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SUMMARY  Sparse representation has been widely applied to visual
tracking for several years. In the sparse representation framework, tracking
problem is transferred into solving an L1 minimization issue. However,
during the tracking procedure, the appearance of target was affected by ex-
ternal environment. Therefore, we proposed a robust tracking algorithm
based on the traditional sparse representation jointly particle filter frame-
work. First, we obtained the observation image set from particle filter. Fur-
thermore, we introduced a 2D transformation on the observation image set,
which enables the tracking target candidates set more robust to handle mis-
alignment problem in complex scene. Moreover, we adopt the occlusion
detection mechanism before template updating, reducing the drift problem
effectively. Experimental evaluations on five public challenging sequences,
which exhibit occlusions, illuminating variations, scale changes, motion
blur, and our tracker demonstrate accuracy and robustness in comparisons
with the state-of-the-arts.

key words: visual tracking, sparse representation, 2D transformation, tem-
plate update

1. Introduction

Computer vision system simulates human visual mechanism
from the perspective of neurophysiology and psychology
cognition. Relying on various imaging devices, computer
can replace brain to understand visual image information.
Visual target tracking, as an important branch of the field of
computer vision, which is designed to simulate the ability of
human eyes to estimate and track the motion of the target.

Object tracking is the core of computer vision, which
combines the advanced achievements in different fields,
such as image processing, pattern recognition, artificial
intelligence, and automatic control[1], [2]. In the past
decades, with the rapid development of multimedia technol-
ogy and the continuous improvement of computer perfor-
mance. Object tracking has important practical value and
broad prospects in military vision guidance, robot vision
navigation, industrial product inspection, medical diagnosis,
traffic surveillance, virtual reality.

Recent years, sparse representation and compressed
sensing techniques has been successfully applied to vi-
sual tracking [4], [7]-[10].The L1 tracker was first brought
by [4], regarded tracking as finding a sparse approxima-
tion in template space, in addition, trivial templates were
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introduced to represent the occlusions and noise in the tar-
get during tracking. However, the method used in [4] for
solving £; minimization cost too much time to being real
time. Then L1 tracker with minimum error bound was pro-
posed by [8], particles were selected by the minimum error
bound and accelerate the resampling procedure. Moreover,
instead of updating template each frame, occlusion detec-
tion was added up before template update. However, these
improvements are not enough to make the algorithm to be
real time. Cheng [9] proposed the APG method to the orig-
inal L1 tracker which reduced the computational cost and
make the tracking algorithm to be real time. Although these
trackers demonstrate good performance by using additional
trivial templates, the tracking procedure can be generalized
with better understanding.

In this paper, we present a robust object tracking algo-
rithm. The contributions of this work are as follows. Af-
ter sampling from the first frame of video sequence, we in-
troduce a 2D spatial transformation to the observation set
after sampling from the first frame, which effectively pre-
vented error data from being introduced into the template,
improved the robustness and tracking accuracy of the al-
gorithm. In addition, at the template update stage, in or-
der to balance the effective and performance, we detected
the occlusion degree of the tracking target before the update
scheme, updating schemes was determined based on the per-
centage of occlusion region. Consequently, we can obtain a
more robust tracker than the L1 APG tracker. Our experi-
mental evaluations on challenging video sequences validate
the superior performance of our tracker to state-of-the-art
trackers in terms of accuracy and robustness.

The rest of this paper is organized as follows. Section 2
briefly review the related work. Section 3 introduces the
tracking framework, namely particle filter and sparse rep-
resentation theory we used in this paper. Section 4 presents
our tracking algorithm of the framework. Section 5 conducts
experiments, Sect. 6 discusses a failure case of our tracker
and Sect. 7 concludes the paper.

2. Related Work

Signal sparse representation has the advantages of fast com-
puting speed, low storage, which has been widely used in
various research fields. The application of sparse repre-
sentation in signal processing domain mainly includes face
recognition, image classification, image segmentation, im-
age denoising and so on. Researches show that sparse
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representation have the advantage on solving the challeng-
ing problems in computer vision, such as large area occlu-
sion and illumination change.

