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PAPER

Critical Nodes Identification of Power Grids Based on Network
Efficiency

WenJie KANG†, PeiDong ZHU††a), JieXin ZHANG†, Nonmembers, and JunYang ZHANG†, Student Member

SUMMARY Critical nodes identification is of great significance in pro-
tecting power grids. Network efficiency can be used as an evaluation index
to identify the critical nodes and is an indicator to quantify how efficiently
a network exchanges information and transmits energy. Since power grid is
a heterogeneous network and can be decomposed into small functionally-
independent grids, the concept of the Giant Component does not apply to
power grids. In this paper, we first model the power grid as the directed
graph and define the Giant Efficiency sub-Graph (GEsG). The GEsG is the
functionally-independent unit of the network where electric energy can be
transmitted from a generation node (i.e., power plants) to some demand
nodes (i.e., transmission stations and distribution stations) via the short-
est path. Secondly, we propose an algorithm to evaluate the importance
of nodes by calculating their critical degree, results of which can be used
to identify critical nodes in heterogeneous networks. Thirdly, we define
node efficiency loss to verify the accuracy of critical nodes identification
(CNI) algorithm and compare the results that GEsG and Giant Component
are separately used as assessment criteria for computing the node efficiency
loss. Experiments prove the accuracy and efficiency of our CNI algorithm
and show that the GEsG can better reflect heterogeneous characteristics and
power transmission of power grids than the Giant Component. Our inves-
tigation leads to a counterintuitive finding that the most important critical
nodes may not be the generation nodes but some demand nodes.
key words: network efficiency, giant efficiency sub-graph, the algorithm of
critical nodes identification, critical degree, node efficiency loss

1. Introduction

Over the last decades, many power grids blackouts caused
by natural disasters and human factors have occurred, which
has a serious impact on network security, economic gain
and social stability [1]. For instance, the Western North
American blackouts occurred in July and August 1996 [2],
the largest blackout in US history took place on 14 August
2003 [3] and the cyber-attack on Ukraine regional grid on 23
December 2015 [4]. It is investigated that large-scale black-
outs result from failure of some critical nodes. In practice,
the critical nodes are very important for critical infrastruc-
ture’s security. The failure of a few critical nodes may di-
rectly lead to the failure of the entire power grids, which is
the major reason causing the blackouts. Therefore, the crit-
ical nodes identification is of great practical significance in
the field of critical infrastructure protection and has been a
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hot issue.
Buldyrev et al. [5] laid out the framework for the anal-

ysis of catastrophic failures in interdependent networks [6],
which breaks through the frontier of complex networks
theory that still focuses on a single, non-interacting net-
work [7]–[10].When a single network is cut into multiple
components due to a few node failures, the largest com-
ponent is defined as the giant component in which at least
one path can be found to join any two nodes by passing
through a certain number of edges [11]–[14]. In previous
works, critical size of the giant component was used to rep-
resent the functional integrity of the segmented network.
This means that those remaining small components are con-
sidered invalid and will be removed. Therefore, the concept
of the giant component does not apply to power grids, which
are composed of different types of nodes (generation nodes,
transmission nodes, and distribution nodes) and edges (high
and low voltage). The key to maintaining the effectiveness
of the network is to transmit power to the distribution area
through multiple substations and transmission lines. For in-
stance, when a power grid breaks into several clusters, the
smaller clusters are still functional if only they contain the
links between generation nodes and demand nodes (trans-
mission nodes and distribution nodes). Since a power grid
is composed of small functionally independent grids, we can
describe those clusters as those small grids. Therefore, Gi-
ant Efficiency sub-Graph (GEsG) is defined to describe and
denote small functionally-independent grids, and we can
identify critical nodes based on GEsG.

Recently, in order to control the complexity of limited
resources, Chen et al. [15] designed three metrics that are
used by six algorithms to identify critical nodes for protec-
tion or removal. A new method was proposed to identify
critical nodes of power systems based on the controllability
theories of complex networks [16]. The concept of critical
nodes also was regarded as middlemen and was extended to
directed networks [17]. Modeling the network as a weighted
connected graph, an applicable method of identifying criti-
cal nodes and edges was proposed to find a subset in which
nodes and edges are removed to cause the largest cost [18].
Wehmuth et al. [19] proposed a methodology to locate the
most critical nodes in terms of network robustness in a fully
distributed way. Sivakumar et al. [20] suggested multiple
methods to find the critical nodes of a network based on
residual battery power, reliability, bandwidth, availability
and service traffic type. Nagurney et al. [21] assessed crit-
ical nodes and links in a financial network by measuring
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the network performance. The multi-vector viruses were
modeled in multi-layered networks to identify critical nodes
that allow a better spreading efficiency of these kinds of
viruses [22]. The European Union Agency for Network and
Information Security (ENISA) developed advice and recom-
mendations on good practice in information security and
proposed a methodology for the identification of critical
communication networks links and components [23]. Wang
et al. [24] proposed electrical centrality metrics to identify
the critical nodes in power systems. Multiple vulnerability
measures to cascading failure ware proposed to identify the
most critical components and evaluate the damage of power
grid by removing these identified components [25].

