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SUMMARY Existing fault localization based on neural networks uti-
lize the information of whether a statement is executed or not executed to
identify suspicious statements potentially responsible for a failure. How-
ever, the information just shows the binary execution states of a statement,
and cannot show how important a statement is in executions. Consequently,
it may degrade fault localization effectiveness. To address this issue, this
paper proposes TFIDF-FL by using term frequency-inverse document fre-
quency to identify a high or low degree of the influence of a statement in
an execution. Our empirical results on 8 real-world programs show that
TFIDF-FL significantly improves fault localization effectiveness.
key words: debugging, fault localization, term frequency, inverse docu-
ment frequency, deep learning

1. Introduction

In the process of software development, debugging usually
requires much manual involvement of debugging engineers.
Researchers have developed many fault localization tech-
niques to reduce the cost of debugging [1]. In recent years,
deep learning has witnessed a rapid development and shows
its promising ability of providing tremendous improvement
in robustness and accuracy [2].

Thus, some researchers have preliminarily used deep
neural networks with multiple hidden layers to discuss and
evaluate the potential of deep learning in fault localiza-
tion [3], [4]. They found that with the capability of esti-
mating complicated functions by learning a deep nonlinear
network’s structure and attaining distributed representation
of input data, deep neural networks exhibit strong learning
ability from sample data sets. However, the existing analysis
is still preliminary and needs much further study. For exam-
ple, it utilizes a matrix as the training samples, among which
the value of each element is either 1 meaning a statement
is executed or 0 denoting a statement is not executed. We
can observe that the binary information of a statement just
whether a statement is executed or not, whereas it cannot
show what degree of the influence of a statement in an exe-
cution. The existing analysis also uses small-sized programs
(i.e. hundreds of lines of code) with all seeded faults. The
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recent research [5] has revealed that small-sized programs
with artificial faults are not useful for predicting which fault
localization techniques perform best on real faults. Further-
more, the previous research [6] has shown there are unique
features in test cases related to faults, e.g. the execution fre-
quency of each statement. However, the current approaches
use this feature of each statement in just one test case, and
do not consider their features from the view of all test cases.
Consequently, it may cause some bias, posing a negative ef-
fect on fault localization effectiveness [7].

Therefore, this paper explores more about deep learn-
ing in improving fault localization, i.e., we aim at obtain-
ing more insights by proposing an approach to identify the
impact of each statement in all test cases by using the fea-
tures from the view of all test cases, rather than a binary
status, and evaluating our results with large-scale programs.
Specifically, we propose TFIDF-FL: an effective fault lo-
calization approach using term frequency-inverse document
frequency (TF-IDF) [8] to reflect how important of a state-
ment in the executions of a test suite. TFIDF-FL abstracts a
statement as a word and uses TF-IDF to construct a matrix
as the training samples, which reflect how important a word
(i.e. a statement) in the executions of a test suite. Then, it
uses the architecture of Muti-Layer Perceptrons (MLPs) to
learn a model from the training samples. Finally, TFIDF-
FL evaluates the suspiciousness of each statement of being
faulty by testing the trained model using a virtual test set.
We designed and performed an empirical study on 8 large
real-world programs. The results show that TFIDF-FL can
significantly improves fault localization effectiveness.

2. Approach

2.1 Overview

In information retrieval, TF-IDF is a numerical statistic that
is intended to reflect how important a word is to a docu-
ment in a collection. It is one of the most popular term-
weighting schemes and is often used in searches of infor-
mation retrieval, text mining, and user modeling [8]. The
TF-IDF is the product of two statistics, TF means term fre-
quency and IDF means inverse document frequency. The
term frequency is the number of times a word occurs in a
document while inverse document frequency is whether a
word is common or rare across all documents. The term fre-
quency of a word is low if it occurs few times in a document,
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Fig. 1 The binary matrix and the TF-IDF matrix of M executions.

and is high if it occurs many times in a document. In con-
trast, the inverse document frequency of a word is low if it
occurs in many documents, and is high if the word occurs in
few documents.

