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Finding Important People in a Video Using Deep Neural Networks
with Conditional Random Fields

Mayu OTANI†a), Atsushi NISHIDA††, Nonmembers, Yuta NAKASHIMA†††, Tomokazu SATO††††, Members,
and Naokazu YOKOYA†, Fellow

SUMMARY Finding important regions is essential for applications,
such as content-aware video compression and video retargeting to auto-
matically crop a region in a video for small screens. Since people are one
of main subjects when taking a video, some methods for finding impor-
tant regions use a visual attention model based on face/pedestrian detection
to incorporate the knowledge that people are important. However, such
methods usually do not distinguish important people from passers-by and
bystanders, which results in false positives. In this paper, we propose a
deep neural network (DNN)-based method, which classifies a person into
important or unimportant, given a video containing multiple people in a
single frame and captured with a hand-held camera. Intuitively, impor-
tant/unimportant labels are highly correlated given that corresponding peo-
ple’s spatial motions are similar. Based on this assumption, we propose to
boost the performance of our important/unimportant classification by us-
ing conditional random fields (CRFs) built upon the DNN, which can be
trained in an end-to-end manner. Our experimental results show that our
method successfully classifies important people and the use of a DNN with
CRFs improves the accuracy.
key words: neural network, conditional random field, important people
classification

1. Introduction

Some applications related to videos require finding impor-
tant regions in video frames in order for semantically mean-
ingful video handling. Video retargeting is one of such ap-
plications, which automatically crops a video that is orig-
inally for big screens to make it fit to smaller screens [1].
Another example application is content-aware video com-
pression, which assigns more bits to important regions [2].

Most of such applications rely on visual attention mod-
els. These models mainly based on visual saliency to find
prominent regions in images or videos. One of the most
well-known approaches was proposed by Itti et al. [3] that
mimics the vision system of primates. This type of models
well suit to finding regions that may inherently draw atten-
tion (e.g., a red ball on grass fields or rapidly moving ob-
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Fig. 1 Example of important people (red) and an unimportant person
(green). The important people are walking together, so their trajectories
are highly correlated, while the unimportant person makes completely dif-
ferent trajectories.

jects).
Some of more recent techniques integrate a higher-

level cues into visual attention models [4]. One of the pow-
erful and convincing approaches leverages face detection re-
sults, along with other types of cues, based on the observa-
tion that facial or human body regions attract the humans’
attention. Their approach may be also motivated by the fact
that people are one of major content of images or videos.

One possible criticism on such techniques that use face
or human body detection results can be that all people in a
video frame are not always important for the videos (Fig. 1).
Taking the video retargeting application as an example and
supposing only a subset of people in a video are important,
the video might be spoiled if the important people are re-
moved in the course of applying video retargeting; however,
other people might be just passers-by and bystanders who
are not necessarily in a cropped video. This can be a critical
problem for consumer generated videos, most of which are
captured by people who do not have any specific experience
nor training in video shooting with hand-held cameras.

In order to address this problem, we need an automatic
technique to classify a person into important/unimportant
one, where there are an arbitrary number of important
people in a single video frame. The problem is that
there is no obvious gold standard in distinguishing impor-
tant/uninportant people, and the person who is important in
a given video might be different viewer to viewer. For ex-
ample, parents deem their kids are important in most cases,
while the kids may not be important for other people. One
possible way to disambiguate important people is adopting
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the videographer’s viewpoint: Since the videographer usu-
ally has something that she/he intends to capture, impor-
tant/unimportant people can be obvious.

Some research efforts have been made in this direction
e.g. [5], which is based on the observation that videogra-
phers move or operate their cameras differently when cap-
turing important people and unimportant people. For ex-
ample, a videographer may move the camera to follow an
important person if the person is moving, while the motion
of an unimportant person does not affect the videographer’s
behavior. Taking this into account, these methods use trajec-
tories of detected people as features and classify people in
each frame into important/unimportant. The work also pro-
posed to incorporate the prior that a group of important peo-
ple tend to have similar trajectories as in Fig. 1. Their results
demonstrated that the classification performance can be im-
proved by modeling correlation among trajectories of two
or more important people using conditional random fields
(CRFs).

