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Recognition of Multiple Food Items in A Single Photo for Use in
A Buffet-Style Restaurant

Masashi ANZAWA†, Nonmember, Sosuke AMANO†, Yoko YAMAKATA†, Members, Keiko MOTONAGA††,
Akiko KAMEI††, Nonmembers, and Kiyoharu AIZAWA†a), Fellow

SUMMARY We investigate image recognition of multiple food items
in a single photo, focusing on a buffet restaurant application, where menu
changes at every meal, and only a few images per class are available. After
detecting food areas, we perform hierarchical recognition. We evaluate our
results, comparing to two baseline methods.
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1. Introduction

Nutrition management is very important in the health care
industry [1]. Nutritional intake is generally gauged via food
records to help prevent lifestyle diseases (e.g., obesity and
diabetes). A nutritionist, for example, promotes an individ-
ual’s health by providing specific advice based on the per-
son’s lifestyle information. Manually recording food intake
is, however, a burden over the long term. In this paper, we
focus on the application in a buffet-style restaurant. We in-
vestigate food recognition of multiple food items in a single
photo, and we integrate food localization and hierarchical
recognition. An example of recognition of a photo with its
multiple food items is shown in Fig. 1.

In a standard image recognition task, detectors are gen-
erally used with classifiers trained by large quantities of
fixed-class datasets. It is difficult, however, to apply con-
ventional strategies to a buffet-style restaurant. First, the
menu changes every meal, and only one or a few template
images per dish are available. Then, the amount of data is
insufficient to fine-tune food classifiers. Second, buffet users
freely take dishes on a tray, and some foods, such as vegeta-
bles, are mixed in a single dish.

This paper first localizes dishes and performs hierarchi-
cal recognition, during which, food is first recognized as a
single class. Then, specific food classes are selected and de-
tailed for localization and recognition. We obtain food im-
ages for our experiments from the Japan Institute of Sports
Sciences (JISS). We evaluate accuracy results per tray and
the error of the amounts of nutritional value.

Our contributions are summarized below.
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Fig. 1 An example of the result of the food recognition.

• We create a processing pipeline consisting of food-
region detection and recognition of multiple food items
in a single photo, focusing on buffet use, where most
food items change at every meal. The buffet restaurant
data consists of one or a few close-up pictures of each
food item.
• We propose a hierarchical fine-grained recognition for

specific categories of dishes, such as salads, to detect
multiple items mixed on a plate.
• We collect photos from a real buffet restaurant over 10

days. Compared to baseline methods, which rely on
single-class and multi-class recognition, the proposed
method significantly improves performance.
• We evaluate the recognition performance from the per-

spective of nutritional values (e.g., energy, protein,
lipid, and carbohydrates) and verify that the error is
significantly reduced by our method, compared to the
baselines.

2. Related Work

Food-image recognition using a fixed-class dataset has been
very well studied [2]–[9]. Many studies trained food clas-
sifiers in a convolutional neural network using a fixed-class
large food image dataset. Martinel et al. [8] used a Wide-
Slice ResNet and achieved 89.6% for a 100-class dataset.
Food image recognition accuracy in experimental environ-
ments is sufficiently high. However, it is not suitably high
enough for our task, because the buffet restaurant menu
changes at every meal, and only one or a few template im-
ages per dish are available.

Food image recognition using personal diet history has
also been studied [10], [11]. Aizawa et al. [11] proposed a
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Fig. 2 A pipeline of food localization and hierarchical recognition.

food retrieval system that searched input foods from the in-
dividual diet history using the nearest-neighbor (NN) search
of image-feature vectors. Horiguchi et al. [12] investigated
personalized food recognition using weighted NN recogni-
tion of common and personal food items. Yu et al. [13]
further extended personalized classifiers with weights op-
timized for food items and temporal changes. Whereas we
do not consider the individuality of users in this paper, the
NN classifier-based methodology, using a small number of
templates, is similar.

Food recognition almost always uses datasets, but each
photo contains only a single food item. For easier use of
food recognition in daily life, it is desirable to recognize
multiple food items in a single photo, where both food-
region detection and food-item recognition can be applied.

The applicability of food-image recognition to restau-
rants has been well-studied [14]–[17]. These methods used
location information, such as Global Positioning System, to
identify a target restaurant from a list of multiple restaurants.
Then, they used food classifiers corresponding to the tar-
get restaurant. Consequently, their conditions were different
from those of our task.

3. Dataset

In this paper, we use two datasets: JISS for experiments and
FoodLog App for training the detector and classifier.

3.1 JISS Dataset

We use real data obtained from the restaurant in JISS†. We
refer to this dataset as JISS-22. It shows 22 meal-data pro-
vided from August 1st through 10th, 2017 (i.e., 8 breakfasts,
7 lunches, and 7 dinners). About 50 items (dishes and foods)
are provided at each meal. Most of items change at every
meal. A list of dishes for one meal is shown in Table 1.

