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LGCN: Learnable Gabor Convolution Network for Human Gender

Recognition in the Wild*

Peng CHEN™ ", Weijun LI""®, Nonmembers, Linjun SUN™-'", Student Member, Xin NING"'T, Lina YU"1,

SUMMARY  Human gender recognition in the wild is a challenging
task due to complex face variations, such as poses, lighting, occlusions,
etc. In this letter, learnable Gabor convolutional network (LGCN), a new
neural network computing framework for gender recognition was proposed.
In LGCN, a learnable Gabor filter (LGF) is introduced and combined with
the convolutional neural network (CNN). Specifically, the proposed frame-
work is constructed by replacing some first layer convolutional kernels of
a standard CNN with LGFs. Here, LGFs learn intrinsic parameters by us-
ing standard back propagation method, so that the values of those param-
eters are no longer fixed by experience as traditional methods, but can be
modified by self-learning automatically. In addition, the performance of
LGCN in gender recognition is further improved by applying a proposed
feature combination strategy. The experimental results demonstrate that,
compared to the standard CNNs with identical network architecture, our
approach achieves better performance on three challenging public datasets
without introducing any sacrifice in parameter size.

key words: gender recognition, learnable Gabor convolutional neural net-
work, learnable Gabor filter, back propagation

1. Introduction

The existing gender recognition algorithms can be grouped
into three categories: conventional hand-crafted feature-
based methods, currently prevalent deep-learning-based
methods and new integration-based methods. The hand-
crafted feature-based methods generally use a human de-
signed feature descriptor to extract the gender-information-
related features from the image pixel space[1], [2]. Al-
though these hand-crafted feature descriptors are suffi-
ciently effective to extract meaningful information for gen-
der recognition in controlled settings, their intrinsic param-
eters are difficult to set up. In addition, these methods
have only passable performance in complex uncontrolled
cases because of the limited modeling capacity. The deep-
learning-based methods consider using the convolutional
neural network (CNN) to extract gender information from
large image sets by statistical training [3], [4]. These meth-
ods have powerful nonlinear modeling ability and can eas-
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ily distinguish gender attributes in the training set when the
training samples are insufficient. However, they have many
parameters and can be easily overfitted when the network
becomes increasingly deeper.

Unlike these two types of method, the integration-
based methods attempt to combine the steerable hand-
crafted features with the powerful CNN. Since gender infor-
mation is highly related to facial texture features such as the
angle and depth of the wrinkles and existence of beard, the
bio-inspired Gabor filters are considered one of the most ef-
fective hand-crafted feature extractors. Recently, some stud-
ies [5], [6] in general feature extraction have successfully in-
tegrated Gabor filters with CNNs. [5] reduces the training
complexity of CNNs by replacing certain weight kernels of
a CNN with Gabor filters. The learnable convolution fil-
ters are modulated by Gabor filters in [6] to improve the ro-
bustness of CNN against image transformations. However,
such excellent ideas have not been well explored in gender
recognition. Though [7] fuses the human-designed Gabor
filter features with original image pixels to enhance the per-
formance of CNNs for gender recognition, it increases the
depth of networks and the number of parameters. Besides,
the intrinsic parameters of Gabor filters in all the methods
above are fixed and not always optimal.

In this letter, a new LGF is designed for extracting spe-
cific local image patterns automatically. We then propose
a framework that integrates the LGF with CNN for gender
recognition in the wild. We call this framework learnable
Gabor convolution network (LGCN). In our framework, par-
tial weight kernels of a standard CNN in the first layer are
replaced by LGFs. Moreover, the intrinsic parameters of
LGFs can be learned automaticly using the back propagation
method, which is difficult and time-consuming to manually
set up. In addition, we propose a feature-combined strat-
egy that further improves the performance of LGCN in gen-
der recognition. The extensive experimental results show
that our method consistently outperforms the state-of-the-
art methods on three challenging benchmarks.

