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Iterative Adversarial Inference with Re-Inference Chain for Deep
Graphical Models

Zhihao LIU†, Nonmember, Hui YIN†a), Member, and Hua HUANG†, Nonmember

SUMMARY Deep Graphical Model (DGM) based on Generative Ad-
versarial Nets (GANs) has shown promise in image generation and latent
variable inference. One of the typical models is the Iterative Adversarial In-
ference model (GibbsNet), which learns the joint distribution between the
data and its latent variable. We present RGNet (Re-inference GibbsNet)
which introduces a re-inference chain in GibbsNet to improve the quality
of generated samples and inferred latent variables. RGNet consists of the
generative, inference, and discriminative networks. An adversarial game
is cast between the generative and inference networks and the discrimina-
tive network. The discriminative network is trained to distinguish between
(i) the joint inference-latent/data-space pairs and re-inference-latent/data-
space pairs and (ii) the joint sampled-latent/generated-data-space pairs. We
show empirically that RGNet surpasses GibbsNet in the quality of inferred
latent variables and achieves comparable performance on image generation
and inpainting tasks.
key words: deep graphical model, generative adversarial nets, latent vari-
able, inference, generation

1. Introduction

Generative adversarial networks (GANs) [1] has been
a powerful framework of the deep directed generative
model for learning an underlying representation of high-
dimensional data. Using the flexibility and adversarial
mechanism of GANs, the deep generative model can gener-
ate high-quality samples [2] and representative hidden vari-
ables [3].

Existing DGMs which generate samples and infer
latent variables usually rely on Variational Autoencoder
(VAE, [4]) and GANs. VAE is based on Maximum Like-
lihood Estimate (MLE) and can learn an approximate infer-
ence mechanism that expands the scope of application of the
model. However, the VAE-based model tends to distribute
probability mass diffusely over the data space [5]. Adver-
sarially Learned Inference (ALI, [6]) and GibbsNet [7] cast
the learning of both an inference network and a generative
network in a GAN-like adversarial framework. Both models
are trained to match the joint sampled-latent/generated-data-
space distribution πG and the joint inferred-latent/data-space
distribution πI , but it would be more reasonable if more dis-
tributions with data information are used to train the model.

Suppose we have the optimal GibbsNet and a sample
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Fig. 1 Diagram illustrating the architecture of RGNet. The re-inference
chain introduced in GibbsNet is in the right. It starts with x0 from the data
distribution and runs for M steps. Each step of the re-inference chain are
then compared with the last step of the unclamped chain using the discrim-
inative network D.

x0 from the data distribution q(x), we can use the inference
network I to get its latent variable ẑ0 ∼ I(z|x0), and then
use the generative network G to get the generated sample
x1 ∼ G(x|ẑ1), and use x1 to get the re-inference latent vari-
able ẑ1 ∼ I(z|x1). Ideally, ẑ0 should be the same as ẑ1, and
the re-inference pair (x0, ẑ1) from the re-inference distribu-
tion πRI should converge to πI and πG. By making gener-
ation and inference iteratively for M steps, we can get M
re-inference pairs (x, ẑm),m ∈ 1 . . .M which are very useful
for unsupervised learning.

Therefore, a novel approach named RGNet (Re-
inference GibbsNet) is proposed. RGNet follows GibbsNet
and introduces a re-inference chain into the training proce-
dure, as shown in Fig. 1. RGNet is trained to match πG, πI ,
and the re-inference distribution πRI . We prove theoretically
that RGNet has the same optimal discriminator as GibbsNet
but has more convergence conditions. In our experiments,
RGNet surpasses GibbsNet in the quality of inferred latent
variables and achieves comparable performance on image
generation and inpainting tasks.

2. Re-Inference GibbsNet

The re-inference chain is introduced in RGNet to iteratively
make generation and inference to get the re-inference pairs
in each iteration of the training process. And RGNet is
trained to match πG, πI and the re-inference distribution πRI .