This paper also presents a model to classify detected
people in a video captured by a hand-held camera into im-
portant/unimportant ones for higher-level visual attention
models, which can handle multiple important people in a
single frame. To further boost the performance of a CRF-
based classifier, we construct a deep model with CRFs that
can be trained in the end-to-end fashion. By doing this,
we can expect that the trained model is fully optimized to
our problem of finding important people. Assuming that the
number of people in a single frame is small (e.g., less than
10), we can evaluate the partition function in the negative
log-likelihood of our DNN-CRF in the exhaustive manner
without approximation. The contribution of this paper is
summarized as follows:

• We propose a model for important/unimportant peo-
ple classification, which can improve the classification
performance thanks to end-to-end training of our deep
model. This allows additional tuning on features for
our classification task.

• We develop an easy-to-implement deep neural network
(DNN) model with a CRF layer that can be imple-
mented using off-the-shelf tools for DNNs. Yet, our
model might be applied to such problems as social role
discovery [6] and articulated pose estimation [7].

• We experimentally demonstrate that our method out-
performs vanilla DNN-based and support vector ma-
chine classifiers.

2. Related Work

Visual attention models have been used in various appli-
cations that exploit detection of important regions in im-
ages/videos. Such applications include video summariza-
tion [4], video retargeting [1], virtual cinematography [8],
and content-aware video compression [2].

The early work on visual attention model is Itti et al.’s
visual saliency [3], which is well-known and adopted in later

works. Itti’s group also proposed to model “surprise” to
find visually prominent regions [9]. An interesting exten-
sion of such visual attention models is to integrate higher-
level cues [10]. For example, humans’ vision system tends
to focus on people’s faces, and people are one of the most
important contents in images/videos. This observation can
be leveraged in the model by using detected faces or hu-
man bodies for candidate salient regions as in Ma et al.’s
model [4].

Considering that people are not equally important as
mentioned in the previous section, classifying people in
video frames into important vs. unimportant can be bene-
ficial for such applications as video summarization, video
retargeting, etc. Nakashima et al. proposed to classify peo-
ple in this way from videographers’ perspective [5]. Observ-
ing that important people in the same video frame tend to
have highly correlated features (i.e., trajectories and sizes
of bounding boxes), they employed a CRF-based model to
leverage this observation into classification.

Recent progress in large scale datasets [11], [12] and
DNN techniques have significantly improved the perfor-
mance of various vision tasks, such as object classifica-
tion [13]–[15] and semantic segmentation [16]–[19]. In this
work, we also develop a deep model to classify people into
important or unimportant ones, which is an extension of
[5], [20]. As in these work, we uses a CRF built upon a
deep model. Incorporating CRFs into DNNs is one of the
main research directions to improve structured output mod-
eling. Ma et al. built an LSTM language model with a CRF
layer for part-of-speech tagging [21]. In the domain of com-
puter vision, recent works have shown that the use of CRFs
boosts the performance of semantic segmentation [16]–[19]
and human pose estimation [22]. Chandra et al. proposed
an end-to-end training of a deep architecture with CRFs by
designing a quadratic CRF layer which can be efficiently
optimized [19].

Our problem of classifying people in a video frame
into important/unimportant is small: there usually are a few
people in a video, and the CRFs need only a few nodes
corresponding to detected people to model the correlation
among them. This means that we can exhaustively evalu-
ate the partition function in the negative log-likelihood that
is minimized during the training session, without any sam-
pling steps to approximate the partitioning function. Our
method can be easily implemented using off-the-shelf tools
for DNNs.