An item’s name is a class (y) to be recognized. A cate-
gory is a set of related classes (e.g., salad category (c)) that
contain classes of lettuce, tomato, etc. Each food item is
associated with nutritional information, and nutrition taken

†https://www.jpnsport.go.jp/jiss/

Table 1 A list of food items for one meal used in our experiments. Food
items except “others” change at every meal. We exclude seasonings and
dressings (e.g., vinegar, sesame oil), because they are not well-visible.

Category Classes (food items)

Staple food Beef bowl, Cold udon, Rice ball, Carbonara
Rice and toppings Rice, Salted plum, Chili oil, Kelp tsukudani

Main dish Scrambled egg, Chicken Yawata roll
Mackerel of mirin marinated grilled

Side Dish Seasoned komatsuna, Boiled chiken, Oyaki
Salad Cabbage, Lettuce, Tomato, Broccoli, Paprika

Shredded radish, Macaroni salad, Edamame
Seaweed konjak salad

Soup stock Miso soup, Chinese corn soup
Fruits Pine, Pink grapefruit
Dessert Green tea roll cake, Salt lemon mousse cake
Others Coffee, Iced coffee, Barley tea, Green tea,

Processed soy milk, Natto, Egg, 6P cheese, Milk
Low-fat milk, Plain yogurt, Honey, Grapefruit juice
Orange juice, Tofu, Packaged furikake

Fig. 3 Examples of JISS-22 template images. The top is taken from a
diagonal perspective and the other two are taken from directly above. Three
photos exist for each food item.

by an individual per meal is computable by estimating its
classes. In this paper, we use energy and three major nu-
trients (e.g., protein, lipids, carbohydrates). Three template
images for each class are available. Examples of template
images are shown in Fig. 3.

A user places various dishes on a tray from approx-
imately 50 available items, and multiple dishes appear in
each test image. Additionally, a salad dish often contains
multiple classes, such as lettuce and tomato. The number of
total test images is 195. Examples of JISS-22 test images
are shown in Fig. 1, where multiple dishes are placed on a
tray.
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Fig. 4 Frequency of number of food items per photo of JISS-22.

Fig. 5 Frequency of number of dish bounding boxes per photo of JISS-
DET.

JISS-22 only has annotations of food items for each
photo and does not have bounding boxes of dishes. The av-
erage number of food items per photo is 11.0 and the stan-
dard deviation is 2.3. The frequency of the number of food
items per photo of JISS-22 is shown in Fig. 4. The number
of food items does not equal to the number of dish plates
because multiple food items are mixed in one plate such as
salad.

Additionally, we use a different set of photos of the
JISS buffet restaurant data taken during non-overlapping pe-
riod of time to fine-tune the dish area detector (i.e., JISS-
DET). JISS-DET consists of 304 images with bounding box
annotations of dish areas. The average number of bounding
boxes of dish areas is 6.7 and its standard deviation is 1.41.
The frequency of number of bounding boxes per image of
JISS-DET is shown in Fig. 5.

3.2 FoodLog Dataset

The JISS dataset is not large enough to train the detectors
and classifiers. Therefore, we use the FoodLog Dataset
(FLD), built with FoodLog App [11] for training. We use
data consisting of 450,066 images with rectangular annota-
tion to train the dish area detector (i.e., FLD-DET).

We also use FLD-469, consisting of 234,500 images
from FLD, representing 469 classes, each having 500 im-
ages for the classifier training. All images are resized to
256 x 256. We train the network with 469 classes, and we
use deep features obtained from the last pooling layer.

4. Proposed Method

We propose a framework of automatic food recognition for
multiple food items in a single photo. We first localize
dishes. Then, we perform hierarchical recognition, during
which, food is firstly recognized as a single class. Then,
specific food classes are selected, and further detailed local-
ization and recognition are performed. The entire process-
ing pipeline is shown in Fig. 2.

Because the menu changes at every meal, the template
images are updated at each meal. Instead of training clas-
sifiers for every meal, we use deep features and apply NN
searches on the template and target features. We take deep
features, xi, from the output of the last average pooling layer
of ResNet 50, to which we apply L2-normalization. The
NN of deep features works well for classification tasks when
enough data is used for training the network [12], [18].

The template images, Vm, are denoted by

Vm = {(xi, yi)|1 ≤ i ≤ Nm}, (1)

where yi and xi represent the class and feature vectors, re-
spectively. Nm is the total number of template images con-
tained in the meal.

As shown in Fig. 2, we input the test image and obtain
dish-area candidates, Bi(1 ≤ i ≤ NB), by the dish area de-
tector, where NB is the total number of dish-area candidates.
Then, we extract deep features, xBi, for Bi. The class, y∗Bi

, is
estimated by the NN search, denoted by

y∗Bi
= arg max

y∈Y
{s(y, xBi ,Vm)}, (2)

where Y is a set of classes included in Vm. The similarity,
s(·), an inner product, is denoted by

s(y, xBi ,Vm) = max
x∈Vy

xT xBi , (3)

where Vy represents vectors of the class, y. In our case, Vy
contains at most three template vectors for each class, y.

The NN-based classification of features works for the
condition of a small number of template images. We use
it for a single-class recognition method. If the dish area
contains only one food item, this single-class recognition
is satisfactory. However, a food item, such as a vegetable,
is almost always accompanied by several others in a salad
dish.