The basic idea of TFIDF-FL is to adopt term
frequency-inverse document frequency (TF-IDF) to build a
matrix as the training samples reflecting the importance of a
statement in the executions of a test suite, and utilize MLPs
as the model for quantifying the suspiciousness of a state-
ment of being faulty. In TFIDF-FL, TF(s,t) is the contribu-
tion of the statement s to test case t. The more statements
are executed by the test case t, the lower value of TF(s,t) is.
IDF(s) is whether the execution of the statement s is com-
mon or rare across all the test cases. IDF(s) is low if the
execution of statement s occurs in many test cases, while
it is high if the execution of statement s occurs in few test
cases.

Given a program P with N statements (s1, s2, . . . , sN),
it is executed by M test cases T (t1, t2, . . . , tM). In the binary
matrix (see the left matrix of Fig. 1), xi j=0 indicates that the
statement j is not executed by the test case i, and we assign
a value 0 to xi j, and xi j=1 otherwise. The error vector e rep-
resents the test results. The element ei equals to 0 if the test
case i passed, and 1 otherwise. Existing fault localization
using deep learning [3] uses the left M × N matrix in Fig. 1
with the value of its element xi j being 0 or 1. We can ob-
serve that the binary execution status of a statement cannot
show how much influence of a statement in the executions
of a test suite.

T F(xi j) = xi j ∗ (1/log10(N(ti))) (1)

IDF(xi j) = log10(M/(1 + DF(s j))) (2)

T FIDF(xi j) = T F(xi j) ∗ IDF(xi j) (3)

Thus, based on xi j, we leverage TF-IDF to define a new
matrix reflecting different influence, rather than the binary
status, of a statement in the executions of a test suite (see
the right matrix of Fig. 1). Equation (1) calculates the value
of TF(xi j), where N(ti) means the number of executed state-
ments in the test case ti. In Eq. (1), we choose log10 because
the empirical results show that the value of 10 is beneficial
for fault localization effectiveness. Equation (2) calculates
the value of IDF(xi j), where DF(s j) indicates the number
of test cases executing the statement s j. Equation (3) calcu-
lates the value of TFIDF(xi j) which is the multiplication of
TF(xi j) and IDF(xi j).

The new matrix M×N with its element TFIDF(xi j) can
identify more different influence of a statement in compar-
ison to the binary matrix. We use the new matrix as the
training samples, and keep the error vector as their corre-
sponding labels. We adopt mini-batch stochastic gradient

Fig. 2 Virtual test cases.

descent to update network parameters with the batch size
settled to h, namely, each time we feed a h×N matrix as in-
put to the network and use its corresponding error vector as
labels of these h training samples.

We use back propagation algorithm to fine-tune the pa-
rameters of the model. The goal is to minimize the loss be-
tween the training results and the error vector. The complex
nonlinear relationship between the execution influence of a
statement and the test results can be reflected after training.
Finally, a set of virtual test cases (see Fig. 2) are constructed
as the testing input, each time we choose one virtual test case
and input it to the network, the output is the suspiciousness
of the corresponding statement. As shown in Fig. 2, for a
virtual test case Cti, only the i-th element of its row is 1,
meaning that Cti just executes the statement si and does not
execute the other statements. Since we have N statements,
there are N corresponding virtual test cases. When the cov-
erage vector of a virtual test case is inputted to the trained
neural network, the output of the network is the estimation
of the virtual test case of being failed by only covering one
statement. The value of the result is between 0 and 1. The
larger the value is, the more likely it is that the statement
only covered the virtual test case is the buggy statement. For
example, if we calculate suspiciousness of the statement si

of being faulty, then we input Cti to the trained MLP, and
the output of virtual test case Cti represents the probability
of Cti of being failed by only covering the statement si. The
probability value is the suspiciousness of the statement si.