3. Overview

In order to classify people in a video frame in a supervised
fashion, we need a ground truth label ti ∈ {0, 1} for person i
in a certain frame, where ti = 1 means the person is impor-
tant. However, who is important in a given video might vary
for different viewers. To determine ground truth importance
labels of people, we take the videographers’ perspective,
following [5], which is advantageous in two ways: Firstly
the ground truth labels assigned to each detected person is
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not ambiguous because they solely depend on the videogra-
pher’s intention. Secondly the videographer moves or oper-
ates their cameras (e.g., following a moving person) to cap-
ture what they want to show to others. Each person’s two-
dimensional trajectory in a video frame is a combination of
the person’s motion in the scene and the camera motion in
response to the person’s motion, and thus who is important
for the videographer should be reflected in the person’s tra-
jectory.

Given this observation, we use the trajectory of a de-
tected person i obtained by tracking the person for L frames
in both temporal directions centered at the frame. Track-
ing of a person gives us bounding boxes, whose edges have
the same length, in successive L frames, and we use the
center positions (horizontal and vertical positions) and the
length of edges of the bounding boxes as our spatial fea-
tures, which forms spatial feature vector xi ∈ R3L. Visibility
of faces is also helpful for this classification task because
videographers seem to capture people’s frontal faces or at
least profile faces. We thus use either color histograms or
CNN-based features pretrained for a face recognition task
(e.g. [23]). The color histogram or CNN-based features
form a facial feature vector yi whose size is KH or KF, re-
spectively.

An interesting insight is presented in [5] that the trajec-
tories of important people in a single video frame are highly
correlated as mentioned above (for example, if there are two
people walking together as shown in Fig. 1, the trajectories
of these people should be similar, and it may not be likely
that only one of them is important). To encode this insight,
we also use CRFs to model such spatial relationships among
people in a frame. CRFs takes pairs of input features, e.g.,
trajectories and facial feature vectors, as input and compute
energy functions over the pairs to predict a set of labels for
people in a video frame. We can expect that the CRF layer is
trained to capture relations between people in a video frame.

Figure 2 shows an overview of our method. Since our

Fig. 2 An overview of our model. Feature vectors extracted from each
face regions are fed to the feature extraction network, which fuses spatial
features and facial features. The CRF layer takes the outputs of the fea-
ture extraction network and computes the posterior probability for a set of
labels. Our method employs a label combination with a highest probability.

features are not well designed for this task, we use a simple
neural network in the lower part of our model to transform
the original spatial and facial feature vectors. They are then
handled by a CRF network to compute the posterior prob-
ability of a given label combination. In the following sec-
tions, we detail our DNN-CRF model.

4. DNN-CRF Model for Classification

4.1 Feature Extraction Networks

Figure 3 illustrates the lower part of our model. It takes a
spatial feature vector xi and a facial feature vector yi sepa-
rately as input. After fully connected (FC) layers with the
ReLU non-linearity, we concatenate the activations from xi

and yi and feed the output into an FC layer to obtain fi ∈ RN .

4.2 CRF Network

On top of the feature extraction networks for each person
in a frame, we build a CRF network, which is illustrated in
Fig. 2. The CRF network has a data term φ for each person
and a pairwise term ψ for each pair of the people.

Provided the output of feature extraction network fi
and corresponding label ti, the data term is basically given
by

φti ( fi) = v
�
ti fi + bti , (1)

where vti is a vector in RN and bti a scalar, both of which are
trainable. This term gives a larger value when ti = 1 and the
person fi is likely to be important. For ti = 0, it again gives
a larger value when fi is not likely to be important.

In order to model the correlation among people in a
video frame, we concatenate the transformed features fi and
f j to fi j, and compute a pairwise term given by

ψtit j ( fi j) = w
�
tit j

fi j + ctit j , (2)

where wtit j is a vector in R2N and ctit j be a scalar. Various
types of CRF applications like ours usually use a pairwise
term that only cares if labels agree or not. In contrast, our

Fig. 3 Illustration of feature extraction network.
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model gives different values for all of four possible combi-
nations of labels by giving a larger value if a certain combi-
nation is likely based on the feature. Note that this term is
dependent on the order of fi and f j; therefore, exchanging fi
and f j as well as corresponding labels can alter the resulting
value. We consider that with a sufficient number of training
data, the negative effect due to this dependency is not severe.