2.1 Value Function

Same as GibbsNet, we use adversarial game to match the
three kind of distributions. In each iteration, the generative
pair is drawn from the last step of the unclamped chain: start
the chain with a latent variable z0 from a normal distribution
N(0,I) and follow this by N steps of alternating between
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sampling from G(x|z) and I(z|x). The inference pair (x0, ẑ0)
is drawn from I(z|x), given x0 is drawn from the data dis-
tribution q(x). The re-inference pair (x0, ẑm),m ∈ 1 . . .M
is drawn from the re-inference chain: start the re-inference
chain and runs for m steps of alternating between sampling
from I(z|x) and G(x|z). The discriminative network D learns
to discriminate G(x̂N , zN), I(x0, ẑm),m ∈ 0 . . .M, while G
and I are trained to fool D. The value function describing
the game is given by:

min
G,I

max
D

V(D,G, I) =
M∑

m=0

(Eq(x)[log(D(x0, I(xm))]

+ Ep(z)[log(1 − D(G(zN), zN))])

(1)

where xm ∼ G(x|ẑm−1), zn ∼ I(z|x̂n−1), x̂0 ∼ G(x|z0), m ∈
1 . . .M, and n ∈ 1 . . .N.

2.2 Training Procedure of RGNet

Each iteration of the training procedure consists of two
phases: the first one is training the model follows the way
of GibbsNet (lines 3-11); the second one is starting the re-
inference chain to get the re-inference pairs and train the
model M times (line 12-24). The description of the training
procedure is shown in Algorithm 1.

Algorithm 1 Training Procedure of RGNet
Input: sampling step N, re-inference step M, iteration number Iter.
Output: inference network I, generative network G, discriminative net-

work D.
1: initialize D, G, and I;
2: for i ∈ 1 . . . Iter do
3: Sample a batch of data x0 from the data distribution q(x);
4: Sample a batch of z0 from a normal distribution N(0,I);
5: for n ∈ 1 . . .N do
6: x̂n−1 ← G(x|zn−1);
7: zn ← I(z|x̂n−1);
8: end for
9: x̂N ← G(x|zN );

10: ẑ0 ← I(z|x0);
11: Train D,G,I using (x̂N , zN ) and (x0, ẑ0);
12: for m ∈ 1 . . .M do
13: for n ∈ 1 . . .N do
14: x̂n−1 ← G(x|zn−1);
15: zn ← I(z|x̂n−1);
16: end for
17: x̂N ← G(x|zN );
18: ẑ0 ← I(z|x0);
19: for j ∈ 1 . . .m do
20: x j ← G(x|ẑ j−1);
21: ẑ j ← I(z|x j);
22: end for
23: Train D,G,I using (x̂N , zN ) and (x0, ẑm);
24: end for
25: end for

3. Theoretical Analysis

Although the re-inference chain is introduced in RGNet,

the optimal discriminator is a straight forward extension
of GANs and has the similar relationship with the Jensen-
Shannon divergence. And the introduction of re-inference
pairs successfully increases the convergence conditions
which ensures better convergence in practice.

3.1 Discriminator Optimality

Proposition 1. Given a fixed generator (G and I), the optimal
discriminator (D) is given by

D∗(x, z) =
M∑

m=0

I(x0, ẑm)
I(x0, ẑm) +G(x̂N , zN)

. (2)

Proof. For a fixed generator, the complete data value func-
tion is:

V(D,G, I) =
M∑

m=0

(E(x0,ẑm)∼I(x0,ẑm)[log(D(x0, ẑm))]

+ E(x̂N ,zN )∼G(x̂N ,zN )[log(1 − D(x̂N , zN))]).

(3)

For any (
∑M

m=0 am, b) ∈ R2\(0, 0), the function y →∑M
m=0(am log(y)+b log(1−y)) achieves its maximum in [0, 1]

at
∑M

m=0 am∑M
m=0(am+b)

. The discriminator does not need to be defined

outside of S upp(G(x̂N , zN))
⋃

S upp(I(x0, ẑm)),m ∈ 1 . . .M,
concluding the proof. �

3.2 Relationship with the Jensen-Shannon Divergence

Proposition 2. Under an optimal discriminator D∗, the gen-
erator minimizes the JS divergence which attains its mini-
mum if and only if G(x̂N , zN) = I(x0, ẑm),m ∈ 0 . . .M.