The rest of this paper is organized as follows. Section 2
defines the Giant Efficiency sub-Graph and introduces an ef-
ficiency assessment model of power grids. The algorithm
of critical nodes identification (CNI) is proposed in Sect. 3.
Node efficiency loss is defined to verify the effectiveness
and feasibility of CNI algorithm in Sect. 4. Experiments
are presented based on the Hainan regional power grids in
Sect. 5. Section 6 draws relevant conclusions and presents
future work.

2. The Efficiency Assessment Model of Power Grids

The concept of network efficiency was used to measure how
efficiently network exchanges information and transmits en-
ergy [26]. We represent a real network as a generic weighted
graph G that is with N nodes and K edges. The matrix {di j}
is used to calculate the shortest path length between node
i and j. The efficiency of G depends on two factors: the
shortest path length and the maximum possible number of
edges. The efficiency εi j between nodes i and j can be de-
fined to be inversely proportional to the shortest distance:
εi j = 1/di j,∀i, j. When there is no path in the graph be-
tween vertex i and j, di j = ∞ and consistently εi j = 0. The
average efficiency of G can be defined as:

E(G) =

∑
i� j∈G εi j

N(N − 1)
=

1
N(N − 1)

∑

i� j∈G

1
di j

(1)

The formula of network efficiency gives a clear physical
meaning to the concept of several systems, like neural net-
works, communication networks, transport networks and
power networks, which means how efficiently information
is exchanged and energy is transmitted over the network.

The power grids are heterogeneous with different types
of nodes and edges. The nodes can be divided into two
different groups: the generation nodes, which represent
the power plants that are responsible for producing elec-
tric power for demand nodes, and the demand nodes, which
represent the substations that contain transmission stations
and distribution stations. In fact, the power grid forms a
directed graph, where electric power is transmitted from
power plants to distribution domain via transmission nodes,
distribution nodes, and transmission lines. The normal func-
tioning of power grid depends on the generation nodes and

the feasible paths that transmit electric power from the gen-
eration nodes to the demand nodes.

Traditional approaches consider power grids as ho-
mogenous networks, which do not correspond to reality.
When some nodes are removed by either intentional attack
or natural disaster, the giant component, which is a crite-
rion for assessing the efficiency of networks, is not suitable
for power grids. When all generation nodes are success-
fully attacked, power grid actually fails due to the lack of
power supply, but the giant component still exists and is
valid. Therefore, we introduce the concept of Giant Effi-
ciency sub-Graph to measure the efficiency of power grids.
The GEsG is generated by the shortest path connecting
algorithm.

A power grid is considered as a directed graph G =
{V, E}, where V denotes the set of nodes with n elements and
E denotes the set of edges with m elements. V = {VG,VD}
can be divided into two sets: the generation node set VG =

{vG
1 , v

G
2 , · · · , vG

M} with M elements and the demand node set
VD = {vD

1 , v
D
2 , · · · , vD

N} with N elements, here n = M + N.
The superscript G and D represent the generation nodes and
demand nodes, respectively. The matrix {di j} denotes the
shortest path length from the generation nodes to the de-
mand nodes or between two demand nodes. Because the
power grid has several generation nodes and each genera-
tion node is responsible for providing some or all of power
supply to some demand nodes, the graph G can be divided
into several directed sub-graphs G

′
according to the shortest

path of power supply from a generation node. So we define
G′ as Giant Efficiency sub-Graph for showing the structure
of the network clearly and calculating the network efficiency
efficiently.

Definition 1 (Giant Efficiency sub-Graph (GEsG)) A
given graph G = {GEsG1,GEsG2, · · · ,GEsGM} can be di-
vided into M GEsGs, where GEsGi represents a Giant Ef-
ficiency sub-Graph of G. In the GEsGi = {Vi, Ei}, the node
set Vi = {vG

i , v
D
i1
, · · · , vD

im
} has a generation node vG

i and m
demand nodes vD

j , and the edge set Ei = {ei,i1 , · · · , eim−1,im }
contains all reachable shortest paths from a generation node
to demand nodes. In particular, Vi ⊆ V and Ei ⊆ E. Since
each GEsG includes a generation node and some demand
nodes, the number of GEsGs is equal to the number of the
generation nodes.