We define an energy function E(T, F) of the set of la-
bels T = {ti|i = 1, . . . , I} and features F = { fi|i = 1, . . . , I},
where I is the number of people in the frame, using the data
and pairwise terms as

E(T, F) =
∑

i

φti ( fi) +
∑

i j

ψtit j ( fi j), (3)

where the summations for the first and second terms are
computed over all people and all combinations of people in
the frame, respectively. The probabilistic interpretation can
be given by

p(T |F) =
1
Z

e−E(T,F), (4)

where Z is the partition function computed by

Z =
∑

T

e−E(T,F). (5)

The summation is calculated over all possible combinations
of ti’s values. We can evaluate a certain combination of T
using Eq. (3), and the important/unimportant classification
is done by finding the combination that maximizes Eq. (4).

4.3 Training

The training of this network is done by minimizing the neg-
ative log-likelihood

−
∑

m

log p(Tm|Fm), (6)

where Tm and Fm are the sets of labels and features in the
m-th frame in the training dataset. Generally, this minimiza-
tion problem is intractable and various approximation tech-
niques, such as contrastive divergence (CD) [24] or its vari-
ant [25], are employed in existing DNN-CRF approaches.

Our problem of important/unimportant people classifi-
cation, however, basically is small. Figure 4 (top) shows the
distribution of the number of people in a certain frame in our
training dataset. There are 16 people in a frame at most, and
its mode is 1. In addition, there are only two possible labels
(i.e., ti ∈ {0, 1}). This characteristics of our problem makes
the minimization much easier because we can directly and
exhaustively evaluate the partition function in Eq. (5) during
training without using any approximation techniques (this
also applies classification of test data because we can ex-
haustively evaluate Eq. (4) for all possible combinations of
labels to find the best one). In the training session, we dis-
card frames with many people (e.g., more than 10). Since
in our network, the pairwise term uses the same parameters

Fig. 4 The distributions of the numbers of people in a frame obtained
from our (top) training, (middle) validation, and (bottom) test datasets. The
number of people labeled as important is represented by red bars and unim-
portant by green bars.

regardless of the number of people, discarding such frames
does not much affect the training results.

For training, we use a variant of the stochastic gradient
descent algorithm (i.e., Adam [26]) and apply dropout [27]
and weight decay for regularization. The evaluation of the
partition function in Eq. (5) requires to compute the data and
pairwise terms multiple times for the same features; there-
fore, instead of actually evaluating them, we store φ( fi) ∈ R2

and ψ( fi j) ∈ R4 given by

φ( fi) = V fi + b, (7)
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Algorithm 1 Evaluation of p(T |F) in Eq. (4).
Input: Features F and labels T

Fill all entries in Φ and Ψ using Eqs. (7) and (8)
z← 0
for T ′ = (t′1, . . . , t

′
I ) in all possible combinations of t′i ’s do

e′data ←
∑

i Φi(t′i )
e′pairwise ←

∑
i j Ψi j(t′i , t

′
j)

e′ ← e′data + e′pairwise
z← z + exp(−e′)

end for
edata ← ∑i Φi(ti)
epairwise ← ∑i j Ψi j(ti, t j)
e← edata + epairwise

Output: 1
z exp(−e)

ψ( fi j) = W fi j + c, (8)

where V = (v0 v1)�, W = (w00 w01 w10 w11)�, b = (b0 b1)�,
and c = (c00 c01 c10 c11)�. When calculating the data and
pairwise terms, we only need to get the corresponding en-
tries of φ( fi) and ψ( fi j) according to the labels.

