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Rectifying Transformation Networks for Transformation-Invariant
Representations with Power Law

Chunxiao FAN†, Yang LI†,††, Nonmembers, Lei TIAN†, and Yong LI†a), Members

SUMMARY This letter proposes a representation learning framework
of convolutional neural networks (Convnets) that aims to rectify and
improve the feature representations learned by existing transformation-
invariant methods. The existing methods usually encode feature represen-
tations invariant to a wide range of spatial transformations by augmenting
input images or transforming intermediate layers. Unfortunately, simply
transforming the intermediate feature maps may lead to unpredictable rep-
resentations that are ineffective in describing the transformed features of
the inputs. The reason is that the operations of convolution and geomet-
ric transformation are not exchangeable in most cases and so exchanging
the two operations will yield the transformation error. The error may po-
tentially harm the performance of the classification networks. Motivated
by the fractal statistics of natural images, this letter proposes a rectifying
transformation operator to minimize the error. The proposed method is dif-
ferentiable and can be inserted into the convolutional architecture without
making any modification to the optimization algorithm. We show that the
rectified feature representations result in better classification performance
on two benchmarks.
key words: convolutional neural network, deep learning, image represen-
tation, transformation error

1. Introduction

Current state-of-the-art algorithms in computer vision are
based on deep neural networks, especially the convolu-
tional neural networks (Convnets), such as object detec-
tion/instance segmentation [1] and pose estimation [2]–[4].
A crucial aspect of these successful work is the translation-
invariant representations learned by Convnets which are
matched to the statistics of natural images [5], [6]. However,
natural image statistics are largely transformation-invariant
to other forms as well, such as isotropic scaling and rotation.
This motivates many extensive studies of the Convnets to
generalize convolutional features to other geometric trans-
formations, which can be roughly categorized as manually
transforming (augmenting) images/features [7], [8], manip-
ulating filters [9], and learning transformations [10], [11].

A lot of work adopted the three types of methods or
other alternatives to handle the variations in data in com-
puter vision tasks. Among them, data augmentation is prob-
ably one of the best-known methods. Unfortunately, only
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a limited number of transformations can actually result in
meaningful samples and others may lead to noise instances
or wrong labels [12], [13]. Bengio et al. [12] provided
the explanation of the phenomenon from the perspective of
manifold and presented that the high-level representations
expand the relative volume occupied by high-probability
points within feature space (Hypothesis 3), which suggests
that the plausible and meaningful instances gain more op-
portunity to appear when sampled in feature space than in
pixel space. Inspired by the work, DeVries et al. [14] pro-
posed to project the feature space into a new space learned
by an autoencoder then conduct feature augmentation in the
learned space. Similarly, Liu et al. [15] presented a novel
feature augmentation network for object recognition task.
It is worth noting that these algorithms are specifically de-
signed for feature space, and directly applying transforma-
tions appropriate for pixel space to feature space (as done
in [8], [10], etc.) may lead to unpredictable representations,
which is estimated by the ‘transformation error’ in this let-
ter.

To see where the error comes from, let T denote an
arbitrary affine transformation operation and W denote the
convolution. It is easy to see that T and W are two linear
mappings that do not generally satisfy the commutative law
of multiplication. Therefore, the common fact is that trans-
forming directly the convolutional feature maps does not
give the same solution as the data augmentation gives.

To reveal this, a verification experiment is carried
out about the rotation transformation on the Rotated
MNIST dataset [16] via the CNN network described in [11].
Data/Feature augmentation is exerted on from the data layer
to the third convolutional layer respectively.

Table 1 shows a degradation problem: with the aug-
mentation depth increasing, performance degrades rapidly.
Unexpectedly, such degradation is neither caused by opti-
mization since all the networks reach the similar training
error (see Fig. 1) nor by overfitting since they all have ex-
actly the same architecture and number of parameters. The

Table 1 Comparisons of different augmentation on Rotated MNIST [16].
The network architecture is [conv(3x3, 3)-conv(3x3, 6)-maxpooling(2x2)-
conv(3x3, 9)-conv(3x3, 12)-FC(48)-FC(10)] following [11]. The training
lasts for 300 epochs using 64 batch size. The initial learning rate is 0.01
and then divided by 10 at the 150th and 225th epoch.

Augmentation on Data layer Conv1 Conv2 Conv3

Test error rate (%) 2.47 2.76 3.52 4.00
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Fig. 1 Training error and test error on Rotated MNIST. All networks
converge well but the network with deeper augmentation performs worse.

only difference among them is the depth of augmentation.
The degradation of performance indicates that the transfor-
mation error indeed exists and is not negligible.