The concept of the shortest path connecting algorithm
is to divide network into several sub-graphs, which node
pairs are connected by the shortest path between them. The
algorithm is described as follows: Step one is to calculate
the shortest path length di j of all of the nodes by out-degree.
Step two is to identify all generation nodes and demand
nodes and to add them to the generation node set VG and the
demand node set VD, respectively. If the power grid does
not provide any information about node types, we have the
assumption that nodes with zero in-degree and non-zero out-
degree are regarded as the generation nodes, and the other
nodes are regarded as the demand nodes. Step three is to
traverse all nodes i′ in set VG and to check all nodes j in
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Fig. 1 Modeling a spanning process of giant efficiency sub-graphs by the
shortest path connecting algorithm.

set VD. If di′ j = 1, j = 1, 2, · · · , k, edge ei′ j is added to
Ei′ and nodes j are added to Vi′ until all nodes j are tra-
versed. If di′ j′ = 2 and d j j′ = 1, edge e j j′ is added to Ei′ and
nodes j′ are added to Vi′ . Those steps are iterated until di′ j∗

reaches the maximum value. Here, G is decomposed into
GEsGi′ = {Vi′ , Ei′ }, i = 1, 2, · · · ,M.

Figure 1 shows a spanning process of Giant Efficiency
sub-Graphs by the shortest path connecting algorithm. Fig-
ure 1 (a) presents a power grids with the generation nodes set
{1, 8} and the demand nodes set {2, 3, 4, 5, 6, 7}. Figure 1 (b)
presents two Giant Efficiency sub-Graphs that GEsG1 and
GEsG8 are generated by the shortest path from generation
nodes 1 and 8, respectively. The steps of shortest path con-
necting algorithm are as follows: Step one is to calculate the
shortest path length di j, in-degree and out-degree. Step two
is to identify the generation nodes 1 and 8 with in-degree 0
and out-degree 3. Nodes 1 and 8 are added to VG = {1, 8}
and other nodes are added to VD = {2, 3, 4, 5, 6, 7}. Step
three is to traverse nodes 1 and 8, and to search the shortest
path length d12 = d14 = d15 = 1, and e12, e14, e15 are added
to E1 and nodes 1, 2, 4 and 5 are added to V1 = {1, 2, 4, 5}.
Similarly, E8 = {e83, e86, e87} and V8 = {8, 3, 6, 7}. The node
will be searched in order to satisfy the condition that d1 j′ = 2
and di j′ = 1, i = 2, 4, 5. Node 3 meets this condition, there-
fore, it is added to V1 = {1, 2, 4, 5, 3} and e43 is added to E1 =

{e12, e14, e15, e43}, similarly, E8 = {e83, e86, e87, e35, e65, e64}
and V8 = {8, 3, 6, 7, 5, 4}. In addition, this method divides
the graph G = {V, E} of the power grid into two Giant
Efficiency sub-Graphs GEsG1 = {V1, E1} and GEsG8 =

{V8, E8} by two iterations.
The average efficiency of the network [27] was used to

measure the network’s performance in [28]–[30]. Similarly,
we use the sum of average efficiency of GEsG to measure
network efficiency of power grid.

E(G) =
1

NVG NVD

∑

i∈VG

ε(GEsGi)

=
1

NVG NVD

∑

i∈VG

∑

j∈VD

1
di j

(2)

Fig. 2 A power grid and its giant efficiency sub-graph with equivalent
network efficiency

Where GEsGi is Giant Efficiency sub-Graph i that contains
one generation node vG

i and multiple demand nodes vD
j . NVG

is the number of the generation nodes (e.g., power plant).
NVD is the number of the demand nodes that represent trans-
mission and distribution stations in power grid. ε(GEsGi)
denotes the sum of the efficiency of GEsGi. di j is the length
of the shortest path between node i and node j.

Figure 2 (a) shows a power grid which network effi-
ciency is equal to 1. Because the power grid can be di-
vided into two GEsGs in which the length of the short-
est paths between each generation node and all demand
nodes is equal to 1, its network efficiency is equal to 1
according to Formula 2. For instance, the length of the
shortest paths between generation nodes 1, 8 and demand
nodes 2, 3, 4, 5, 6, 7 is equal to 1 in Fig. 2 (b), and then
ε(GEsG1) = ε(GEsG8) = (1 + 1 + 1 + 1 + 1 + 1) = 6.
Therefore, the network efficiency of G is calculated by:
E(G) = 1

2×6 (ε(GEsG1) + ε(GEsG8)) = (6+6)
2×6 = 1.