As in Eqs. (7) and (8), φti ( fi) and ψti,t j ( fi j) can be im-
plemented using fully-connected layers. After computing
and storing them, we can evaluate p(T |F) in Eq. (4), in-
cluding the partition function Z only using standard func-
tions, which is implemented in most deep learning frame-
works. Let Φi(ti) and Ψi j(ti, t j) be stored values of φti ( fi)
and ψti,t j ( fi j), respectively. That is, Φi(ti) = φti ( fi) and
Ψi j(ti, t j) = ψti,t j ( fi j), which emphasize that they are func-
tions of labels for a single video frame. We can preliminarily
compute all entries in Φ and Ψ for all combination of i and
j. The partition function can be computed by summing up
corresponding entries inΦ andΨ with taking their exponen-
tial for a label combination, and then taking their summation
for all possible combinations of labels. To compute the loss
function in Eq. (6), the entries corresponding to the ground
truth label T are picked up and summed up. Algorithm 1 il-
lustrates this process to evaluate p(T |F). To pick up the cor-
responding entries in Φ and Ψ, we can use select item()
in Chainer [28], for example. The other operations in the
process are very common in any deep learning framework.
The same process for evaluating p(T |F) can be used for in-
ferring important people as well.

5. Experimental Results

We experimentally demonstrate the merits of our model
with an implementation using the Chainer framework [28].
To track facial regions for spatial features, we used the
KCF tracker [29]. Each facial region in a certain frame was
tracked for 100 frames in forward and backward temporal
directions (i.e., L = 200), which makes a 600-D spatial fea-
ture. As facial features, FaceNet features were adopted [23],
where KF = 128 in this case. The parameters of FaceNet
are not fine-tuned for this task. For color histogram-based
features, we separately generated a 50-D histogram from a
facial region for each color channel (RGB) and concatenated
them into a single 150-D vector (i.e., KH = 150).

5.1 Datasets

For training and testing, we used the datasets that are used
in [5]. Their datasets consist of (i) 99 YouTube videos with
ground truth labels assigned by multiple human annotators
(each frame has several people and each of them are labeled
by six annotators) and (ii) 20 videos captured by videogra-
phers and the videographers assigned the ground truth la-
bels by themselves. All videos in both datasets were re-
sized so that each of them has 854 pixels and 480 pixels in
width and height, respectively. All videos are in approxi-
mately 30 fps. The facial regions are manually specified in
all videos. Since each facial region in dataset (i) has multiple
labels by different annotators, we employed majority voting
to make ground truth label. The annotators were asked to
infer what the videographer wanted to show. In [5], it is
reported that the human annotators were able to infer the
important people in a video accurately. In order to demon-
strate the generalization performance of our approach, in-
stead of cross-validation, we divided dataset (i) into two
parts; one for training (66 videos) and the other for valida-
tion (33 videos). We used dataset (ii) for testing. The ground
truth labels for the training and validation datasets were not
assigned by the corresponding videographers; however, we
consider that this is still fair since they were used solely for
training and the evaluation was done by the dataset (ii).

Figure 4 shows the distributions of numbers of people
in each frame. The training dataset contains frames with
over 10 people, while the other datasets do not. The train-
ing dataset has 120,955 people, among which 82,079 are
important (67.9%). In the test dataset, there are 55,336 peo-
ple and the number of important people are 37,431 (67.6%).
The numbers are not consistent with [5] because we dis-
carded some frames to ensure all data have complete spatial
features. Important and unimportant people are represented
by red and green bars in the figure. We can see that most
people are likely to be labeled as important when a frame
shows only one person. On the other hand, a small number
of people are important in frames with a lot of people. Note
that the videographers who took the training dataset and test
dataset are completely disjoint.

5.2 Results

To demonstrate the performance boost by our CRF-based
approach, we developed variants of our full-model. We
compared our DNN-CRF model with models of only DNN
and DNN-CRF without pairwise term ψ. The DNN-based
model consists of our feature extraction network and an FC
classification layer. We train this model using the softmax
cross-entropy loss. We also trained the DNN model using
Eq. (6) but without the pairwise term (i.e., the pairwise term
is changed to always give ψ = 0) to examine effects of dif-
ferent losses. To show the direct effects of the pairwise term,
we evaluated our DNN-CRF with removing the pairwise
term (i.e., ψ always gives 0) after training. We also com-
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Table 1 Results on the classification of people into important or unimportant ones. We report ac-
curacy (ACC), recall (REC), precision (PRE), false positive rate (FPR), and F1-measure (F1) for each
method.