Resent years, many scholars put forward their own re-
search and made their effort to improve the efficiency of
tracking algorithms. According to the existing methods, vi-
sual tracking methods can be generally divided into two cat-
egories: discriminative methods and generative methods.

Discriminative methods formulated object tracking by
the concept of classification. Different from generative
methods, discriminative methods normally redefined the
tracking problem as a binary classification which to dis-
tinguish whether a candidate target belongs to the back-
ground. Avidan [15] trained a SVM classifier for tracking,
the SVM classifier is used to judge whether the candidate
results are true, where obtained in the detection mechanism.
But this method can’t handle the situation where occlusion
occurs. Then he proposed another tracking algorithm, En-
semble Tracker [16], which used data to learn multiple weak
classifier and combined with Adaboost algorithm to accom-
plish object tracking. Babenko [17] studies MIL (Multiple
Instance Learning) and applied it to object tracking, with
which can solve the problem of uncertainty of the sample of
list by placing the possible positive and negative samples in
the positive and negative package respectively via multiple
instance learning. Recent years, due to the powerful auto-
matic feature extraction capability, deep learning has made
great breakthrough on visual tracking. As a typical repre-
sentative of discriminative methods, Wang [25] trained the
tracker to learn image features from massive pictures of-
fline, then tracked the object online. In order to solve the
drift problem caused by inaccurate fine-tune in the model
updating stage, the author designed two Convolution Neu-
ral Networks, CNNs and CNNI[26]. The former updated
frequently so that it responds to the appearance change of
the target, while CNNI updated less which is robust to er-
ror. Li[27] classified the state-of-art trackers based on deep
learning from three aspects: network structure, network
function and network training. Their research indicated that
the CNN model has a high efficiency in template matching
owing to its excellent performance on distinguishing the tar-
get from background.

Generative methods defined tracking as a similarity
search problem. In this kind of method, object tracking al-
gorithm based on sparse representation gained popularity,
for this framework combined the sparse representation the-
ory and particle filter tracking framework which achieves
high tracking accuracy. Particle filter, which is also called
the Sequential Monte Carlo methods [19], due to the dense
sampling of particles for tracking result in high compu-
tation load, quantitative methods was brought out to im-
prove the sampling efficiency. Rao-Blackwell [20] utilized
subspace representation for tracking. Zhang[21] adopt a
multi-task correlation filter to shepherd particles that reduce
the number of particles as a result improving the real-time
performance. John [3] proposed an algorithm that differ-
ent expression of one man could be represented by a linear
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combination of the image of his face, and the sparsity co-
efficients also were sparse. Xue [4] utilized this sparse rep-
resentation theory to solve object tracking problem, brought
the idea of £; -norm minimization for sparse tracking. Their
work defined object tracking as the problem of searching for
particles with minimum target reconstruction error in multi-
ple candidate particles. The algorithm also assumed that the
target candidate can be sparsely expressed by template dic-
tionary constructed according to the target and trivial tem-
plates. By comparing the reconstruction error of each can-
didate particle and selecting the particle with the minimum
error as the tracking result of the current time, then updated
the template dictionary of the target to complete the contin-
uous tracking.