In order to enhance the network security, we use critical
degree to assess the importance of the nodes in power grid.
If the critical nodes will be attacked, it may trigger other
nodes to fail.

3. Critical Nodes Identification Algorithm

Critical nodes play an important role in exchanging infor-
mation or transmitting energy in the network. The removal
of a small number of critical nodes may cause large network
efficiency loss, even results in a breakdown of the network.
Therefore, one of the essential things of network security
is to identify and protect critical nodes. Critical node iden-
tification depends on four factors: the node sharing degree
that the common node is shared by different Giant Efficiency
sub-Graphs, the distance sum of the shortest path between a
certain node i and all of the generation nodes, out-degree of
the node i, and in-degree of the node i.

Definition 2 (Node sharing degree): Any power grid
can reconstruct Giant Efficiency sub-Graphs with NVG el-
ements by shortest path connecting algorithm. There are
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many common nodes between two GEsG. The node shar-
ing degree NS D(vi) is measured by the sum of the function
ϕ j(vi).

NS D(vi) =
NVG∑

j=1

ϕ j(vi) (3)

ϕ j(vi) =

⎧⎪⎪⎨⎪⎪⎩
1, if vi ∈ Vj

0, otherwise
(4)

where vi denotes the demand node i. NVG denotes the num-
ber of GEsG. Vj denotes the node set of the GEsG j.

Definition 3 (Distance sum of the shortest path): The
distance sum s(vi), which is measured by calculating the dis-
tance sum of the shortest path between the node i and all of
the generation nodes, is defined as follow:

s(vi) =
∑

vi∈VD

∑

v j∈VG

dviv j (5)

where dviv j is the shortest path length between the demand
node vi and the generation node v j.

Let G = (V, E) and v ∈ V . The in-degree of v is denoted
deg−(v) and its out-degree is denoted deg+(v). A node with
deg−(v) = 0 and deg+(v) > 0 is called a generation node on
a power grid. Similarly, a node with deg−(v) > 0 is called a
demand node.

In this paper, we propose the concept of the critical
degree (CD) to describe the importance level of the nodes
on power grids. Critical nodes include two parts: all of
the generation nodes that provide power for the power grid,
and some demand nodes that have a key role in transmitting
power to the user. We use the contribution rate of network
efficiency to measure the CD of the generation nodes as fol-
low:

CD(vG
i ) =

εvG
i ∈Vi

(GEsGi)∑
ε(GEsGi)

(6)

where a node vG
i belongs to vertices set Vi of giant efficiency

subgraph i.
∑
ε(GEsGi) denotes the sum of network effi-

ciency of all Giant Efficiency sub-Graphs.
Similarly, the CD of a demand node is positively cor-

related with its out-degree and node sharing degree, yet is
negatively correlated with its in-degree and distance sum of
the shortest path. Thus, we use four factors to measure crit-
ical degree of the demand nodes as follow:

CD(vD
i ) = α × (deg+(vD

i ) + δ) × NS D(vD
i )

(deg−(vD
i ) + δ) × s(vD

i ) + ϕ(vD
i )

(7)

where vD
i is a demand node i, deg+(vD

i ) and deg−(vD
i ) denote

out-degree and in-degree of the demand node i,respectively.
δ is the number that its limit tends to zero, and δ plus out-
degree or in-degree is to avoid the situation that deg+(vD

i )
or deg−(vD

i ) equals zero. NS D(vD
i ) and s(vD

i ) denote node
sharing degree and distance sum of vD

i , respectively. ϕ(vD
i ) =

NVG −NS D(vD
i ) denotes penalty factor to punish these nodes

that its NSD equals 1. α = 0.54945 is a modifying factor to
control the algorithm error of critical degree between the
generation nodes and the demand nodes.

4. Node Efficiency Loss for CNI Algorithm Verification

The critical degree is used as an evaluation index to assess
critical nodes. Similarly, in order to verify the accuracy of
the CNI algorithm, we define node efficiency loss (NEL) to
quantify the damage of network efficiency after a node fails.
The nodes with a larger NEL are more important for protect-
ing the power grid. The importance and the ranking of net-
work components are adopted in terms of the relative drop
in efficiency [31], [32]. When a node vi fails, the downriver
nodes can’t receive electric energy, which makes a branch
of power grids failure. Therefore, we define branch(vi) to
describe the affected component due to the failure of a node
vi.