ACC (%) REC (%) PRE (%) FPR (%) F1 (%)

Trajectories (spatial features) only

(a) SVM 74.4 65.3 95.4 6.5 77.5

(b) SVM-CRF 77.9 76.9 88.9 20.0 82.5

(c) DNN (softmax cross-entropy loss) 80.7 80.8 89.7 19.3 85.0

(d) DNN (loss in Eq. (6)) 78.6 77.4 89.6 18.8 83.0

(e) DNN-CRF (ψ removed) 74.0 98.5 72.7 77.2 83.7

(f) DNN-CRF 75.8 77.5 85.3 27.8 81.2

Trajectories with color histograms

(g) SVM 65.3 51.3 95.1 5.6 66.7

(h) SVM-CRF 76.4 72.0 91.3 14.4 80.5

(i) DNN (softmax cross-entropy loss) 75.5 68.2 93.9 9.3 79.0

(j) DNN (loss in Eq. (6)) 79.3 75.5 92.5 12.7 83.1

(k) DNN-CRF (ψ removed) 74.3 98.4 73.0 76.0 83.8

(l) DNN-CRF 83.6 87.8 87.9 25.3 87.8

Trajectories with FaceNet features

(m) SVM 67.0 53.9 95.3 5.6 68.9

(n) SVM-CRF 78.2 77.3 89.1 19.8 82.8

(o) DNN (softmax cross-entropy loss) 77.9 73.0 92.8 11.9 81.7

(p) DNN (loss in Eq. (6)) 78.8 79.5 88.1 22.4 83.6

(q) DNN-CRF (ψ removed) 76.9 96.9 75.7 65.1 85.0

(r) DNN-CRF 81.0 82.1 89.0 21.3 85.4

random sampling 63.3 69.8 74.4 50.2 72.0

pared our approach to raw support vector machine decisions
(SVM) and the previous work in [20] (SVM-CRF), which
uses a support vector machine to obtain decision values and
applies CRF to them together with features. Since the results
in [20] shows that the improvement by the temporal consis-
tency term in their model is not very large, we employed an
SVM-CRF model simplified by removing the temporal con-
sistency term. We tuned the hyperparameters of our DNN-
based models and SVM-based models (i.e., learning rate,
dropout ratio, weight decay ratio, and unit size of hidden
layer N for DNN-based models, and γ and C of SVM with
the radial basis function) with Bayesian optimization. For
each approach, we evaluated up to 100 combinations of hy-
perparameters and picked the best model.

As shown in Fig. 4, the numbers of important and
unimportant people in a frame is biased, which can be a
strong prior about the importance of people. People are
likely to be important when there are few people in a frame.
Therefore, as a baseline, we also report the performance of
randomly sampled labels from the distributions of impor-
tant and unimportant people in the frame. We computed the
distributions of important and unimportant people over the
number of people in a frame on the training set. To evalu-
ate the performance, given a frame, we sample labels from
the marginal distribution given the number of people in the
frame. For example, the probability of the label being “im-
portant” is 96% if there is only one person in a frame and
26% if there are five.

Table 1 shows the results in accuracy, recall (or true
positive rate), precision, false positive rate, and F1-measure.

The baseline method, which randomly produces a label
based on the number of people in a frame, achieved 63.3%
of accuracy and 72.0% of F1-measure. Regarding both ac-
curacy and F1-measure, the DNN-CRF model using trajec-
tories and color histograms (l) performed the best among
all. Among models using trajectories with the FaceNet fea-
tures, our full-model, DNN-CRF, also achieved high scores
in accuracy and F1-measure. Comparing the results of DNN
models using different losses, we did not observe consistent
effects. For color histograms and FaceNet features, the com-
parison between DNN-CRF with and without pairwise term
ψ (k)–(l) and (q)–(r) demonstrated that the pairwise term
improved the performance.

