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BMM: A Binary Metaheuristic Mapping Algorithm for
Mesh-Based Network-on-Chip

Xilu WANG†, Yongjun SUN†a), Nonmembers, and Huaxi GU†, Member

SUMMARY The mapping optimization problem in Network-on-Chip
(NoC) is constraint and NP-hard, and the deterministic algorithms require
considerable computation time to find an exact optimal mapping solution.
Therefore, the metaheuristic algorithms (MAs) have attracted great inter-
ests of researchers. However, most MAs are designed for continuous prob-
lems and suffer from premature convergence. In this letter, a binary meta-
heuristic mapping algorithm (BMM) with a better exploration-exploitation
balance is proposed to solve the mapping problem. The binary encoding
is used to extend the MAs to the constraint problem and an adaptive strat-
egy is introduced to combine Sine Cosine Algorithm (SCA) and Particle
Swarm Algorithm (PSO). SCA is modified to explore the search space ef-
fectively, while the powerful exploitation ability of PSO is employed for
the global optimum. A set of well-known applications and large-scale syn-
thetic cores-graphs are used to test the performance of BMM. The results
demonstrate that the proposed algorithm can improve the energy consump-
tion more significantly than some other heuristic algorithms.
key words: network-on-chip, application mapping, particle swarm algo-
rithm, sine cosine algorithm

1. Introduction

Network-on-Chip (NoC) is emerged to integrate hundreds
to thousands of the intellectual property cores (IP cores)
on a single chip. Because of the high frequent data trans-
mission between cores, the energy consumption of NoC ac-
counts for a majority portion of the overall chip energy bud-
get [1]. Therefore, how to map IP cores of an application
onto the adjacent location in a topology, namely application
mapping, is one of the most important phases in NoC de-
sign. The mesh topology is the most widely used one for
its superior properties such as the simple layout, the easy
expansion and so on. Application mapping based on mesh
NoC is generally known as a NP-hard problem, due to the
exponentially increase of search space with growing mesh
size. However, the traditional deterministic algorithms re-
quire a great amount of computation time to find an exact
optimal solution, thus the metaheuristic algorithms (MAs)
have been widely applied to the mapping problem.

Since the chromosome of Genetic Algorithm (GA) is
integer string encoding, GA becomes one of the most popu-
lar population-based MAs for NoC mapping. Sun et al. [2]
integrate the advantages of GA and Simulated Annealing
(SA) Algorithm to reduce the energy consumption of NoC.
A GA-based approach is introduced to carry out the map-
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ping of application on NoC in [3]. Ant Colony Optimiza-
tion (ACO) is an efficient method for discrete optimization
problems. In [4], an ACO-based method is employed for
NoC mapping. An ACO-based optimization algorithm is
conductde for the mapping process [5]. Sahu et al. present
a multistage PSO to map applications on both 2-D and 3-D
mesh-based NoC [6]. A hybrid MA based on Tabu-search
and PSO is presented in [7]. As shown above, just a few
kinds of MAs have been applied to the mapping problem,
because most MAs are designed for continuous problems.
Although the binary MA is an alternative to satisfy the con-
straint, it is seldom used for application mapping.

Therefore, this study proposes a binary metaheuristic
mapping algorithm (BMM) for 2D-mesh NoC based het-
erogeneous multi-processor systems. The binary encoding
is used to make Sine Cosine Algorithm (SCA) and PSO
suitable for the constraint mapping problem. An adaptive
strategy is employed to allocate appropriate proportion for
exploration and exploitation, respectively. For exploration
phase, SCA finds the promising regions of the search space
and jumps out of the local optimum. In addition, the global
best solution is memorized and passed on to PSO. Guided
by self-cognition and social-cooperation, PSO exploits for a
better solution in the promising area.

2. Problem Formulation

2.1 Mapping Model

For a given application, an application can be viewed as an
Application Core Graph (ACG). Similarly, the target NoC
topology can be represented by a Topology Architecture
Graph (TAG) [2]. Mathematically, the detailed definitions
are shown as follows:

Definition 1: The Application Core Graph (ACG) is a
directed weighted graph G(C,E), where each vertex ci ∈ C
denotes an IP core used in application, the directed arc ei j ∈
E represents a communication trace from the IP core ci to
the IP core c j, and the weight of each edge wi j indicates the
communication volume on edge ei j.