Li et al. [8] constructed an object representation model
based on the RIP (restricted isometry property) of compres-
sion perception theory, and utilized Orthogonal Matching
Pursuit to tackle L1 minimization problem, Mei et al. [9] put
forward BPR-L1 tracker which selected particles by min-
imum error bound, to a large extent reduced the number
of particles during the £; minimization. Bai[14] modeled
the appearance of an object as a sparse linear combina-
tion of structured union, to solve the sparse representation
issue he adopted the BOMP (Block Orthogonal Matching
Pursuit) algorithm. Zhuang [11] proposed a tracking algo-
rithm based on DSS (discriminative sparse similarity) map
which illustrated the relationship between candidates and
templates. Zhang [6] proposed a new algorithm for iden-
tifying spatial tracking with new graph embedding algo-
rithm as core model. By combining the linear classifier and
sparse representation theory, a sparse apparent model with
discriminant properties is constructed [7], the tracking re-
sult was determined by reconstruction score of the apparent
model. Wang [7] regards sparse representation for classifi-
cation, sampling positive and negative samples, the sparse
coefficients obtained in a complete dictionary are used to
construct a linear classifier is used to estimate the target
candidate’s confidence value under two-step particle filter-
ing. Hong[12] treated tracking as a multitask, multi-view
sparse learning problem, which utilized multiple views to
include various types of visual characteristics, such as in-
tensity, color, and the edges. Each feature can be sparse
represented as a linear combination of atom. A structure
sparse tracking algorithm was constructed in [13], which
not only used the intrinsic relationship between the target
candidates to learn their sparse representation, but also pre-
served the spatial layout structure of local image blocks in
each target candidate. Zhang[31] categorized the trackers
based on sparse coding into appearance modeling based on
sparse coding (AMSC) and target searching based on sparse
representation (TSSR), he pointed that AMSR methods sig-
nificantly outperform methods, an accurate description of
the target appearance model affects the final tracking re-
sult. Considering the influence caused by noise, Bo [30]
embedded a noise separation tracking mechanism into the
LK tracking frame work, different from other methods, two
noise items, Gaussian dense noise and sparse outlier noise
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when constructing the representation model. Wang [29] pre-
sented a Least Soft-threshold Squares (LSS) method, han-
dling outliers well via LSS distance. To obtain higher com-
putational efficiency and more accurate results, the author
utilized a cosine similarity function to measure the simi-
larities between the target template and candidates. Lately,
Wang [28] proposed a Least Soft-Threshold Square Track-
ing (LSST) algorithm, which formulate the error by a linear
regression of Gaussian noise and Laplacian noise, alleviated
the drifting problem under the condition of local occlusion
and complex background, effectively improved the robust-
ness of the algorithm.

3. The Tracking Framework of Particle Filter Joint
Sparse Representation

3.1 Particle Filter

Filtering provides effective approach to estimate the cur-
rent value of unknown on the assumption of the observa-
tions have already been known. In 1960, R.E. Kalman first
brought the idea of state space into filter theory, Kalman Fil-
ter, which applied in temporal domain.

The Bayesian theory is an approach that estimate poste-
rior probability distribution of state variables characterizing
a dynamic system. Particle filter is a motion estimation algo-
rithm in the Bayesian framework, which propagate massive
random samples to describe probability distribution, and the
random samples called particles.

Tracking a moving target from video can be consid-
ered as a process of estimating the posterior distribution of
state variables. In the Bayesian framework, we need two
variables:x,, representing the observation x; at time ¢ of the
tracking target which include the location, speed, x, is con-
tinuously transferred from original state xy, in order to de-
crease error caused by single variable, the introduction of
observation z, can deal with this situation, which utilized
the camera to recorded the state of the target.

While tracking, in most cases we assume that the
process of object state transition obey the Markov first
order distribution. For all available observations z;., =
{z1,...,21}, they are independent of each other.

Typically, there are two essentially steps to finish the
tracking procedure: predict and update. In the predict stage,
we obtained p(x;|z1-1) from p(x;_1]z1.-1) as:

(x| z1:-1) = fp(xz—l | Z—D)P Xt | Zi—)dx - (1)

In the update stage, as p(x;|z;,-1) had already known
from previous work, by this time, we need to calculate
p(x¢ | z1.¢) as following:

D@ | x)p(xe-1 1 21:-1)
Pz | Z1-1)

(x| z14) = 2

The denominator can be calculated by:

Pzl z14) = fp(zt | x)p(xe | 21.-1)dx; 3)
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where p(z,|x;) denotes the observation likelihood, which
represents the appearance possibility of unknown state
whose premises observations had already known, and this
is also the logic connection between actual observation data
and unknown variable. The particles are sampled according
to the weight which updated by:

_raly
—1 : -
q('x; | xé);l_l ’ Zl:t)

i_ 0
-t

“4)

3.2 Sparse Representation of Tracking Target

The purpose of the sparse representation model is to calcu-
lating the observation likelihood of sample state x;, when
solving tracking problem, we cropped a patch from frame
z; to model p(z;| x;). The patch needs to be normalized and
stored in a 1D vector which act as target candidate that we
denote as

T =t,t2...,1,] € R*" (d > n) (3)

It is obvious that n target templates formed the target space
where a; € RY. We utilized y to denote the tracking result,
and y € R?. According to Xue’s work in [4], it could be
approximately in this form:

yi ~TA=aty +axtr +...+ayt, (6)

where @i = (aj,ay,...,a,)" € R" is referred to the target
coefficient vector. When the target was corrupted by noise
or partially occluded during tracking procedure may lead to
unpredictable errors. To incorporate the corruption of oc-
clusion and noise, (6) is rewritten as:

Vi=TA+e (7)

e indicates error vector which could be caused by image im-
pairment or inclement background. The nonzero data in e
indicates the corresponding pixel which was corrupted by
noise or occlusion. The locations of corruption can be ob-
tained by trivial template I = [iy, i, - - -, iy] € R™?, and i; €
R4 represent the i — th entry of vector is 1, the rest is 0. We
obtained the overcomplete dictionary B = [T I] € R+
by combined the target candidate template space 7" and triv-
ial template I, each observation y! could be linearized by the
overcomplete dictionary as
- oS

=T 1 ;|=BC ®)

el‘

Due to (8) is still underdetermined, it is difficult to ac-
quire the unique solution of linear representation coefficient
ci. Considering for most of tracking sequences, only par-
tial objective region was corrupted, therefore, there are finite
nonzero entries in the trivial template coefficient vector e!.
The sparse coefficient vector obtained by minimizing the [,
norm:

min||all; +|lel, st y=TA+e 9)
a,e

The observation model p(z; | x;) reflects the likelihood
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Table 1
Algorithm 1

1: A represents target candidate set, contains K subjects, Y stands for ob-

Description of transformation algorithm

servation image and 7 is a deformation group
2: for each subject i
3: Py

4: while not converged (/ = 1,2,...) do

- yor
5 HOe s Teaiel,
6: Ar=arg min ||e|; subjto J+JAT=TA +e
7: U VAT
8: end
9: end

10: select the top S candidates k,,...,k; with the smallest residuals |||,

11: calculate an average transformation 7 from 7, ,7;, 7

12: for i=k,.., kg

13: update ¥y« yo7 and 7,¢ 7,7

—_

. -1 -1 -1
4: construct new set 4 with [Ak‘ ot |4, o7 || 4 o7, ]

15: compute sparse vector according to [9]

estimation of the error caused by the approximation of the
target through ¢; minimization. The particle state transfor-
mation probability p(x;| x;—;) obey Gaussian distribution:

1 .
P(zi|x0) = ¢ expl=ally; - TAIG) (10)

where I' represents a normalized parameter, « is referred
to a constant which is capable of controlling the shape of
Gaussian kernel. The tracking result x; at frame ¢ is selected
by:

X = argmax p(z,| x}) (11)

4. Our Method
4.1 Transformation for Solving Misalignment

Wagner solve the misalignment of face recognition in [18],
in fact, even images of the same object or scene can vary
if the camera’s position or pose change moderately. Moti-
vated by his work, considering that the pose change of the
object during moving will affect the tracker, we adjust the
tracker before solving the optimal sparse solution so that it
can change with the tracking candidate. We denote y as the
observation image which is transformed by 7 in the form:

y=ypot ! (12)

where 7 € P, and P represent a finite set of dimensional
transformations with unknown parameters in the image do-
main, such as similarity transform, homograph, translation.
And it is obvious that y no longer satisfied the sparse rep-
resentation condition, therefore other feasible solution is
needed. We estimate the transformation by linearizing the
current estimate 7:

yoTr+JAT=TA+e (13)
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0
where J = —y o 7, stands for Jacobian of z o 7, which

is capable of gstimating 7 by repeatedly linearizing. This
equation is still underdetermined. Now suppose there were
only few corrupted pixels in the images between the well
alignment image and ideally state, then we fixed error €, and
turn to seek the best solution for deformation step At