Regarding the FPR scores, the data term looks to be bi-
ased towards assigning label “important,” and the pairwise
term is learned to prevent this. For the accuracy and F1-
measure, although the use of the pairwise term showed pos-
itive effects in models using color histograms and FaceNet
features ((j) and (p) outperformed (i) and (o)), the model us-
ing only trajectories did not show similar effects ((d) did not
outperform (c)). The best model among ones that uses only
trajectories is the naive DNN model (c), which achieved
80.7% of accuracy. Moreover, even the simple SVM model
(a) still worked well. These results suggest that the input tra-
jectories, which is a 600-D feature vector, contain rich infor-
mation and do not require complicated models to predict the
importance of people. Although (c) DNN model using only
trajectories worked well, incorporating additional input fea-
tures and CRFs demonstrated further improvement on this
task.
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Fig. 6 Examples of classification results. Each column is results of a DNN-based approaches using
trajectories and color histograms in Table 1 (i.e., (i), (j), (k), and (l)) and ground truth (right). Red and
green indicate important and unimportant person, respectively. The facial regions are blurred for privacy
reasons.

Fig. 5 Accuracy with respect to the number of people in a video frame.

Figure 5 shows the accuracy with respect to the num-
ber of people, evaluated over the test dataset for the methods
that use trajectories and color histograms as features (i.e.,
methods (g)–(l)) since one of them performed the best. Ac-
cording to the figure, the accuracy is particularly high when
the number of people is one. This is because our model is
biased towards giving label “important” and the CRF sup-
press it when there are more than one people. Also, if there
are only one person in a video frame, the person is important
in most cases in our datasets. We may see slight drop in ac-
curacy for (l) when the number of people is nine; however,
the accuracy value may not be stable for because the number
of frames with nine people in them are relatively rare.

Figure 6 shows some success (the first, second, and
third rows) and failure (the fourth and fifth row) examples.
For the top three examples, our DNN-CRF model success-

fully distinguished the important people from unimportant
ones. Comparing the results by (k) DNN-CRF (ψ removed)
and (l) DNN-CRF, we can observe that our model with-
out the pairwise term is biased towards predicting people
as important, and the pairwise term is helpful to correct the
prediction by assigning different labels to people whose tra-
jectories or facial features are significantly different to each
other.

However, our model failed in the fourth row, which
shows two men playing the guitars on the street and some
people crossing in front of them. We can see both impor-
tant and unimportant person in the result of the CRF-DNN
model without the pairwise term, but our full-model failed
and assigned “unimportant” labels for all people. This frame
has two group of people (the pedestrians and the musicians).
We consider that our full-model learned that the group of
people whose trajectories tend to be similar have the same
label, and thus it tried to assign the same label to these
groups of people. Due to small face sizes of musicians, our
model is not very confident about the “important” label as-
signed to one of the musicians, and this resulted in failure.
In the bottom row, ours failed to assign the “important” label
for a band on the stage. We consider that the frame is a hard
example: The faces of important people are very small in the
frame and we assume that these small face regions make it
difficult to correctly classify people as important since most
important people in the dataset are shot to occupy a larger
region.
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6. Conclusion

We have presented a model for classifying people in a frame
into important and unimportant using a CRF model built on
top of DNNs. Based on the observation that spatial tra-
jectories of face regions in a video, which represent the
videographers intension, provides strong cues to estimate
the importance of the people, we use the trajectories as in-
put for our model. Since this classification problem is not
big (i.e. only a few people appear in a frame and there are
only two possible labels), we can directly minimize the neg-
ative log-likelihood during the training process, in which the
partition function can be exhaustively evaluated. We tested
our DNN-CRF model with using either color histograms
and face recognition features based on FaceNet as additional
features, and one with color histogram outperformed other
baselines in accuracy and F1-measure. Our ablation study
demonstrated that considering relations between people in a
frame improves the classification accuracy. We expect that
face orientation and facial expressions are one of informa-
tive cues for this task. Therefore, adopting other features re-
lated to face orientations or other deep facial features would
be an interesting future direction.
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