maps are acquired for the tracking results compari-
son. Notice that CF1 and CF2 is complementary each other
and can be exchanged.

Denote w1, w2 as the Correlation filter parameters of
CF1 and CF2 respectively, the twofold CF process can be
defined by rewriting (1):

w∗ = argmin
∑
m,n

‖w2 ·
(
w1 · ∅(x(m, n)

)) − y(m, n)‖2

+ λ‖w‖2 (9)

Where the whole filter w = w1 · w2 can be obtained by
solving (1).

In general, CF tracker locates the target by finding
the max response map value and updates the discrimina-
tive model with dense samples generated around the prior
results [1]. Thus, we compare the two response map maxi-
mum values and choose the better as the final tracking result
by:

max(R) = max(max(RCF1·CF2),max(RCF2) (10)

Where R denotes the CF response map and can be ob-
tained by (4). By this comparison, optimal tracking results
can be found. For the model updating of CF1 and CF2, they

use their individual updating strategy respectively. The fol-
lowed experiment will demonstrate the integrating perfor-
mance.

3. Experimental Results

3.1 Data Sets and Evaluation Metrics

We evaluate our proposed method on the datasets
OTB2015 [11], which has large number (100 sequences) of
different sequences and categorizes these sequences with
11 attributes. OTB provides three evaluation metrics: one
pass evaluation (OPE), time robustness evaluation (TRE)
and spatial robustness evaluation (SRE). Each metrics use
Precision plot and Success plot to evaluate the tracker per-
formance. Precision plot is the center location error, which
computes the average Euclidean distance between the can-
ter locations of the tracked targets and the manually labeled
ground-truth positions of all the frames. Another measure
for evaluating trackers is the area under curve (AUC) of suc-
cess plot, which is the average of the success rates according
to the sampled overlap thresholds. Given a tracked bound-
ing box Kt and the ground-truth bounding extent K0 of a
target object, the overlap score is defined as:



2550
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.10 OCTOBER 2018

Table 1 The AUC score of OPE success plots of the compared trackers on OTB 2015: illumination
variation (IV), out-of-plane rotation (OPR), scale variation (SV), occlusion (OCC), deformation (DEF),
motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-view (OV), background cluttered
(BC) and low resolution (LR). Red: best Blue: second best.

ϕK =

∣∣∣∣∣K0 ∩ Kt

K0 ∪ Kt

∣∣∣∣∣ (11)

where ∩ and ∪ are regional intersection and union operation,
while |∗| is definite for the number of pixels in the frame.

3.2 Performance Comparison

Our tracker is compared with recent proposed trackers in-
cluding CF2 [4], Staple [3], CFnet [10], LCT [9], DSST [12]
and KCF [1] on the main metric OPE of OTB2015. Among
these compared trackers, CF2 and CFnet use deep CNN
features and the others use hand-crafted features. For the
tracking integration in this implementing, CFnet and Sta-
ple are regarded as CF1 and CF2 respectively. As shown
in Fig. 2 (a), our proposed tracker framework achieves top
rank and the remarkable performance with a large margin in
the success tracking plots. From Fig. 2 (b) we can see that
the precision rate of our approach is just below CF2, which
does not runs at real-time speed and has a comparably low
success rate. Meanwhile, it can be point out that our track-
ing method achieves expected performance and outperforms
other trackers which include deep feature based trackers and
correlation filter based trackers. Specifically, our method
achieves a success score 0.603 and a precision score 0.819.
Compared with the baselines Staple and CFnet, the success
and precision improve from {3.7%, 7%} to {4.1%, 9.4%},
respectively.

We also show success rate of OPE performances on
each attribute in Table 1, which gives the OPE performances
of the ranked trackers on the 11 challenge attributes. The
proposed tracker lies in the best or the second best rank line
among all of the trackers compared, and the performance of
different attribute demonstrates that our method clearly out-
perform against other trackers on accurate and robust. This
superiority benefits from the twofold CF and optimization
mechanism of the proposed method.

4. Conclusions

In this paper, we proposed a simple yet robust tracking in-
tegration method formed by ingeniously combining the two
state-of- the-art trackers, which have complementary per-

formance in handling tracking challenges. The proposed
method runs at filter lever and unifies incompatible response
map to refine the tracking results. Our proposed tracker not
only has superior performance, but also runs at a fast speed
which is enough for real-time applications.
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