We choose food items corresponding to specific cate-
gories (e.g., “salad”, “fruits”, “rice and toppings”) for the
fine-detailed recognition in the dish area. Example of the
three categories are shown in Table 1. When the result of
the single class recognition is in these specific categories -
e.g. if the result of the single class recognition of a region is
tomato, which is in salad category, the region is performed
fine-grained recognition. Regions classified to food items
included the three categories are further analyzed by fine-
grained recognition.

The fine-detailed recognition is performed as follows.
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We generate object candidates, Bi, j, within the area of Bi. In
the experiments, we simply apply a sliding window to pro-
duce candidates. Then, we perform single-class recognition
on each object candidate region, Bi, j, and estimate the class,
y∗Bi, j

. The estimation, Y∗Bi, j
, is accepted if the category of the

class is the same as that of Bi.

Y∗Bi
= {y∗Bi, j

only if c∗Bi, j
= c∗Bi

, 1 ≤ j ≤ NB′ }. (4)

In other words, in fine-grained recognition, we exclude
classes whose categories are different from that estimated
in the single-class recognition.

5. Experiment

5.1 Implementation and Evaluation Metric

Regarding dish-area detection, we utilized SSD300 [19],
trained using FLD-DET and fine-tuned with JISS-DET.
Regarding feature extraction, we utilized pre-trained
ResNet50 [20], which we fine-tuned with FLD-469.

To evaluate the proposed method, we compared ours
with two other baseline methods. One used single-class
recognition, which is equivalent to the estimations of the
first step of hierarchical recognition. The other was multi-
class recognition, for which we calculated the similarity
of classes in a dish area and estimated multiple classes by
thresholding their similarity. The dish area detection method
(i.e., SSD300) was the same for the proposal and the com-
parison methods.

Test data was JISS-22. For multi-class recognition,
JISS-22 was divided into 1/3 and 2/3. We used 1/3 for opti-
mization of threshold and 2/3 for testing. We experimented
with cross validation.

The metrics used for evaluation were precision, recall,
and F-measure of recognition and the mean absolute error
(MAE) of nutritional information.

All the buffet dishes have their nutrition information.
Assuming the amount of the dish is one serving size and
summing all the dishes on a tray, we computed the total
nutrition of the tray. We compared energy (kcal) between
those of the recognized dishes and GT dishes. It shows in-
fluence of recognition accuracy from the point of view of
energy (kcal) without considering variation of the amount.
It may change when the serving size is changed - some of
food items such as rise are self-served, and the real value
can change.

5.2 Result

Table 2 shows the results of food-image recognition and nu-
trient estimation for JISS-22. Experimental results show
that our approach achieved 0.79 as an F-measure and 74 kcal
(9.4%) error in energy: significantly better than baseline
methods without the hierarchical scheme.

Figure 6 shows the distribution of GT values and the
estimated values of energy (kcal) via hierarchical recogni-
tion. The correlation coefficient between the GT values and

Table 2 The results of food image recognition and nutrient estimation
for JISS-22.

Single-class Multi-class Hierarchical
recognition recognition recognition

Precision 0.881 0.741 0.821
Recall 0.591 0.722 0.755
F-measure 0.708 0.731 0.787
MAE Energy (kcal) 106 (13.8%) 152 (20.2%) 74 (9.4%)
MAE Protein (g) 4.93 (11. 9%) 8.76 (21.0%) 4.04 (9.6%)
MAE Lipid (g) 4.27 (16.3%) 6.77 (24.8%) 3.72 (14.3%)
MAE Carbonhydrate (g) 14.0 (16.2%) 18.1 (22.6%) 8.98 (9.9%)

Fig. 6 Distribution of GT values and estimated values of energy (kcal)
in hierarchical recognition (sliding window).

Fig. 7 Examples of results by hierarchical recognition. Blue letters with
check marks correspond to correct answers, and red letters with star marks
correspond to incorrect answers. Black letters with parentheses are miss-
ing. The rectangles is the region of detailed recognition.
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the estimated values was 0.92, which is sufficiently high.
Finally, we show the examples of results by hierarchi-

cal recognition in Fig. 7. In Example 1, we see that multiple
classes within the “salad” category on one dish were cor-
rectly estimated except “tomato” which is not very visible.
We can see similar results with “fruit.” Example 2 shows a
failure case, where detailed recognition of the salad dish did
not work, because vegetable was not estimated by single-
class recognition.

6. Conclusion

In this paper, we proposed a framework of automatic food
recognition, with a focus on a buffet-style restaurant. In our
processing pipeline, we first localized dishes and performed
hierarchical recognition, during which, food was recognized
as a single class. Then, specific food classes were selected
and further detailed. Additionally, localization and recog-
nition were performed. We obtained food images from the
JISS dataset for our experiments. We evaluated accuracy
results per tray and the error in the amount of nutritional
value. Experimental results using real data showed that our
approach can achieve 0.79 in F-measure and 9.4% error in
energy, significantly better than the baseline methods with-
out the hierarchical scheme.
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