Definition 2: The Topology Architecture Graph (TAG)
is a directed graph G(T,L), where each vertex ti ∈ T repre-
sents one tile which includes a router ri, a network interface
and a position of IP cores, the directed arc li j ∈ L represents
the physical links (i.e., the routing path) between ti and t j.
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2.2 Energy Model

In this work, the mapping finds one-to-one connections be-
tween IP cores and the tiles to reduce the energy consump-
tion. The energy consumption of NoC mainly comes from
the routers and the communication links. Hence, the energy
consumption model for single-data transmission is shown as
follows:

Ebit = ERbit + ELbit, (1)

where ERbit and ELbit represent the energy consumed by the
routers and the links, respectively. Specifically, ERbit is sug-
gested calculating as [8]:

ERbit = ES bit + EBbit + EWbit, (2)

where ES bit, EBbit and EWbit represent the energy consumed
by switch, buffering and interconnection wires, respectively.
Since EBbit and EWbit are negligible, the energy consumed by
sending one bit of data from tile to tile can be calculated as:

E
ti,t j

bit = (nhops + 1) × ES bit + nhops × ELbit, (3)

where ES bit and ELbit represent the energy consumed by the
switches and the links respectively, nhops is evaluated by the
Manhattan distance between the source tile and the destina-
tion tile.

Consequently, the total energy consumption is given
by:

energy(map(ci),map(c j)) =
T∑
wi j × E

ti,t j

bit , (4)

where T represents a set of tiles in NoC, wi j denotes
the communication volume over the communication links,
map(ci) and map(c j) denote the corresponding tiles of IP
cores ci and c j respectively.

Based on the models given above, the application map-
ping problem can be expressed as:

min{
∑
∀ci,c j∈C

wi j × (energy(map(ci),map(c j))}, (5)

∀ci ∈ C,map(ci) ∈ T, (6)

∀ci � c j ∈ C,map(ci) � map(c j) ∈ T, (7)

3. BMM Algorithm

The motivation of BMM algorithm is to make the hybrid
MAs applicable to the constraint mapping problem. At the
same time, the proposed algorithm is capable of saving en-
ergy consumption effectively. This section shows the details
and analysis of BMM algorithm as follows.

3.1 Binary Encoding

For given inputs (ACG and TAG), as shown in Fig. 1, the

Fig. 1 An application mapping by binary encoding.

candidate solution Xi = (x1, x2, . . . , xn), namely the position
of search agent, is a binary vector. Similar to the binary
PSO [9], the velocities of the search agents are mapped to
probability values in [0, 1]. Based on the obtained probabil-
ity values, the positions switch between 0 and 1 to achieve
the updating. Note that each dimension of the vector has
only two possible discrete values, 0 and 1, but the velocities
are continuous and have no restriction. This strategy enables
the universal MAs to solve discrete problems.

The Sigmoid function in Eq. (8) is widely used to trans-
fer real values of velocities to probability values. However,
it obtains poor convergence and cannot truly reflect the ac-
tual search process. Hence, the modified Sigmoid func-
tion [10] in Eq. (9) is used in our work.

S igmoid(Vi) =
1

1 + e−Vi
, (8)

S ′(Vi) = 2 × |S igmoid(Vi) − 0.5|, (9)

Consequently, the position-updating function can be ex-
pressed as:

Xi(t + 1) =

{
exchange(Xi(t)), p1 < S ′(Vi(t + 1))
Xi(t), p1 ≥ S ′(Vi(t + 1))

(10)

where t is the current iteration, exchange operator denotes
the transformation between 0 and 1.

3.2 Exploration and Exploitation Phases

In the view of exploration and exploitation, a better trade-
off between the two components is required to help MA
achieve good performance. Hence, an adaptive parameter
A is adopted to choose smoothly between exploration and
exploitation. Mathematically, A is calculated as follows:

A = γ × (2 × r1 − 1), (11)

γ = (2 − t × 2/MaxIter), (12)

where Maxiter is the maximum number of iterations, r1 is
a random number in [0, 1].