Proof. Let C(G, I) = max
D

V(D,G, I), then

C(G, I) =
M∑

m=0

(E(x0,ẑm)∼I(x0,ẑm)[log(
am

am + b
)]

+ E(x̂N ,zN )∼G(x̂N ,zN )[log(
b

am + b
)]).

(4)

For G(x̂N , zN) = I(x0, ẑm),m ∈ 0 . . .M, D∗(x, z) = 1
2

(consider Eq. (2)). Hence, by inspecting Eq. (4) at D∗(x, z) =
1
2 , we find C(G, I) = −(M + 1) log(4), and we obtain:

C(G, I) = −(M + 1) log(4)

+

M∑

m=0

(KL(I(x0, ẑm)|| I(x0, ẑm) +G(x̂N , zN)
2

)

+ KL(G(x̂N , zN)|| I(x0, ẑm) +G(x̂N , zN)
2

)) (5)

where KL is the Kullback-Leibler divergence. This equa-
tion can be transformed to the Jensen-Shannon divergence
between the inference/re-inference distributions and the
generative distribution: C(G, I) = −(M + 1) log(4) +
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∑M

m=0 JS D(I(x0, ẑm)||G(x̂N , zN)). And the global minimum
of C(G, I) is C∗ = −(M + 1) log(4). The only solution is
G(x̂N , zN) = I(x0, ẑm),m ∈ 0 . . .M. �

3.3 Convergence

Proposition 3. Assuming optimal discriminator and Gen-
erator. Then the pairs (x̂n, zn), (xn, ẑn+m), n ∈ 1 . . .N,m ∈
1 . . .M have the same joint distribution.

Proof. In the case of the optimal discriminator and gener-
ator, since ẑ ∼ I(z|x), when xn is applied to I, we get ẑn+1

which must form a joint (xn, ẑn+1) which has the same joint
distribution as (x0, ẑ0). Since ẑm ∼ I(z|G(x|I(z|xm))) when xn

is applied to I and G by m steps, we get ẑn+m which must
form a joint (xn, ẑn+m) which has the same joint distribution
as (x0, ẑ0). Since (x̂n, zn), n ∈ 1 . . .N have the same joint dis-
tribution as (x0, ẑ0) (see details in [7]), (x̂n, zn) and (xn, ẑn+m)
have the same joint distribution. �

4. Experiments

Since GibbsNet is identical to RGNet when the number of
re-inference steps is M = 0 and ALI is identical to Gibb-
sNet when the number of iterative inference steps is N = 0,
we use the same architecture to train these models following
the design of ALI to make it fair†. Although some numeri-
cal results are different from those reported by the authors,
our results are meaningful and convincing for comparative
evaluation. For good measure, we compare the generation
performance of RGNet with other unsupervised generative
models with similar architectures.

RGNet is evaluated on three datasets: SVHN [8], CI-
FAR10 [9], and MNIST [10]. The number of training
epochs on SVHN, CIFAR10, and MNIST are set to 100,
100, and 200 respectively. Owing to the instability of GANs
training [11], it is difficult for RGNet to match more distri-
butions. Hence, we set M ≤ 2 in the following experiments.

We first show the expressiveness of RGNet’s learned
latent variables by means of semi-supervised classification
experiments. And then, to evaluate the generation per-
formance of RGNet’s generative network, the Inception
Scores [12] and Fréchet Inception Distance [13] based on
the pre-trained Inception model [14] are used. In the end,
the image generation and inpainting results of RGNet are
shown and discussed.

4.1 Expressiveness of RGNet’s Learned Latent Variables

In this experiment, a 2-layer MLP is constructed on top
of the latent variables which are inferred directly from the
trained model without passing gradient from the classifier
through to I. Then training MLP on the latent variables

†The code can be found at https://github.com/hhqweasd/
RGNet.

Table 1 Classification accuracy from different models.

