
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.1 JANUARY 2019
195

LETTER

Cycle Time Improvement of EtherCAT Networks with Embedded
Linux-Based Master∗

Hyun-Chul YI†, Nonmember and Joon-Young CHOI†a), Member

SUMMARY We improve the cycle time performance of EtherCAT net-
works with embedded Linux-based master by developing a Linux Ethernet
driver optimized for EtherCAT operation. The Ethernet driver is devel-
oped to establish a direct interface between the master module and Ether-
net controllers of embedded systems by removing the involvement of Linux
network stack and the New API (NAPI) of standard Ethernet drivers. Con-
sequently, it is achieved that the time-consuming memory copy operations
are reduced and the process of EtherCAT frames is accelerated. In order to
demonstrate the effect of the developed Ethernet driver, we set up EtherCAT
networks composed of an embedded Linux-based master and commercial
off-the-shelf slaves, and the experimental results confirm that the cycle time
performance is significantly improved.
key words: EtherCAT, embedded Linux, EtherCAT master, cycle time

1. Introduction

Industrial Ethernet networks have been widely used for au-
tomation applications in place of traditional fieldbus net-
works because of their various benefits such as cost-effective
implementation, flexible topology, high bandwidth, and
wide compatibility [1]. Among the Industrial Ethernet pro-
tocols, EtherCAT is one of the prominent real time protocols
and shows a desirable feature that each slave processes the
addressed data on the fly as the frame moves downstream,
which makes the theoretical maximum effective data rate
even higher than 100 Mbps using the full duplex mode of
Fast Ethernet, and enables a fast operation with cycle times
even shorter than 100 µs [2].

Nonetheless, faster performance is recently demanded
by distributed real-time precision control applications such
as multi-axis motion control systems including robots
and computerized numerical control (CNC) machines, and
power control systems including modular multi-level con-
verter (MMC) and modular multi-level inverter (MMI) [3].
Moreover, open source master running on embedded Linux
platform is also demanded because it is cost-effective for
both hardware and software, space saving in factory, and ef-
ficient in performance.

Manuscript received June 20, 2018.
Manuscript revised September 11, 2018.
Manuscript publicized October 11, 2018.
†The authors are with the Department of Electronics Engi-

neering, Pusan National University, 2 Busandaehak-ro 63beon-gil,
Geumjeong-gu, Busan, 46241, Rep. of Korea.

∗This research was supported by Basic Science Research
Program through the National Research Foundation of Ko-
rea (NRF) funded by the Ministry of Education (NRF-
2015R1D1A1A01056843).

a) E-mail: jyc@pusan.ac.kr (Corresponding author)
DOI: 10.1587/transinf.2018EDL8132

Fortunately, EtherLab is providing the IgH EtherCAT
master, an open source EtherCAT master for Linux, which
supports native EtherCAT-capable Ethernet drivers that is
optimized for EtherCAT operation [4]. However, the sup-
port is provided only for several specific Ethernet con-
trollers, and most of embedded processors must use stan-
dard Ethernet drivers for Linux, which leads to considerable
degradation in cycle time performance.

In this letter, we investigate the cause of cycle time
degradation when using standard Ethernet drivers for the
IgH EtherCAT master. Then, we develop an EtherCAT-
capable Ethernet driver for Ethernet controllers of embed-
ded systems so that the cycle time performance is improved
by overcoming the causes of cycle time degradation. The
validity of the developed driver is verified by extensive ex-
periments of EtherCAT networks composed of IgH Ether-
CAT master and commercial off-the-shelf slaves.

2. Analysis and Design

The software architecture of IgH EtherCAT master using
standard Ethernet drivers is depicted on the left side of Fig. 1
as the original architecture, where we can find the generic
Ethernet driver module between EtherCAT master module
and Linux network stack [5]. This generic driver module
enables arbitrary standard Linux Ethernet drivers and Eth-
ernet controllers to be used for EtherCAT operation without
any modifications. However, the generic driver module may
cause a poor performance in cycle time for EhterCAT oper-
ation due to the following two main factors.