ATy = arg min ||| (14)
a,e,ATeT
subjectto yot+JAT=TA+e

To prevent our algorithm from degenerating, we nor-
malized z o 7 in the way of

yort

T 5)
lly o 7ll2

¥ =

With the best transformation parameter 7; achieved by
(15), the target candidate set A can be aligned to y. Detail
procedure of our alignment algorithm is shown in Algorithm
1.

To obtain more reliable transformation, we used an
average result 7, and while tracking, we need to align y
with 7 which is a parameterized set, consisted by 7 =
(', 7%,73,7%), each parameter has its own representation,
where the first two represent the translations in x and y axis,
the third represents the rotation angle and the last one de-
notes the scale. The average transformation 7 is obtained by
(16):

Tttt T )fS. i=1,2,3,4 (16)

As we obtained the optimal 7!, we utilized the method
in [10] to get the sparsity solution.

4.2 Occlusion Detection

The dynamic template updating strategy enables the track-
ing algorithm to adapt to the various appearance changes
during the tracking process. In the actual application sce-
nario, the target is often corrupted by occlusion. When the
template is updated, the shadowed trace results cannot be
used as the updated target template. Therefore, in order to
avoid incorrect template update, we need to detect the oc-
clusion in the target area.

In sparse representations, regions where are contam-
inated or obscured by noise can be represented by trivial
templates. The trivial template corresponding to its position
is motivated when the feature value of the pixel in the tar-
get region cannot be approximated by the target template.
First, the 1D trivial template is reconstructed into 2D triv-
ial template coefficient image. Trivial template coefficients
are relative to each pixel on the image. Then, the image of
the block is obtained by binary processing of trivial tem-
plate coefficients. On the binary occlusion image, the white
pixel represents the occluded area, and the black pixel in-
dicates the region that is not obscured. As the size of the
occlusion is larger than the random noise, occlusion can be
expressed as a large area of the white union region in the
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Table 2  Description of update mechanism

Algorithm 2

1: YV is the newly chosen tracking target, @ is the solution to (9), W is current
weights, @, tr,ur, is predefined threshold

2: t, is the template which has the smallest coefficient, 7, has the largest coeffi-
cient

3:if (sim(t,,)20 )

4: calculate the corrupted rate
S:if( tr<try)

6: ty<—y

T:else if( try <tr<tr)

8: replace the corrupted pixels with the median template, the specific locations could
get from corruption map, then ¢, < rectified y

9:end

occlusion map. Morphological operation was performed to
remove the small area of white area and to fill the gap in
the white connected area. If the largest white union region
in the occlusion map is more than 30% of the entire im-
age, the tracking result of the current frame is considered to
have a significant occlusion and cannot be used as a template
candidate.

Typically, a clear occlusion is retained in the target area
for a period of time, so once a significant occlusion is de-
tected, template will not be updated in the next few tracking
sequences. This can effectively avoid drift problems caused
by frequent template updates.

4.3 Template Update

The tracking algorithm based on particle filter and sparse
representation generates the target template space in the first
frame, then selects the region most similar to the target tem-
plate space as the tracking result in the next tracking se-
quence. Because the target is often affected by various fac-
tors in the process of tracking, a fixed template space can’t
adapt to the appearance change of target area, and frequent
template updating will bring drifting problem.

In fact, the appearance of the target will remain un-
changed for a period of time, result in the final target tem-
plate space will no longer be an accurate model represen-
tation of the target. If the template is not updated, the
fixed template space will not be able to adapt to the changes
caused by various illumination conditions or pose changes.
But if the template is updated too frequently, error will be
introduced when the template is updated each time, leads to
offset the target area.