2.2 An Illustrative Example

Figure 3 shows an example illustrating how our approach is
to be applied with program P and a faulty statement s6. The
program P calculates the maximal value of three variables.
The left 6 cells below each statement represent whether the
statement is covered by the test case (1 for executed and 0
otherwise). The right 6 cells represent the TF-IDF values of
each statement in each test case. The rightmost cells indicate
whether the test case is failed or not (1 for fail and 0 other-
wise). The concrete process is as follows: Firstly, TFIDF-
FL constructs the MLP model with the number of input layer
nodes being 8, 3 hidden layers with the number of each one’s
nodes being 10, and the number of output layer nodes being
1. Secondly, we input the vector t1 (0,0,0,0,0.7,0,0,0) and its
result 0, then vector t2 (0,0,0,0,0.7,0,0,0) and its result 0 into
the input layer until the coverage data and execution results
are all inputted into the network. After that, we train the
network iteratively to get the relationship between the exe-



1862
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.9 SEPTEMBER 2019

Fig. 3 Example illustrating our approach.

cution influence of a statement and the test results. Thirdly,
we construct the virtual test set which is a 8 dimensional
unit matrix, then put it into the network, and finally obtain
the suspiciousness values.

Based on these information, The existing approach
using binary information [3] (referred as ZhengFL) and
TFIDF-FL using TF-IDF information both output a rank-
ing list of all statements in descending order. The results
show that the faulty statement s6 is ranked 2nd by TFIDF-
FL and ranked 6th by the one using binary information. We
can observe that the statements s1, s2, s3 and s4 are executed
by all the 6 test cases and however their TF-IDF scores are
all 0. Consequently, TFIDF-FL identifies those less influ-
ential statements, and reduce their suspiciousness of being
faulty. This binary information cannot capture such influ-
ential information. Therefore, our approach obtains a better
localization result than the one using binary information.

3. An Experimental Study

3.1 Experimental Setup

The fault localization approach using Muti-Layer Percep-
trons (MLPs), proposed by Zheng et al. [3], shows bet-
ter performance over the representative and promising
fault localization techniques (e.g. BP neural network [9],
PPDG [10] and Tarantula [11]). However, ZhengFL still
uses the binary information. Due to its promising results and
its use of neural network, we mainly compare their approach
(referred as ZhengFL) with our approach using TFIDF to
demonstrate the effectiveness and potential of TFIDF-FL.
The deep learning model used in our experiment is identi-
cal to that of ZhengFL. Furthermore, to obtain reliable ex-
perimental results, we choose those widely used real sub-
ject programs from the development of large-sized programs
varying from 5 KLOC to 491 KLOC.

Table 1 lists the program name, the program function,
the number of faulty versions used, the number of thou-
sand lines of code, and the number of test cases. The first
four programs are real faults, among which python, gzip

Table 1 The characteristics of subject programs.

Program Description Versions KLOC Test

python
General-purpose

language
8 407 355

gzip Data compression 5 491 12
libtiff Image processing 12 77 78
space ADL interpreter 35 6.1 13585

nanoxml v1 XML parser 7 5.4 206
nanoxml v2 XML parser 7 5.7 206
nanoxml v3 XML parser 10 8.4 206
nanoxml v5 XML parser 7 8.8 206

and libtiff are collected from ManyBugs†, and space is ac-
quired from the SIR††. The last four programs are seeded
faults of the four sperate releases of nanoxml acquired from
the SIR. The physical environment on which we conducted
the experiments was a computer containing a CPU of Intel
I5-2640 with 128G physical memory and two 12G GPUs
of NVIDIA TITAN X Pascal. The operating system was
Ubuntu 16.04.3.

To evaluate the effectiveness of TFIDF-FL, we utilize
fault localization accuracy (referred as EXAM[12]). EXAM
is defined as the percentage of executable statements to
be examined before finding the actual faulty statement. A
lower value of EXAM indicates better performance. Then
we adopt relative improvement (referred as RImp) [13]. It is
to compare the total number of statements that need to be
examined to find all faults using TFIDF-FL versus the num-
ber that need to be examined by using ZhengFL. A lower
value of RImp shows better improvement [12] of TFIDF-FL
over ZhengFL.

3.2 Data Analysis

Figure 4 illustrates the EXAM score of TFIDF-FL over
ZhengFL. For each subplot, the horizontal axis represents
the percentage of executable statements examined in all ver-
sions of subjects. Along the vertical axis, we can seek
out the percentage of faults located in all faulty versions.

†ManyBugs, http://repairbenchmarks.cs.umass.edu/
manybugs/.
††SIR, http://sir.unl.edu/portal/index.php.
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Fig. 4 EXAM of TFIDF-FL over ZhengFL.

Fig. 5 RImp of TFIDF-FL over ZhengFL.