Definition 4 (branch(vi)): branch(vi) is a part of GEsG,
which is affected by a node i. The nodes of branch(vi) fail
if and only if the node i is removed. If vi is a generation
node and belongs to GEsGk, branch(vi) = GEsGk, k =
1, 2, · · · ,NVG . If ∀vi ∈ GEsGk,∃branch(vi) = {Vb, Eb} ⊆
GEsGk.This means that for any node that belongs to GEsGk,
there must be a branch of the node i that also belongs to
GEsGk. When v j ∈ branch(vi), v j need to meets the condi-
tion that v j is the downriver nodes of vi and does not belong
to the branch of other brother nodes of vi.

There is the shortest path matrix {di j} on GEsGk and
a generation node set sG = {vG

1 , v
G
2 , · · · , vG

M}. A given
node vi is the demand node and the algorithm of generat-
ing branch(vi) is as follow: Step one is to find the node v j

that satisfy the condition: dkv j = dkvi , where k ∈ sG and
v j ∈ {v j1 , v j2 , · · · , v jk }, obviously, the nodes v j are brother
nodes of vi. Step two is to find the downriver nodes of vi that
satisfy the condition: dvivl > 0, where vl ∈ {vl1 , vl2 , · · · , vlm }.
Step three is to delete the nodes that satisfy the condition:
dvjvl > 0 and to add the rest nodes to the node set Vb of
branch(vi). For instance, Fig. 1 (b) shows that the nodes set
of branch(1) is {1, 2, 3, 4, 5}, and the nodes set of branch(4)
is {4, 3} on GEsG1 and {4} on GEsG8, respectively.

We note that branch(vi) will be invalid after the node
i is removed. Therefore, in order to calculate network effi-
ciency loss after the node i fails, the definition of the damage
D(vi) is the node efficiency loss that is caused by the failure
of node vi. We can verify validity and feasibility of critical
node identification algorithm based on node efficiency loss
with GEsG.

D(vi) =
ΔE
ε(G)

=
ε(G) −∑vi∈GEsGk

ε(GEsGk − branch(vi))

ε(G)

=

∑
vi∈GEsGk

ε(branch(vi))

ε(G)
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=

∑
vi∈GEsGk ,v j∈branch(vi)

1
dviv j

ε(G)
(8)

where ε(G) is the efficiency of the network before the occur-
rence of any breakdown and ΔE is the efficiency loss that the
branch of the node i is disable due to the failure of a node
i. ε(GEsGk − branch(vi)) is the efficiency of GEsGk after a
breakdown of the branch, when the network reaches a steady
state.

5. Case Study

In this section, we first use practical the Hainan Power
Grid, which was severely damaged by Typhoon Damrey
on September 26, 2005, as an example to evaluate our ap-
proach. Hainan is a province in South China with a popu-
lation of more than 8.26 million. The Hainan Power Grid
(HPG), part of the China Southern Power Grid (CSPG),
consists of 118 substations and more than 180 transmission
lines [33]. For the purpose of security and secret, we only
adopt a small part of HPG that is composed of 48 nodes and
63 links in Fig. 3. A directed graph is used to represent the
HPG in Fig. 3, where red square nodes represent thermal
power plants and green circle nodes represent substations,
blue lines represent 220 KV transmission lines and red lines
represent 110 KV transmission lines, and the arrows indi-
cate the direction of electric current flow from high voltage
substations to low voltage ones or from the generation nodes
to the demand nodes.

In Fig. 3, we note that directed graph of HPG power
grid can be divided into nine GEsGs by the shortest path
connecting algorithm. Electric current flows from each gen-
eration node to other demand nodes in different GEsGs.
Edges with arrows represent the path of power transmis-
sion and the direction of the arrow represents the direction

Fig. 3 Directed network structure diagram of Hainan power grid (HPG)

of power transmission in Fig. 3. It is clear that node 211 is
responsible for transmitting power for generation nodes 11,
12, 14 and 15. Similarly, power transmission from genera-
tion nodes 11, 12, 13, 14 and 15 passes through node 204,
and power transmission from generation nodes 11, 12, 13,
14, 15 and 19 passes through node 306. Since failed nodes
211, 204 and 306 will have a great impact on the power grid
and may lead to the failure of more demand nodes due to
lack of sufficient power supply, the failure of these common
nodes (i.e., node 211, 204 and 306) would affect GEsG that
contain those nodes. For instance, failed node 306 may trig-
ger 309, 310 and 311 to fail due to lack of power supply.

The GEsG, which is used as a criterion for assessing the
performance of exchanging information or transmitting en-
ergy, and is better than Giant Component in power grid. For
instance, we remove each generation node from the HPG
one by one and calculate the network efficiency according
to GEsG and giant component, respectively. Figure 4 shows
that network efficiency has not significant change if Giant
Component is used as the criterion. When all generation
nodes are removed, the power grid has failed. The network
efficiency is zero for the criterion with GEsG, which can re-
flect the practice situation of the power grid.