MNIST SVHN CIFAR10
ALI [6] 87.2% 76.2% 35.5%

GibbsNet [7] 80.2% 75.7% 32.8%
RGNet-1 90.0% 81.0% 39.9%
RGNet-2 91.3% 81.2% 43.1%

Table 2 Inception score and Fréchet inception distance on CIFAR10.

Model IS FID
MIX+WGAN [15] 4.04 -

Improved-GAN [12] 4.36 -
AGE [16] 4.96 64.61

PixelIQN [17] 5.29 49.46
Dist-GAN [18] - 45.60

ALI [6] 4.56 70.58
GibbsNet [7] 4.63 73.42

RGNet-1 5.21 61.88
RGNet-2 5.51 56.85

Table 3 Inception score and Fréchet inception distance on SVHN.

Model IS FID
ALI [6] 2.71 134.17

GibbsNet [7] 2.86 105.52
RGNet-1 2.70 109.66
RGNet-2 2.82 96.04

with the same number of epochs. We denote RGNet- j as
RGNet trained with M = j, the same below. The results
are shown in Table 1. Under the same configuration on
semi-supervised learning task in above datasets, GibbsNet
performs worse than ALI, but RGNet still achieves the best
results, which demonstrates that the latent variables inferred
by RGNet have stronger and more robust expressiveness.
What’s more, RGNet-2 achieves the best result which fur-
ther proves the effectiveness of the re-inference chain.

4.2 Inception Score and Fréchet Inception Distance

We use the generative network of RGNet to generate
50,000 samples for calculating the Inception Scores (IS) and
Fréchet Inception Distance (FID). The IS feeds the incep-
tion model with the generated samples and measures the
Kullback-Leibler divergence between the predicted condi-
tional label distribution and the actual class probability dis-
tribution, which is correlated with human’s judgement [12].
The FID uses the inception model to embed the generated
samples into a special feature space. And then the Fréchet
distance is used to evaluate the generated samples and data
samples in that space. The FID can capture the similarity
between generated samples and real ones. We report both
the IS and FID results on CIFAR10 and SVHN in Table 2
and Table 3, respectively.

On CIFAR10 dataset, AGE is run with the same
number of epochs as RGNet and the code is provided
by the author. The other models except ALI and Gibb-
sNet are trained with 2-3 times epochs more than RGNet.
Compared to the adversarial inference models (ALI and
GibbsNet), RGNet achieves the best IS and FID, which
proves the advantage of the re-inference chain. Compared to
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Fig. 2 CIFAR10 generation after 20 steps (RGNet-2).

Fig. 3 SVHN inpainting after 20 steps (RGNet-2). The left side of the
image is given and the right side is in-painted.

other models, RGNet still achieves higher IS and compara-
ble FID, which proves the robustness of RGNet. On SVHN
dataset, GibbsNet achieves the best IS and RGNet achieves
the best FID, which indicates that GibbsNet and RGNet are
of about the same generation performance.

Notice that RGNet-2 performs better than RGNet-1 on
both CIFAR10 and SVHN, which demonstrates that more
re-inference pairs lead to better generation results and there
is room for improvement. Taken together, the results of
RGNet are competitive among state-of-the-art models and
RGNet-2 surpasses RGNet-1 completely, which confirm
that the re-inference pairs play an important role in the train-
ing procedure.

4.3 Generation and Inpainting

Generation Here, we show the generation result of RGNet
on CIFAR10. Figure 2 shows generated samples from G of
RGNet-2 with sampling steps N = 20. Samples are mean-
ingful and can reflect the characteristics of the dataset.

Inpainting The inpainting is done with the transition
operator used in GibbsNet. The inpainting images are the
same as expected in Fig. 3. The re-inference chain intro-
duced in RGNet will not affect the flexibility of the model.

5. Conclusion

In this paper, a novel approach RGNet is proposed. RGNet
improves the quality of generated images and inferred la-
tent variables by matching the generative, inference, and
re-inference joint distributions, which introduces new con-
vergence conditions and makes the model converge better.
The experimental results show that RGNet achieves state-
of-the-art results as a whole in the quality of inferred latent
variables and comparable performance on image generation

and inpainting tasks.
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