A point in Fig. 4 denotes when a percentage of executable
statements is examined in each faulty version, the percent-
age of faulty versions has located their faults. We can ob-
serve that the curve of ZhengFL is always beneath that of
TFIDF-FL. Thus, TFIDF-FL outperforms ZhengFL.

For detailed improvement in each program, we evalu-
ate the RImp score of TFIDF-FL over ZhengFL. Figure 5
shows RImp score of TFIDF-FL over ZhengFL in each pro-
gram. In comparison to ZhengFL, TFIDF-FL reduces the
statements that need to be examined ranging from 65.09%
(in nanoxml v2) to 91.06% (in nanoxml v5). This means
that we need to examine from 65.09% to 91.06% of the
statements that ZhengFL needs to examine of. The max-
imum saving is 34.91% (100% − 65.09% = 34.91%) on
nanoxml v2 while the minimum saving is 8.94% (100% −
91.06% = 8.94%) on nanoxml v5, which means that TFIDF-
FL could reduce the checking number of statements from
8.94% to 34.91% over ZhengFL. The average saving is
19.72%. It shows that TFIDF-FL can reduce an average
of 19.72% effort when using TFIDF-FL versus ZhengFL.
Hence, TFIDF-FL significantly improves fault localization.

Although RImp can show more detailed improvement,
the analysis using RImp evaluates TFIDF-FL from the
overview of the results, and may miss other detailed view of
the results. For example, suppose that TFIDF-FL has higher
effectiveness than ZhengFL in several faulty versions of a

Table 2 Wilcoxon-Signed-Rank test of the effectiveness relationship
(TDIDF-FL vs ZhengFL).

Program 2-tailed 1-tailed(right) 1-tailed(left) Conclusion
nanoxml v1 2.85E-02 9.09E-01 2.11E-02 Better
nanoxml v2 4.93E-02 7.89E-01 3.95E-02 Better
nanoxml v3 2.80E-02 9.89E-01 1.73E-02 Better
nanoxml v5 4.86E-02 7.05E-01 9.39E-01 Better

gzip 1.38E-02 9.47E-01 8.88E-02 Better
libtiff 3.10E-02 8.64E-01 1.76E-02 Better

python 2.73E-02 8.99E-01 1.81E-02 Better
space 3.74E-02 9.82E-01 1.91E-02 Better
Total 2.28E-04 1.00E+00 1.16E-04 Better

program. Furthermore, ZhengFL has moderately higher ef-
fectiveness in most faulty versions of the programs. The
sheer high effectiveness of TFIDF-FL in several faulty ver-
sions may make its RImp score lower than ZhengFL, show-
ing that TFIDF-FL performs better than ZhengFL. How-
ever, in such case, we cannot conclude that TFIDF-FL per-
forms better than ZhengFL. Thus, we need a more rigourous
method to obtain a detailed result and adopt Wilcoxon-
Signed-Rank Test [14] to achieve this goal, which is a non-
parametric statistical hypothesis test for testing the differ-
ences between pairs of measurements F(x) and G(y). Table 2
shows the statistical results on this relationship (TFIDF-FL
vs. ZhengFL) at the significant level of 0.05. We use EXAM
scores as the measurements. Take python as an example.
The p values of 2-tailed, 1-tailed(right) and 1-tailed(left) are
2.73E-02, 8.99E-01, and 1.81E-02 respectively. It means
that the EXAM score of TFIDF-FL is significantly less than
that of ZhengFL. Therefore, we obtain a BETTER conclu-
sion, that is, TFIDF-FL performs better than ZhengFL in
python. We can observe that TFIDF-FL obtains BETTER
results in all the 8 programs.

Thus, based on all the results and analysis, we
can safely conclude that TFIDF-FL performs better than
ZhengFL, showing that TF-IDF is useful to capture more
subtle influence†.

4. Conclusion

This paper proposes an effective fault localization approach
using TF-IDF and deep learning method. We design and
conduct an empirical study on the large-scale programs. The
results show that TFIDF-FL significantly improves fault lo-
calization effectiveness In the future, we plan to improve the
accuracy of TFIDF-FL. Moreover, we will seek the way to
extend our current work to multiple-bugs cases.
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