The potentially negative influence of the transforma-
tion error is that the solver has to optimize parts of param-
eters towards correcting the error, which will result in that
these parameters are not used to learn the valuable semantic
knowledge and lead to the consequential reduction in repre-
sentation capability. Even though including extra parame-
ters (e.g., stacking more layers) could be a compromise so-
lution, this will result in less control over the model capacity
and higher risk of overfitting.

For addressing the transformation error in a parameter-
efficient way, this letter explicitly constructs a rectifying
transformation network (RTN), which is motivated by the
power law [17] that derives from the fractal statistics of im-
ages [18], [19]. The RTN contains a preprocessing func-
tion for normalizing the transformed features and a power-
law function for rectifying the transformation error. The
power-law function can be seen as the prior knowledge of
the statistical relationship of the raw features and the trans-
formed ones. By introducing the prior knowledge, the RTN
is able to decrease the transformation error with consider-
ably smaller number of parameters than the approach of
stacking more layers, which in return sets free the convo-
lutional parameters to learn valuable semantic knowledge.

2. The Proposed Method

This section proposes a method to rectify the transforma-
tion error described above. Given that the transformation
error originates from the non-commutativity, we seek a new
mapping to compensate for it, making the two forms equal
approximately. Formally, the mapping is defined as

f = arg min
f
‖ X − f (Y) ‖,

where, X = W ⊗ T (I) , Y = T (W ⊗ I) . (1)

Here, I is the input image, W is the weights of convolu-
tional layer, ⊗ denotes the convolution operation, T denotes
the affine transformation, and f is the rectifying transfor-
mation mapping which can be either a linear function or a
non-linear one. By this definition, the problem becomes the
model selection of f and its optimization.

Model Selection. Theoretically, f can take any form, such
as the Convnets or a function manually designed. In this
letter, we manually define f as the linear affine function,
which is motivated by the power law [17]–[19]

E[φ(Is1)]/E[φ(Is2)] = (s1/s2)−λφ . (2)

Here, s is the scale factor, λ is the parameter of power func-
tion, φ denotes an arbitrary image statistic (features, in other
words), and E denotes the expectation over an ensemble of
input images. The power law suggests that the raw image
features and its transformed features have potential geomet-
ric similarity. It applies to the translation-invariant low-level
features. Readers are referred to [17] for details.

Considering that the Convnets have hierarchies of rep-
resentations and the convolution operation covers the inher-
ent translation-invariance of natural images, the power law
can be generalized to the lower layers of Convnets. By ap-
plying the power law, Eq. (1) yields

f (λc, ε) = arg min
(λc,ε)

‖ X − s−λc · Y + ε ‖, (3)

where, X = W ⊗ T (I) , Y = T (W ⊗ I).

Here, λc should be a channel-wise parameter according
to the power law, c is the index of channels, ε is a scalar bias,
and s is a parameter determined by the affine transformation.
Particularly, if T is the scale transformation, s is the factor
of the scale. During the forward pass of Convnets, T and the
corresponding s are known. Thus, the parameters that need
to be optimized are λc and ε.

Model Evaluation. Let e denote the transformation error.
In practice, one of convenient methods to measure e could
be the test error rate of classification. The method is also
intuitive because the classification error is proportional to
e and if e is reduced, the test error rate should be reduced
as well. Consequently, to simplify the evaluation of e, we
define the ratio of performance reducing

η = max

(
E f (T (W⊗X)) − EW⊗T (X)

ET (W⊗X) − EW⊗T (X)
, 0

)
. (4)

Here, E denotes the classification error during test. If
f can rectify the error e, we obtain E f (T (W⊗X)) ≈ EW⊗T (X),
making Eq. (4) tend to be zero. If f learns nothing, we
have E f (T (W⊗X)) ≈ ET (W⊗X), driving Eq. (4) close to one. If η
keeps close to zero under different transformations, we say
that the model is insensitive to the transformation error.

A few particular cases are analyzed in what follows. If
ET (W⊗X) ≤ EW⊗T (X), the error does not dominate the bene-
fits of augmenting features and therefore η is set to zero. If
E f (T (W⊗X)) < EW⊗T (X), f may learn extra information bene-
ficial to the model performance, for example, the channel
relationship like [20]. In this case, η is zero.

Optimization. In [17], λc is approximately estimated by the
least squares fit over a group of features of original images
and their scaled ones. However, the method does not support
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Fig. 2 The framework of the rectifying transformation networks.

the end-to-end training. For this reason, this letter chooses
to optimize λc and ε by SGD in a data-driven manner.