In order to dynamic update the target template space,
the weight w; is introduced for each target template ¢. The
larger weight value, the greater importance of the corre-
sponding target template. The corresponding weights are
evenly distributed because the differences between the tem-
plates in the initialized target template space are small.
In the following tracking sequence, a indicates that the
newly acquired tracking results correspond to the sparse
representation coefficients of the target template ¢. Then,

2127

the weight of the template w can be updated by the follow-
ing formula.

w; =w;exp(a;), i=1,2,...,n 17

In sparse representation, sparse representation coef-
ficient indicates the similarity between the corresponding
template and the tracking results. Therefore, we compare
the largest coefficient #,, with the tracking result of the cur-
rent frame. If the similarity is smaller than the preset thresh-
old, which means that the current tracking result is similar
to the target template space, the template does not need to
be updated. If the similarity is larger than the preset thresh-
old, it shows that the tracking result of the current frame
is different from the target template space, so updating is
needed. Choose the template which has the least weight as
the tracking result, then averaging the weight of the rest tar-
get templates, and the averaging weight was regarded as the
new template weight. Finally, the modified template space
is normalized to the weight value according to (18). Detail
for template update is shown in Algorithm 2.

iwiz 1 (18)
i=1

5. Experiments

In this section, firstly, we conduct several experiments to an-
alyze and evaluate the method proposed in this paper. Sec-
ondly, we pose some experimental settings. Then we com-
pared and analyzed five methods of tracking results on five
challenging sequences. Finally, we make a comparison of
speed among the five trackers.

5.1 Experimental Settings

Our algorithms is implemented with Matlab 2016a. On a
computer with Quad-Core 3.30GHz Xeon processors and
8G memory, in order to evaluate the performance of our
algorithm, we compile running on 5 challenging frame
sequences (3 color sequences, 2 gray sequences), and
compared the tracking algorithm with 4 state-of-art track-
ers named Multiple Instance Learning (MIL), Incremen-
tal Visual Tracking (IVT), Compressive Tracking (CT), L1
Tracker using Accelerated Proximal Gradient (L1APG). All
of the sequences which have been used in this paper are ob-
tained from http://cvlab.hanyang.ac.kr/tracker_benchmark/
benchmark.html.

5.2 Qualitative Evaluation

The sequence Car4 shows a moving car and presents illumi-
nating change. Figure 1 (a) shows the tracking results using
5 trackers. At the beginning of the experimental sequence,
each algorithm can track the target accurately. During the
subsequent tracking process, we can see that the IVT and
MIL methods are less effective in this video sequence, our
tracker shows good performance on illumination change, the
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MIL CT

LIAPG IVT OURS

Fig.1 A visualization of the tracking results of our tracker, MIL [17],
CT[22], LIAPG[10], IVT[1], on 5 challenging sequences (from top to
down: Car4, Singerl, Clifbar, Walking2, Blurbody, respectively. Our
tracker performs well against the state-of-the-art trackers)

rest trackers also have a good perform on this sequence.
The sequence Singerl test the tracking algorithm

mainly involves illumination change, scale change. As is

shown in Fig. 1 (b). At the beginning, most algorithms can
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track the target well, as illumination increases gradually, the
part of the target area was obscured by the lights, losing a
lot of detail information, the scale of target also changing.
Three trackers drift from the target, the rest are able to track
the target, but have errors in scale. With the light gets dark,
MIL, L1APG can track the target again, only IVT and our
tracker can track the target throughout this sequence.

Figure 1 (c) illustrates the partial tracking results of the
Clifbar sequence. The task is to track the man’s face under
the challenge of scale changing, occlusion. In the earlier se-
quences, all tracking algorithms can track targets accurately.
When it comes to the 220th frame, the target area began to
appear occlusion, and the 223th frame the target was com-
pletely blocked by a book, in this situation our algorithm and
L1APG algorithm can still be successfully tracked. MIL,
CT, IVT have occurred to varying degrees of drifting. In the
later sequence, the scale of the target begins to change. Only
the L1APG and our tracker achieve stable tracking results of
the sequence.