When |A| > 1, the exploration phase is exhibited. The
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binary Sine Cosine Algorithm [11] is chosen to globally in-
vestigate the search space. Based on sine and cosine func-
tions, SCA creates a set of random solutions. It has been
proved that SCA can explore different regions of the search
space effectively. In this regard, the proposed algorithm em-
ploys the binary SCA to improve the global search capabil-
ity and increase the diversity. As discussed in Sect. 4.1, the
velocity of binary SCA is defined for constrained mapping
problem and updated by:

Vi(t+1)=

{
Vi(t)+γ × sin(r2) × |r3 × X∗−Xi|, r4<0.5
Vi(t)+γ × cos(r2) × |r3 × X∗−Xi|, r4≥0.5

(13)

where X∗ is the global best solution obtained so far, Xi de-
notes the current position, | · | indicates the absolute value
operation, r2/r3/r4 are random numbers in [0, 1].

Correspondingly, when |A| < 1, the exploitation phase
is performed to search the promising area by the binary
PSO. In PSO, the self-cognition and social-cooperation en-
able the swarm to move toward the best solution and search
the neighborhood of the current best solution. This specific
strategy contributes to the powerful exploitation ability of
PSO.

Based on this background, the binary PSO is executed
for local search. The velocity of each particle is given as

Vi(t+1)=wVi(t)+c1×r5×(p best−Xi)+c2×r6×(X∗−Xi) (14)

where r5/r6 are random values in [0, 1], c1 and c2 are self-
cognition and social-cooperation parameters respectively,
and w is the inertia weight. The larger value of w empha-
sizes the global search and a smaller one enhances the local
search. Therefore, a linearly decreasing w is adopted to bal-
ance the exploration and exploitation.

w = wmax − wmax − wmin

wmax
× t (15)

where wmax and wmin are the lower and upper boundaries
of w respectively. The pseudo code of BMM algorithm is
presented in Algorithm 1.

4. Results and Analysis

To evaluate the effectiveness of the proposed BMM algo-
rithm, some typical real multimedia ACGs, namely VOPD,
MPEG-4, MMS, MWD and PIP, are served as benchmarks.
For larger scale NoC, five synthetic ACGs with the number
of IP cores from 7 × 7 to 11 × 11 are selected. The energy
consumption and performance of BMM algorithm also are
compared with ACO, GA, binary PSO and Random Algo-
rithm (RAND).

Each algorithm is coded in Matlab R2015b, and all of
the experiments are performed on Intel Core i7 platform
with 8 GB RAM and 2.9 GHz clock frequency in the Win-
dows 10 environment. The parameters in energy consump-
tion model, ES bit and ELbit, are set to 0.43pJ and 5.445pJ
respectively. Specifically, ES bit is calculated using 0.18μm
CMOS technology with 1GHz clock frequency, and ELbit

Algorithm 1 : A binary metaheuristic mapping algorithm
Input: The weighted matrix rmG(C, E) of ACG
Output: The optimal mapping results, the minimum energy consumption
1: Initialization(){
2: Initialize the parameters gamma, A, w and MaxIter
3: Initialize the population Xi and velocity Vi, (i = 1, 2, . . . , n)
4: Calculate the fitness (energy consumption) of each search agent
5: X∗ = the best solution}
6: Main loop(){
7: While (t <MaxIter)
8: For each search agent
9: Update γ, A and w

10: If(|A| < 1)
11: The exploration phase is exhibited by SCA
12: Update Vi by Eq. (13)
13: Update Xi by Eq. (10)
14: Evaluate the solutions and update X∗
15: Else if(|A| ≤ 1)
16: The exploitation phase is performed by PSO
17: Update Vi by Eq. (14)
18: Update Xi by Eq. (10)
19: Evaluate the solutions and update X∗
20: End if
21: End for
22: t = t + 1
23: End while}
24: Return X∗ and the fitness of X∗

Table 1 Mean execution time (in second) on five synthetic ACGs.