Note that the transformation T could be the identity
mapping in which case f should be the identity mapping as
well. Nevertheless, according to He et al. [21], the solver
(e.g., SGD) might have difficulties in approximating the
identity mapping, which may potentially harm the conver-
gence of the network. To address this, this letter proposes to
exert a normalization transformation after T to avoid solving
the identity mapping for f . Therefore, Eq. (3) becomes

f (λc, ε) = arg min
(λc,ε)

‖ g(X) − s−λc · g(Y) + ε ‖, (5)

where, X = W ⊗ T (I) , Y = T (W ⊗ I).

Here, g is the normalization function. Eq. (5) is the proposed
method of rectifying the transformation error. For each T
(parameterized via s) exerted on the convolutional feature
maps, we rectify the outputs by g, s−λφ , and ε.

Rectifying Transformation Networks. We construct the
rectifying transformation networks (RTN) by embedding
Eq. (5) immediately after the convolutional features, as il-
lustrated in Fig. 2. The convolutional features F are firstly
augmented by the transformation T . Then the result Y is
normalized by g. The form of g should be selected accord-
ing to the computer vision task and so g is not limited to
a specific normalization method. In this letter, we choose
to normalize the transformed features by subtracting their
means and then dividing by their standard deviations. Fi-
nally, the normalized features U are rectified by s−λc and
ε. Here, s is computed through a Fully-Connected network
taking the parameters of T as inputs. λc and ε are optimized
by SGD in a data-driven manner.

3. Experiments

3.1 Rectifying for Manual Augmentation

This section evaluates the RTN and compares it with two
other approaches, stacking more layers and learning trans-
formations. Experiments are still conducted on the rotated
MNIST dataset [30] which containing 12k training samples
and 50k test samples perturbed with the rotation transforma-
tion by an angle uniformly sampled between 0 and 2π. We
continue to adopt this dataset because 1) it is good to check
if the proposed method can work on the case described in
Table 1; 2) this dataset is appropriate to examining the in-
variance of features and a lot of work such as [10], [11] also

Table 2 Comparison among stacking more layers (CNN), learning trans-
formations (STN), and the RTN for addressing the transformation error.
The rotation transformations are exerted on from the data layer to the third
convolutional layer, independently and respectively. The results are re-
ported by test error rate (and the transformation error η)(lower is better).
Here, η is computed based on the baseline CNN6 results.

Network Capacity Data layer Conv1 Conv2 Conv3

CNN6 39k 2.47 2.76 3.52 4.00
CNN7 50k 2.43 2.58 (38%) 2.97 (48%) 3.26 (52%)
CNN8 62k 2.27 2.43 (0%) 2.86 (37%) 3.01 (35%)

STN6 50k 2.30 2.36 (0%) 2.82 (33%) 3.05 (38%)
STN7 64k 2.02 2.10 (0%) 2.59 (11%) 2.76 (19%)
STN8 75k 1.92 1.97 (0%) 2.30 (0%) 2.55 (5%)

RTN6 40k - 2.49 (7%) 2.89 (40%) 3.64 (76%)
RTN8 63k - 1.91 (0%) 2.16 (0%) 2.96 (32%)

chose it or other variants of MNIST as the testbed.
The network architecture is the same as that in [11]

(see Table 1). The random rotation transformation (sam-
pled uniformly from 0 to 2π) is adotpted as the augmen-
tation method, T , for both training stage and test stage, to
match the variations in the dataset. To evaluate the trans-
formation error, the rotation transformations are exerted on
from the data layer to the third convolutional layer, inde-
pendently and respectively. For STN, the ST module is
configured as that in the original paper and placed imme-
diately after the augmentation operation to learn transfor-
mations. The Fully-Connected network for s in RT is con-
figured as [FC(3)-FC(1)]. Note that the RT module allows
to be inserted anywhere in the network since supporting for
the end-to-end training. In this experiment, RT is placed im-
mediately after all the convolutional features. The training
strategy remains the same as that in Table 1.

Experimental Results. Table 2 shows an observable phe-
nomenon verifying the description in Sect. 1. For the aug-
mentation on conv1, the CNN6 achieved 2.76% test error
rate, which is 0.29% higher than the baseline result (data
augmentation) due to the transformation error. By stacking
more layers, the CNN7 is able to reduce the transformation
error to η of 38%, yielding the test error rate of 2.58%. The
transformation error, however, still exists. To totally elimi-
nate the transformation error, the network has to add more
parameters and depth. The resulted CNN8 is able to reduce
η to zero but the classification performance is only compara-
ble to the baseline. These results indicate that the extra pa-
rameters were barely used to learn the semantic knowledge
and discrimination capability but optimized by the solver to
rectify the transformation error. This phenomenon can also
be observed in other cases of augmentation. Expectedly, if
there is no transformation error, the 7/8-layer CNN can en-
joy the benefits of stacking more layers.