The first degradation factor is that the generic driver
module and Linux network stack considerably give rise to
unnecessary memory copy operations in processing the Eth-
ernet frames. The second degradation factor is the New API
(NAPI) for networking devices in the Linux kernel that is
intended to reduce the overhead of packet receiving by de-
ferring incoming frame processing until a sufficient amount
of frames are piled up [6]. This approach is desirable for
general network devices, but leads to considerable delay in
processing of EtherCAT frames or even to a disruption of
EtherCAT networks because each incoming frame to master
must be processed within a preconfigured cycle time for the
normal operation of EtherCAT networks.

In order to solve these problems, we design an architec-
ture depicted on the right side of Fig. 1, where the EtherCAT
master module directly interfaces to Ethernet controllers of
embedded systems through a direct Ethernet driver. The di-

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers



196
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.1 JANUARY 2019

Fig. 1 Architecture of EtherCAT master and ethernet driver.

rect Ethernet driver is developed so that the master module
directly controls Ethernet controllers without Linux network
stack nor NAPI, which has the advantages of avoiding un-
necessary memory copy and timely processing of EtherCAT
frames. Consequently, the developed direct Ethernet driver
for embedded systems achieves the similar functions to na-
tive EtherCAT-capable Ethernet drivers supported by Ether-
Lab [5].

3. Experiment

3.1 Setup

In order to evaluate the cycle time performance of the de-
veloped EtherCAT-capable driver, we build EtherCAT net-
works consisting of the Linux-based IgH EtherCAT mas-
ter and commercial off-the-shelf EtherCAT slaves. An em-
bedded system board, Variscite VAR-DVK-AM33 based on
TI AM3354 MPU, and Linux kernel 3.2.0 with a real-time
patch, PREEMPT RT-rt10 are employed for the IgH Ether-
CAT master stack. For the EtherCAT slaves, we choose TI’s
TMDSICE3359 and Infineon’s XMC4800 slave boards.

As the experiment scenarios, we consider two network
configurations: one consists of one up to four TI slaves, and
the other consists of one up to eight Infineon slaves. At each
experiment scenario, the same type of slaves are used to
eliminate the influence due to the heterogeneous device con-
figuration. The distributed clock (DC) method is enabled for
the synchronization of the EtherCAT networks.

According to the EtherCAT protocol, the cycle time of
an EtherCAT network is defined as a fixed time period in
each of which the master sends an EtherCAT frame and the
frame returns back to the master after passing through all

slaves. The cycle time is set as an operation parameter in
the master application. In order to evaluate the cycle time
performance, we first find the minimum cycle time for each
network configuration that maintains the stable operation of
the EtherCAT network without error.

Then, in order to measure the actual operational cy-
cle time, we call the function clock gettime and store
the Linux system time at each starting point of the master’s
cyclic operation in the master application. The actual opera-
tional cycle time is estimated based on the stored Linux sys-
tem times by calculating the time differences between each
two consecutive starting times of master’s cyclic operations.
For each round of experiment, we carry out a cold reset to
eliminate any influence from the previous experiment.

3.2 Results

We carry out experiments for both the standard and devel-
oped Ethernet driver and compare the results in order to ver-
ify the performance improvement achieved by the developed
driver. The minimum cycle time is obtained by gradually re-
ducing the cycle time at each round of experiment until the
master stops the stable operation and generates error mes-
sages. The obtained minimum cycle times for all network
configurations are listed in Table 1, which obviously shows
that the minimum cycle times of the developed driver are
significantly improved in comparison to those of the stan-
dard driver.

For each minimum cycle time in Table 1, we measure
1,200 cycle time samples in the master application based
on the Linux system clock after waiting 10 minutes for the
system to stabilize from the cold reset. The results for one
number of slave are shown in Figs. 2 and 3, which verify



LETTER
197

Table 1 Minimum cycle time.

Slave Number of Minimum cycle time (µs)
board slaves Standard driver Developed driver

8 200 130
Infineon 4 200 125

1 200 125
4 200 100

TI 2 200 100
1 200 100

Fig. 2 Measured cycle times with an XMC4800 slave.