Figures 5 (a)–(d) show the value of four factors for
identifying critical nodes, i.e., the node sharing degree, dis-
tance sum of the shortest path, in-degree and out-degree.
The node sharing degree is calculated according to Formu-
las (3) and (4), which denotes the number of times that the
node is shared by different GEsGs. For instance, NSD of
the nodes 319, 215, 318 and 317 is equal to 9 in Fig. 5 (a),
which means that these nodes are shared by nine GEsGs and
are more important in transmitting electric energy. If these
nodes are removed, nine GEsGs will be affected to cause a
portion of efficiency loss. Distance sum of the shortest path
is calculated by Formula (5). It is easy to find that nodes

Fig. 4 The comparison of network efficiency (NE) between GEsG and
Giant Component
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Fig. 5 Four factors of CNI algorithm. (a) Node sharing degree. (b) The distance sum of the shortest
path. (c) In-degree. (d) Out-degree.

Fig. 6 (a) The trend charts of critical degree, NEL with GEsG and NEL with giant component. (b) The
histogram of the correlation comparison between critical degree & NEL with GEsG and critical degree
& ENL with GC.

317, 318, 319 and 320 have the larger value of the shortest
path sum in Fig. 5 (b). It means that these nodes may not
be critical nodes, because there are long distances between
them and all generation nodes. The smaller distance sum
is, the more important the node may be. Figure 5 (c) also
shows that the in-degree of the nodes 11, 12, 13, 14, 15, 16,
17, 18 and 19 is equal to zero, but out-degree of these nodes
is greater than 0. There are also some node with out-degree
0 in Fig. 5 (d), such as 319, 322, 313, 317, 302, 314, and
304.

The critical degree (CD) is an important evaluator to
identify critical nodes in a network. Node Efficiency Loss
is used as an approach to verify the correctness of the algo-
rithm of CNI. Particularly, the larger critical degree of the
node is, the more its efficiency loses. Therefore, node effi-
ciency loss with GEsG is in a highly significant correlation
with the critical degree, as shown in Fig. 6 (a), a similar ten-
dency is observed between red curve and blue curve, but
node efficiency loss with Giant Component (green curve)
has no significant change and is not correlated with critical
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Table 1 Comparative analysis of critical degree and node efficiency loss

Descending Order Node Critical Degree Node Node Efficiency Loss
1 201 0.25613484 207 0.09370958
2 210 0.22120737 209 0.09107765
3 207 0.21452099 210 0.07018496
4 209 0.20604396 216 0.054687288
5 211 0.1892552 211 0.053932074
6 318 0.17812376 201 0.051878985
7 208 0.16965106 217 0.048130058
8 14 0.15813568 14 0.045538824
9 15 0.15813568 15 0.045538824
10 217 0.15792155 301 0.044281643
11 12 0.15377007 12 0.044281643
12 11 0.15212119 11 0.04380681
13 212 0.151821870 204 0.042572240
14 301 0.126796280 203 0.038298737
15 315 0.126796280 306 0.038000270

degree (red curve).In order to further verify our conclusion
with objective evidence, Pearson correlation coefficient is
used to calculate the correlation between Critical Degree &
NEL with GEsG and Critical Degree & ENL with GC. Pear-
son correlation coefficient of samples X and Y is described
as:

Corr(X,Y) = cov(X,Y)/(σX ∗ σY ) (9)

where cov(X,Y) represents the covariance between samples
X and Y . σX and σY represent the variance of samples X
and Y , respectively. The closer the correlation coefficient of
samples X and Y is to −1 or 1, the stronger the correlation of
samples X and Y is; the closer the correlation coefficient is to
0, the weaker the correlation of samples X and Y is. Accord-
ing to Formula (9), Corr(NEL with GC, Critical Degree) =
0.4837831 and Corr(NEL with GEsG, Critical Degree) =
0.7365024. The correlation comparison of Critical Degree,
NEL with GEsG and NEL with Giant Component is shown
in Fig. 6 (b), it is clear that the correlation value of NEL with
GEsG and Critical Degree is obviously higher than NEL
with GC and Critical Degree. Therefore, the GEsG is more
suitable as a criterion to reflect the efficiency loss of nodes
in the power grid than Giant Component.