2. The Proposed Approach
2.1 Learnable Gabor Filter
A typical 2D Gabor filter is a Gaussian envelope function

modulated by a sinusoidal carrier wave. It has a real and an
imaginary component, which can be expressed as:
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In these equations, A, 4, 6, ¢, y and o are the magnitude
of the Gabor filter, wavelength of the Gabor filter function,
orientation of the normal to the parallel stripes of a Gabor
filter kernel, phase offset, spatial aspect ratio and standard
deviation of the Gaussian envelope, respectively. x and y
are the 2D world coordinates. G, and G; are the real and
imaginary parts of the Gabor filter, respectively. By apply-
ing the chain rule, we can obtain the partial derivatives of G
with respect to all parameters as follows:
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Let K(, j),i € 0,1,2,---,h—1;j € 0,1,2,---,w—1
be a kernel function in the pixel space, where i and w are
the height and width, respectively. In general, the height and
width are restricted to positive odd numbers. By sampling
in the world coordinates, we can generate the Gabor filter
kernel as follows:

w—1

. . h-1 .
K(i, j) = Gr(s:(i = — ) 5y(J = — ) (N

where s, and s, are the sampling ratios of the x and y dimen-
sion, respectively, in world coordinates. Giving input image
X and generated Gabor filter kernel K, the feed-forward of
the learnable Gabor filter can be written as:

O=X*K (8)

In this equation, O is the convolution result of X and
K. Using the standard back propagation algorithm, we can
update each parameter of the Gabor filter as follows:

h—-1 w—1
0K;;
}./ = /1 — UZ 6_0_J (9)

where 7 is the learning rate, and 4 and w are scalars.
The process of the learnable Gabor filter is shown in Fig. 1.
To prevent the parameters of Gabor filters getting away from
the scope of specific physical significance, a simple clamp
opreation is used to constrain the parameters in the feed-
forward phase. In this study, we focus on the self-learning
ability of parameter 1. The proposed method can provide
reference for the other parameters adjustment. In order to
evaluate the performance, other parameters other than A in
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Fig.1 Feed-forward and back-forward process of a learnable Gabor fil-
ter.

the experiment are determined empirically.
2.2 The Proposed Framework

Referenced from Levi’s work [3], an Alexnet-liked network
was selected as our basic network structure. The framework
of the proposed method (LGCN) is shown in Fig.2 (top).
The first layer of the framework is a group of LGF modules,
which are used to capture different frequency and orienta-
tion responses of the color input image. Then, the response
maps are fed into the conventional CNN to extract robust
and discriminant features of higher vision level for the sub-
sequent step. At the end of the framework, the Softmax
module is used to produce the final classification probability.
In detail, the proposed framework takes raw pixels
of color face images as the input. The first layer of
LGCN has 96 LGFs by combining the cases of twelve
0 =0%,3 ... Uandeight y = 0,%,---, 2. The pa-
rameters (o and ) are identical for the 96 filters. We set
o =2 and y = 0.3 referenced from [7], whereas A is learned
from the training data. The kernel size of each Gabor fil-
ter is 5x5 with stride 1 and padding 2. Then, there are two
convolution layer with 256 and 384 channels respectively.
The kernel size of the second convolution layer is 5x5 with
stride 1 and padding 2. The kernel size of the third convo-
lution layer is 3x3 with stride 1 and padding 1. All the con-
volution layer is followed by a BactchNorm normalization
layer and a ReLU non-linear unit. Behind the ReLU unitis a
max-pooling layer sized 3x3 with stride 2. Finally, two fully
connected layers are stacked after the pooling layer. The
neurons of the fully connected layer are both 512. Dropout
strategy is also adopted by us as it can limit the risk of over-
fitting. We set the dropout ratio as 0.5 for all networks.

2.3 Feature-Combined Strategy

As observed in [8], some of the trained filters from shallow
layers are similar to Gabor filters while there are still a lot
of other unknown types of patterns. Motivated by this, we
propose a feature-combined strategy. We constrain part of
the filters in the first layer of LGCN as LGFs. We use stan-
dard convolutional kernels to learn the remaining unknown
patterns as it can fit any kind of functions. The number of
LGFs ¢ is a hyperparameter. Here, we set & as 24 by ex-
perience. The framework of the feature-combined LGCN
is shown in Fig. 2 (bottom). We call this feature-combined
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Fig.2  Frameworks of LGCN and LGCN-C (¢ is a hyperparameter which represents the number of LGFs).

framework LGCN-C. A little different from LGCN, LGCN-
C will concatenate the feature maps extracted by LGFs and
standard convolutional kernels along channel dimension. In
addition, we reduce the number of  to two for convenience
of calculations, i.e. ¥ = 0, %, while keep other parameter
setting the same as LGCN.