Figure 1 (d) demonstrates partial tracking results of the
Walking? sequence. This series of sequences mainly test the
robustness of each tracker under scale change, background
interference, and occlusion. From the 187th frame, the man
appears in the hall and similar to the target. As two objects
moving in the scene, and occlusion happens, poses great
challenge for tracking. It can been seen that L1IAPG, MIL,
and IVT are gradually failing to track the target, our tracker
can adapt to background clutter and handle occlusion situa-
tion, and able to tracking.

Figure 1 (e) is a part of the tracking result of the Blur-
body sequence. During the video sequence, there is a sig-
nificant motion blur caused by the camera shaking severely.
L1APG fails to track the target in the earlier sequence, but
relocates the target later, however, it drift from the target
eventually. IVT, CT drift to the background, although MIL
can locate the target, but has error in scale. This sequence
shows that the proposed method with 2D transformation
based sparse representation is effective in dealing the chal-
lenging situation.

5.3 Quantitative Evaluation

In the quantitative analysis, this paper adopts two criterion
to measure the performance of the algorithms, one is pre-
cision, which is defined as the average Euclidean distance
between the center of actual position of the target and the
position of manual marking. Another evaluation metric is
success rate which defined as So = |r; N r,|/|r; U rgl. This
criteria reflects the success ratio of bounding box overlap
while the threshold ranging from O to 1. Results is shown
in Fig.2. We can infer from the curve that our tracker has
the advantage over motion blur, occlusion, and scale varia-
tion. But our method has insufficient ability to deal with the
problem of illumination transformation.
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Fig.2  Quantitative comparison of different algorithm: The success plots over four tracking chal-
lenges, including illumination variation (a), occlusion (b), motion blur (c), and scale variation. The
last row is the precision and success plots over five sequences using one-pass evaluation, the average
distance precision score at 20 pixels for each tracker.
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Table 3  Speed of different trackers. The first and second best values are

marked with bold and underline.
Squences MIL CT LIAPG IVT Ours
Car4 45.2 130.4 35.1 40.5 46.3
Singerl 38.7 109.5 18 35.6 424
Clifbar 49 125.5 28.9 40.8 47.4
Walking2 37.9 113.7 16.1 433 44.8
Blurbldy 25.6 76.4 23.5 34.4 33.6
AverageFps 39.3 111.1 24.32 38.9 42.9

T —

Fig.3 A failure tracking case of our tracker

5.4 Speed of Trackers

We further analyze the speed of our trackers with the other
state-of-art trackers, results is shown in Table 3. The CT
tracker is the most efficient among all evaluated methods,
because the CT tracker utilize random sense matrix to re-
duce the dimension of multi-scale image features. Our
tracker shows less advantage efficient than other trackers
such as MIL, IVT, but the accuracy is superior to others,
which is shown in Fig. 2.

6. Discussion

Although our tracker obtains good performance on the five
sequences, however, there still exist limitation. It is nec-
essary and important to analyze the reason making further
improvement.

As is shown in Fig. 3, the car moving fast and it under-
goes occlusion for a long time, our tracker drifted, the reason
could be either appearance representation model could not
be well described or the imperfection of template updating
scheme. We will investigate this issue and more advanced
appearance representation model and updating strategy will
be studied in our future work.

7. Conclusion

In this paper, we employ a 2D transformation on the ob-
servation set based on sparse representation and L1 tracker,
which effectively reduced the influence caused by the mis-
alignment issue. The proposed algorithm can well handle
occlusion, illumination changes, scale changes, motion blur.
We analyze the performance of our tracker by comparing
with 4 competing state-of-the-art methods on 5 challenging
sequences. The results of qualitative and quantitative ex-
periments demonstrated our tracker outperforms other algo-
rithms in terms of efficiency, accuracy and robustness.
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