The CD of nodes is calculated by Formula (6) and (7),
which veracity can be verified by the NEL according to For-
mula (8). Approximately 12 percent of the nodes are taken
as critical nodes in HPGC power grid. In particular, nodes
201, 210, 207, 209, 211 and 318 have a higher value in de-
scending order of CD, and nodes 207, 209, 210, 216, 211
and 201 have a higher value in descending order of NEL.
The top 12% of nodes from CD and NEL has the same
nodes 201, 207, 209, 210, and 211, which means that CD
has a better effect on identifying critical nodes. In order
to verify the effectiveness of critical degree, the veracity of
critical node identification (CNI) algorithm is written as:

Veracity(p) =
n(CDS 
N∗p�

⋂
NELS 
N∗p�)


N ∗ p� (10)

where p represents the proportion of selected critical nodes
and N is the number of all nodes in the power grid.

n(CDS 
N∗p�
⋂

NELS 
N∗p�) represents the number of nodes
in the intersection of CDS 
N∗p� and NELS 
N∗p�. 
N ∗ p� rep-
resents the ceil function of N*p, which means that 
N ∗ p� is
equal to integer m when m − 1 < N ∗ p < m. CDS 
N∗p� rep-
resents critical node set in which 
N ∗ p� nodes are selected
in descending order of CD. NELS 
N∗p� represents NEL set
in which 
N ∗ p� nodes are selected in descending order of
NEL. According to the Table 1 and Formula (10), if we take
the top 10 percent of the nodes as critical nodes, the veracity
of CNI algorithm can be calculated as follows:
Veracity(10%) = c(CDS 
48∗10%�

⋂
NELS 
48∗10%�)


48∗10%� =
c(CDS 5

⋂
NELS 5)

5

=
n({201,210,207,209,211}⋂{207,209,210,216,211})

5 =
n({207,209,210,211})

5 =
4
5 = 0.8 ∗ 100% = 80%. Similarly, if 20 percent of the
nodes are taken as critical nodes, the veracity of CNI al-
gorithm can be calculated as follows: Veracity(20%) =
n(CDS 10

⋂
NELS 10)

10 =
n({14,15,201,207,209,210,211,217})

10 = 8
10 = 80%.

We notice an interesting phenomenon in this experi-
ment that the most critical important nodes may not be the
generation nodes but some demand nodes. It has been veri-
fied from two different aspects: critical degree and network
efficiency loss. Some nodes (i.e., node 207, 209, 210, 211
and 201) hare the larger value on Critical Degree and Node
Efficiency Loss than these generation nodes (i.e., node 11,
12, 13, 14, 15, 16, 17, 18 and 19). The reason that leads
to this counterintuitive phenomenon is that the failure of
those critical nodes does not only lose the efficiency of its
GEsG but also causes efficiency loss of other GEsGs, and ef-
ficiency losses of these nodes are larger than the one caused
by the failure of any a generation node.

Table 1 summarizes that five same nodes are found in
the first nodes, as is shown in the results of Critical Degree
and Node Efficiency Loss. If we remove those nodes (e.g.,
nodes 201, 207, 209, 210 and 211), the power grid is cut
into five parts, as shown in Fig. 7 above, and it will lead to
a serious consequence that 27 percent of the nodes are in-
valid and 41.26 percent of edges are removed. Although
the power grid is divided into five parts, each part is still
effective component. Therefore, the total efficiency of the
network depends not only on the largest component but also
on the smaller one that contains the generation node and the
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demand nodes. In particular, this concept of GEsG should
be applied to studying the problem of cascading failures in
interdependent networks (a power grid and a communica-
tion network) for future.

Recently, degree, betweenness, closeness or degree of
degree are used as evaluation indicators to identify crit-
ical nodes in many research works. The accuracy of
these criteria and critical degree are compared in Fig. 8.
The results show that the curve of critical degree is
much closer to the curve of node efficiency loss than
other criteria in Fig. 8 (a). In order to verify the high
correlation between critical degree and node efficiency
loss, Pearson correlation coefficient is used to calculate
and compare the correlation between NEL and degree,
betweenness, closeness, degree of degree or critical de-
gree. According to Formula (9), Corr(Degree,NEL) =
0.5514295, Corr(Betweenness,NEL) = 0.6496241,
Corr(Closeness,NEL) = 0.5665583, Corr(Degreeo f

Fig. 7 Directed graph of HPG after five critical nodes fail

Fig. 8 (a) The comparison of CNI with different evaluation indicators. (b) The correlation value
between NEL and degree, betweenness, closeness, the degree of degree, or critical degree. (c) The
comparison of the accuracy of different proportions of the selected critical nodes, i.e., 5%, 10%, 20%,
and 30%

Degree,NEL) = 0.5578868 and Corr(Critical degree,
NEL) = 0.7365024. This indicates that critical degree has
a high correlation with node efficiency loss in Fig. 8 (b). We
take the top five, ten, twenty and thirty percent of the nodes
as critical nodes, respectively, the accuracy of critical de-
gree is always the highest in Fig. 8 (c), where p represents
the proportion of the selected critical nodes. According to
Formula (10), when p is equal to 5, 10, 20 and 30 percent,
the veracity of critical degree is 0.6666667, 0.8, 0.8 and
0.7333333, respectively.