,27

3. Experimental Results

The experiments were carried out in PyTorch framework on
a Linux machine with Intel Xeon CPUs and Nvidia 1080Ti
GPUs. We employ the SGD strategy to train our network.
The initial learning rate of standard convolutional kernels
and LGFs are 0.001 and 0.1, respectively, and decayed by
0.1 each 80 epochs. The total training epochs are 200. For
a single image of size 227x227x3, the inference time of
LGCN and LGCN-C with GPU are 9.7ms and 9.32ms, re-
spectively. The model size are 145.094M and 145.098M,
respectively.

3.1 Dataset Description

We conduct the experiments on three challenging datasets:
Adience, CelebA and LFW. All these datasets can be consid-
ered a type of real-world reflection with extreme variations
in head pose and lighting condition quality. We select the
in-plane aligned version of Adience for our research, which
were originally used in [1]. We report our results using
subject-exclusive partitioning for five-fold cross validation
referenced from [3]. We select the aligned and cropped ver-
sion of CelebA for our research. We use the gender attribute
in our experiment. The unaligned dataset of LFW is selected
by us. Two protocols are performed on this dataset. The first
protocol is randomly selecting the 80% images for training
and the remaining images for testing, which was referenced
from [2]. The other protocol is half of the images for train-
ing and half for testing, which was originally used in [9].

3.2 Effectiveness of LGF

To verify the effectiveness of LGF, we design a variant of
LGCN with empirically fixed parameters of Gabor filters

= Gabor-CNN(A =0.5) B Gabor-CNN(A=3.5) s LGCN
B Gabor-CNN(A=1.5) s Gabor-CNN(A =4.5) o LGCN-C
w25 Gabor-CNN(A = 2.5)

accuracy(%)

fold-1 fold-2 fold-3 fold-4 fold-5
test sets

Fig.3 Comparison of accuracy between Gabor-CNNs and LGCNs on
the 5-fold experiments.

in the first layer for comparison. We call this network the
Gabor convolutional neural network (Gabor-CNN). Refer-
enced from the experimental value of 4 = 2.5 in [7], we
simply extend the range of A to 0 ~ 5. We conduct 5 groups
of experiments on Adience data set by setting 4 = 0.5, 1.5,
2.5, 3.5 and 4.5. Each group of experiment is measured by
the five-fold cross validation. As shown in Fig. 3, Gabor-
CNN with different A values has significantly different per-
formances, which further proves that the parameters of Ga-
bor filters are hard to set up. For fair comparison, both the
values of 4 of LGCN and LGCN-C in the following exper-
iments are initialized in the interval (0, 5). From Fig. 3, our
LGCN methods outperform Gabor-CNN methods on most
of the fold experiments. The reason is that LGCN can not
only learn suitable A values but also find optimal combina-
tion way, which are difficult to set up for traditional meth-
ods.