Compared to the approach of stacking more layers,
learning transformations is more parameter-efficient. Ta-
ble 2 shows that STN6 has the comparable parameters to
CNN7 but decreases the transformation error to zero for the
augmentation on conv1. Similarly, the capacity of STN7
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is comparable to that of CNN8, but STN7 can reduce the
transformation error and the classification error to lower
level. This phenomenon suggests that apart from a method
to obtain transformation-invariances, learning transforma-
tions can also be used as a technique of reducing the trans-
formation error. We conjecture that it is because the tech-
nique is able to map the transformed features by T into a
new feature space in which the realistic data points are more
likely to appear.

Even though the transformation error can be reduced
by stacking more layers or learning transformations, these
methods are highly parameter-inefficient. CNN8 takes an
extra 20k parameters to eliminate the transformation error
on conv1, and STN6 introduces nearly 10k parameters to
rectify the error. In contrast, the RTN is more parameter-
efficient. It needs only an extra less than 1k parameters to
decrease the transformation error to η of 7%.

Both CNN8 and RTN8 rectified the transformation er-
ror with comparable parameters but RTN8 further decreased
the classification error to 1.91%. This result indicates that
RTN could release the convolutional parameters for learn-
ing the desired semantic representation. In addition, RTN8
has similar model capacity to the STN7 but achieved lower
test error rate for both conv1 and conv2 augmentation. Note
that both STN and RTN include the side-branch. The differ-
ence between them is that STN reduces the transformation
error by learning new affine mappings while RTN achieves
the goal by manually formulating the form of the mapping
using power law.

It is worth noting that RTN performs worse than CNN
and STN with augmentation on conv3. It only achieved η of
76% and 32% with network depth of 6 and 8 respectively,
which is a drastic reduction in performance. For this phe-
nomenon, we argue that it is reasonable because the foun-
dation of RTN is the power law which only works for the
low-level features. For shallower networks, the conv3 fea-
tures might contain high-level semantic information over
low-level geometric information. Therefore, the proposed
method did not work in this case.

3.2 Rectifying for Learning Transformation

This section evaluates the RTN for the case of learning trans-
formations. The experiments are performed with the chal-
lenging real-world dataset, the Street View House Num-
bers (SVHN) [22], for the task of sequence prediction. This
dataset consists of around 200k images as training samples
and 24k images as test samples. For this task, we adopt the
network architecture and training strategy from STN [10]
(with 11 hidden layers). In this architecture, ‘STN Sin-
gle’ is obtained by inserting a ST module immediately af-
ter the data layer, and ‘STN Multi’ is constructed by in-
cluding four ST modules for the first four convolutional
layers. The transformations, T , are completely determined
(learned) by the ST module. The data augmentation strategy
follows [23].

Table 3 The sequence error (%) on the SVHN dataset for crops of 64 ×
64 / 128 × 128 pixels. *: the results are from the original papers.

Network 64 × 64 Crop Size 128 × 128 Crop Size

Maxout CNN [23]* 4.0 -
DRAM [24]* 3.9 4.5
CNN [10]* 4.0 5.6
STN Single [10]* 3.7 3.9
STN Multi [10]* 3.6 3.9

STN Multi + RTN (ours) 3.2 3.6

Experimental Results. Table 3 shows that the STN Multi
performs only marginally better than the STN Single on this
dataset. From the transformation error perspective, the rea-
son is that STN Multi keeps introducing the transformation
error while reducing the error. It introduces the transfor-
mation error since it acts as a spatial feature transformer
like feature augmentation. On the other hand, it decreases
the transformation error through the backward propagation
of the sequence error (the transformation error affects the
training loss). Therefore, it is difficult for the STN Multi to
considerably outperform the STN Single for this task.

To evaluate the proposed method, we place the RT
modules immediately after the transformed convolutional
features, denoted by STN Multi + RTN in Table 3. As we
can see, the sequence error decreases from 3.6% to 3.2%
for the 64 × 64 crop size and from 3.9% to 3.6% for the
128 × 128 crop size. These results indicate that after recti-
fying the transformation error by RTN, STN Multi is able
to enjoy the benefits of multiple transformers. From this we
can conclude that the proposed RTN is indeed helpful for
learning transformations with multiple intermediate trans-
formers.

4. Conclusion

In this letter, we propose a rectifying transformation net-
work (RTN) towards correcting the transformation error.
Stacking more layers or learning transformations can also
deal with this problem by the backward propagation of the
classification error but they are very parameter-inefficient
and undesired. Compared to them, our method is more
parameter-efficient owing to the introduction of the prior
knowledge of the power law. We test the method on two
datasets and found that it not only rectifies the transforma-
tion error but further decreases the classification error.
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