Fig. 3 Measured cycle times with a TI slave.

that both the measured cycle times and their oscillation fre-
quencies of the developed driver are significantly reduced
in comparison to those of the standard driver. Moreover, it
is observed in Figs. 2 (b) and 3 (b) that the flat parts of the
graphs occur repeatedly over the entire 1,200 cycle period,
and the flat parts represent constant cycle times for quite a
number of successive cycles. Note that the oscillation of
measured cycle times is mainly caused by the jitter of the
Linux system clock.

Since the results for multiple slaves exhibit the similar
shapes as in Figs. 2 and 3, we omit the plots for multiple
slaves but list the averages and standard deviations of the
measured cycle times in Table 2. From Table 2, it is ver-
ified that both the averages and standard deviations of the
measured cycle times generated by the developed driver are
significantly reduced in comparison to those generated by
the standard driver. Namely, the developed driver improves
not only the cycle time but also the jitter of the cycle times.

Comparing Tables 1 and 2, it is revealed that the mini-
mum cycle time set as a parameter is almost identical to the
average of the measured cycle times, and the slight differ-

Table 2 Average (AVG) and standard deviation (STD) of measured cycle
times.

Slave
board

Number Standard driver Developed driver
of AVG STD AVG STD

slaves (µs) (µs) (µs) (µs)

8 199.81 15.19 130.18 13.48
Infineon 4 200.32 15.13 125.05 9.71

1 199.81 15.19 124.72 9.85
4 199.84 15.19 100.05 13.68

TI 2 200.17 15.15 100.02 13.66
1 199.99 15.71 100.15 13.73

ence is caused by the jitter of the Linux system clock used
for the measurement of actual cycle times in the master ap-
plication.

4. Conclusion

We developed an Ethernet driver to improve the cycle time
performance of EtherCAT networks with embedded Linux-
based master. The improvement was achieved by designing
a direct interface between the master module and the Ether-
net controller without the Linux network stack nor the NAPI
of standard Ethernet drivers, which effectively reduces the
time-consuming memory copy operations and increases the
processing speed for EtherCAT frames. Extensive experi-
ments were carried out for several configurations of Ether-
CAT networks that were composed of the embedded Linux-
based master and commercial off-the-shelf slaves. The ex-
perimental results verified that the cycle time performance
with the developed driver is significantly improved in com-
parison to the standard Ethernet driver.

References

[1] D. Orfanus, R. Indergaard, G. Prytz, and T. Wien, “Ethercat-based
platform for distributed control in high-performance industrial appli-
cations,” IEEE Conference on Emerging Technologies & Factory Au-
tomation (ETFA), pp.1–8, Sept. 2013.

[2] G. Prytz, “A performance analysis of EtherCAT and PROFINET IRT,”
IEEE Conference on Emerging Technologies & Factory Automation
(ETFA), pp.408–415, Sept. 2008.

[3] G. Cena, I.C. Bertolotti, S. Scanzio, A. Valenzano, and C. Zunino,
“On the accuracy of the distributed clock mechanism in EtherCAT,”
IEEE International Workshop on Factory Communication Systems
(WFCS), pp.43–52, May 2010.

[4] IgH EtherCAT Master for Linux. [Online] http://www.etherlab.org.
[5] IgH EtherCAT Master 1.5.2 Documentation. [Online] http://www.

etherlab.org/download/ethercat/ethercat-1.5.2.pdf.
[6] J.H. Salim, R. Olsson, and A. Kuznetsov, “Beyond softnet,” Proc.

5th Annual Linux Showcase & Conference (ALS ’01), pp.165–172,
Oakland, CA, USA, Nov. 2001.

[7] S.-M. Park, H. Kim, H.-W. Kim, C.N. Cho, and J.-Y. Choi, “Synchro-
nization improvement of distributed clocks in EtherCAT networks,”
IEEE Commun. Lett., vol.21, no.6, pp.1277–1280, June 2017.

http://dx.doi.org/10.1109/etfa.2013.6647972
http://dx.doi.org/10.1109/etfa.2008.4638425
http://dx.doi.org/10.1109/wfcs.2010.5548638
http://dx.doi.org/10.1109/lcomm.2017.2668400