To explore other parameters of LGF, we set Gabor-
CNN(1 = 25,60 = 0,5,%,---, 2% vy = 0,%,---, &,
o = 2,y = 0.3) as the baseline and independently learn
O(LGCN-0), y(LGCN-y), y(LGCN-y) and o (LGCN-0), re-
spectively. For example, if we hope to learn the parameter 6,
we only update the value of § while keep other parameters
fixed as the same as the baseline. We conduct the experi-
ments on the Adience dataset. The experimental results are
reported as the following table.
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Table2  Comparison results with the state-of-the-art methods
Method Adience*(%) | Method CelebA(%) | Method LFW (%)
LBP[1] 73.4+£0.7 LNet+ANet [9] 98.00 Kumar et al. [10] 85.80
FPLBP[1] 72.6 £0.9 MOON [11] 98.10 LNet+ANet [9] 94.00
LBP+FPLBP+Dropout 0.5[1] 76.1 £0.9 MCNN+AUX [12] 98.17 MCNN+AUX[12] 94.02
Best from Levi [3] 86.8 + 1.4 DMTL[13] 98.00 Liu et al. [14] 95.80
CNN-ELM-+Dropout 0.5[4] 873+ 1.0 AFFACT [15] 98.26 Cao et al. [16] 96.20
CNN-ELM-+Dropout 0.7[4] 882+ 1.7 PaW [17] 98.39 PartAdaTrans [2] (80% Training) 96.80
GCN**#[6] 88.1+1.6 GCN**[6] 97.33 GCN**[6] (50%/80% Training) 96.82/97.80
Proposed LGCN 884 +1.3 Proposed LGCN 98.30 Proposed LGCN (50%/80% Training) 97.22/97.84
Proposed LGCN-C 88.8 + 14 Proposed LGCN-C 98.52 Proposed LGCN-C (50%/80% Training)  97.34/98.06

* ‘Mean =+ standard error over five folds are reported as the resulting measure of performance.
** We reproduce the results of GCN method by replacing the first layer LGFs in LGCN with GoFs [6] while keep the network architecture same.

Table 1  Learning other parameters of the Gabor filter

Method Accuracy(%) | Method Accuracy(%)
Gabor-CNN(1 = 0.5) 8745+ 19 LGCN-A' 8844+ 13
Gabor-CNN(1 = 1.5) 8642+ 1.9 LGCN-6 88.41 + 1.6
Gabor-CNN(1 = 2.5) 86.82+2.0 | LGCN-y 87.05 +2.1
Gabor-CNN(41 = 3.5) 87.10+ 1.9 LGCN-y 87.53+2.0
Gabor-CNN(41 = 4.5) 87.41 +2.1 LGCN-o 8839+ 1.4

! It is also referred as LGCN in this paper.
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Fig.4  Test accuracy curve: (a) CelebA and (b) LFW dataset.

As shown in Table 1, both ¢ and y have minor im-
provement on performance while the learning of other three
parameters(4, € and o) has improved the performance sig-
nificantly. This is because that human face has abundant
textural and directional information, which can be easily ex-
tracted by Gabor filters with suitable scale and orientation
setting. However, ¢ and y are related to the phase offset
and spatial aspect ratio of Gabor filter and intrinsically con-
tributes less to this kind of pattern. Due to the best perfor-
mance of LGCN-A(LGCN), it was adopted in the following
sections for comparison and feature-combined strategy ex-
ploring.

3.3 Evaluation of Proposed Feature-Combined Strategy

Figure 4 shows that the test accuracy with proposed
feature-combined strategy consistenly outperforms the other
method on CelebA and LFW datasets. We owe the improve-
ment of performance to the ability of feature-combined
method, which can learn more complex patterns.

"The model size of [3] is 145.100M.
""The model size of our reproduced GCN [6] is 145.121M.

3.4 Compared to the State of the Art

Table 2 reports the comparative results against the state-of-
the-art methods on the Adience, CelebA and LFW datasets.
It is very encouraging to see that our proposed method con-
sistently outperforms the existing ones on the three datasets.
This confirms the effectiveness of the proposed approach.
Moreover, the proposed method does not introduce any sac-
rifice in parameter size. Compared to [3]', the param-
eter size of our network is slightly reduced in two as-
pects: smaller kernel size and kernels with fewer parame-
ters. Compared to [6]'7, the parameter size of our network
is slightly reduced due to the replacement of partial standard
kernels to LGFs. As we know, the parameters of a single Ga-
bor filter are always 5 regardless of the kernel size. Hence,
the parameter size of each single standard convolutional ker-
nel replaced by LGF is reduced to 20% in our framework.

4. Conclusions

In this letter, a new framework that integrates the proposed
LGFs with CNNs is presented. The experimental results
demonstrate that our method consistently outperforms the
existing methods on three datasets while does not introduce
any sacrifice in parameter size compared to standard CNNs
with identical network architecture. The future work will
focus on the joint learning of multi-parameters of Gabor fil-
ters.
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