Synthetic ACGs BMM BPSO GA ACO RAND

7 × 7 16.01 15.53 18.64 420.88 0.23
8 × 8 25.02 24.07 30.48 1012.83 0.41
9 × 9 36.35 35.78 48.39 2169.54 0.63

10 × 10 53.75 53.34 79.03 4475.71 1.04
11 × 11 74.97 74.42 115.66 9013.12 1.43

is determined from the following parameters: capacitance
of wire (0.5μF/μm), voltage swing (3.3V) and length of
link (2mm). Each mapping algorithm is conducted on tar-
get application for 20 times and the average and the min-
imum (best) energy consumption are obtained. Mean exe-
cution time (in second) obtained by each algorithm on five
synthetic ACGs are noted in Table 1. Stability is one of
the most important performance metrics for stochastic algo-
rithms, and the gap between the average and the best results
is introduced to describe this metric [12]

GAP =
1
k ×
∑k

i=1 E(Xi) − E(X∗)
E(X∗)

(16)

where k is equal to 20, and E(Xi) represents the energy con-
sumption of the NoC with the mapping solution Xi, E(X∗)
denotes the minimum energy consumption obtained from
20 times. The normalized energy consumption of differ-
ent mapping algorithms is shown in Fig. 2. Table 2 presents
the GAPs and the reduction of energy consumption (RD) of
BMM over the compared algorithms, respectively.

For small-size real ACGs, the proposed algorithm out-
performs the traditional algorithms in terms of stability and
energy consumption. The GAPs of BMM ranges from 0 to
3.1%, while GAPs of GA and BPSO are bigger than 10%.
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Fig. 2 Energy consumption normalized to RAND.

Table 2 Comparisons of GAP(%) and RD(%).

BMM BPSO GA ACO RAND

GAP RD GAP RD GAP RD GAP RD GAP

VOPD 1.1 37.6 10.1 35.0 26.3 44.0 2.9 52.6 14.6
MEPG 2.1 31.3 23.3 24.0 18.9 56.5 3.2 48.2 6.5
MMS 3.1 44.7 18.3 37.1 14.4 58.1 7.08 52.9 7.9
MWD 2.9 33.0 15.0 32.6 14.3 33.7 2.5 51.1 8.4
PIP 0 9.3 10.2 14.7 17.2 12.1 4.4 43.3 5.5
7 × 7 3.4 34.0 6.3 32.1 5.1 15.0 4.9 41.5 7.7
8 × 8 2.8 34.7 13.0 33.9 4.2 11.7 5.2 41.8 3.2
9 × 9 4.8 31.2 5.3 28.9 5.3 24.9 5.7 37.5 3.6
10×10 6.3 33.5 6.6 32.4 6.5 8.3 6.9 38.5 2.9
11×11 4.1 30.6 5.0 28.9 8.8 6.4 7.2 35.5 2.8

Figure 2 (a) indicates that the proposed algorithm achieves
the minimum energy consumption, followed by GA and
ACO. BMM saves 35% to 60% energy consumption for
VOPD, MEPG, MMS and MWD, and the most significant
reduction of energy consumption occurs on MMS applica-
tion. For five synthetic ACGs, BMM reduces around 30%
energy costs compared with BPSO, GA and RAND. Al-
though BMM saves the energy consumption insignificantly
(about 5%) compared with ACO, as seen in Table 1, ACO
has the highest consuming time due to its computation com-
plexity. The mean execution time of BMM and BPSO are
very close to each other and both are better than GA and
ACO. In conclusion, the proposed algorithm outperforms
other four methods considering energy consumption, stabil-
ity and execution time.

5. Results and Analysis

Mapping the IP cores onto NoC architecture plays an im-
portant role. To reduce the energy consumption, a modified

MA is used to address the constraint mapping problem. The
original SCA and PSO are extended to discrete problem by
introducing the binary encoding and the transfer function.
The combination of different advantages of MAs improves
the performance in terms of convergence rate, solution pre-
cision and efficiency. An adaptive strategy is proposed to
switch smoothly between the exploration and exploitation.
In our future work, more metrics will be considerd, such as
the temperature and latency.
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