From the perspective of the complex network, we
study the problem of CNI and the efficiency assessment
of power grids. However, a real power grid system has
more characters such as voltage, load, and control loops.
Genge et al. [34] proposed a cyber attack impact assess-
ment (CAIA) methodology to assess the impact of cyber-
attacks on critical infrastructures assets and to rank the as-
sets with a viewpoint of the real network condition. Rel-
ative impact is used as an evaluation index in CAIA and
can be used to rank the importance of substations. In or-
der to verify the conclusion that CNI methodology is ac-
cordant with the actual situation of power grids, we apply
our approach on the IEEE 118-bus system [16], [35] that is
simulated by the MATLAB PAST toolbox and compare ex-
perimental results between critical degree and relative im-
pact. Figure 9 (a) is the graphic presentation of the IEEE
118-bus system, which contains 19 generators (red nodes),
117 links, 99 load nodes (blue nodes). We separately run
the algorithms of CNI and CAIA based on the data of IEEE
118-bus test system. In addition, in order to verify the rela-
tively high correlation between relative impacts and critical
degree, we separately use degree, betweenness, closeness,
and degree of degree as evaluation indicators to calculate
the importance of all substations of IEEE 118-bus test sys-
tem in Fig. 9 (b). Similarly, Pearson correlation coefficient
is used to calculate the correlation between relative impact
and degree, betweenness, closeness, degree of degree or
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Fig. 9 (a) Network diagram of the IEEE 118-bus test system. (b) Importance assessment value of
substations based on different evaluation indicators. (c) The correlation comparison between relative
impact and degree, betweenness, closeness, degree of degree, or critical degree. (d) Comparison diagram
of CNI and CAIA on the IEEE 118-bus test system.

critical degree. According to Formula (9), the correlation
between relative impact and other evaluation indicators is
as follows: Corr(Degree,Relative impact) = 0.2163506,
Corr(Betweenness, Relative impact) = 0.04544072,
Corr(Closeness, Relative impact) = 0.2337256,
Corr(Degreeo f Degree,Relative impact) = 0.02500777,
Corr(Critical degree, Relative impact) = 0.3800736. This
indicates that relative impact has a higher correlation with
critical degree than degree, betweenness, closeness, and de-
gree of degree in Fig. 9 (c). By comparing the results of
critical nodes and relative impact on assets, we also reach
the same conclusion that the most critical nodes may not
be generation nodes but some demand nodes and relative
impact of some demand nodes are larger than generation

nodes. We can see that both critical degree and relative
impact of the demand node 68 have the largest value in
Fig. 9 (d), and the more important critical nodes include two
generation nodes (i.e. red nodes 12 and 26) and five demand
nodes (i.e. blue nodes 5, 30, 68, 104 and 105). The critical
nodes that are identified by the CNI algorithm also have a
larger value on relative impact by the CAIA methodology.
If these nodes fail due to being attacked, the network will
suffer a dramatic power loss and the local failure of power
grids may also be triggered.

6. Conclusion and Future Work

In this paper, a novel approach is proposed to identify
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critical nodes in power grids, and a counterintuitive phe-
nomenon has been discovered that the most important criti-
cal nodes may not be the generation nodes but some demand
nodes. We define the Giant Efficiency sub-Graph (GEsG)
as an evaluation criterion to assess network efficiency. We
also define Node Efficiency Loss to verify the accuracy of
CNI algorithm. Experimental results show that the algo-
rithm accuracy is over 80%. Through the comparison of the
node efficiency loss between GEsG and Giant Component,
GEsG is more suitable for the actual situation of power grids
than Giant Component. From the perspective of network
structure, the algorithm has a good effect to identify critical
nodes. In fact, the smart grid is considered as multi-layer
or interdependent networks, in which a fraction of nodes in
the power grid is coupled with corresponding nodes in com-
munication network [36]–[38]. Therefore, through identi-
fying critical nodes and edges of interdependent networks,
the mechanisms of cascading failure of the cyber-physical
systems are worth deeply researching, and developing the
cyber-physical attack strategy and defense mechanism will
also be my further research.
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