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Currency Preserving Query: Selecting the Newest Values from
Multiple Tables

Mohan LI†a), Nonmember and Yanbin SUN†b), Member

SUMMARY In many applications, tables are distributively stored in
different data sources, but the frequency of updates on each data source
is different. Some techniques have been proposed to effectively express the
temporal orders between different values, and the most current, i.e. up-to-
date, value of a given data item can be easily picked up according to the
temporal orders. However, the currency of the data items in the same ta-
ble may be different. That is, when a user asks for a table D, it cannot be
ensured that all the most current values of the data items in D are stored
in a single table. Since different data sources may have overlaps, we can
construct a conjunctive query on multiple tables to get all the required cur-
rent values. In this paper, we formalize the conjunctive query as currency
preserving query, and study how to generate the minimized currency pre-
serving query to reduce the cost of visiting different data sources. First, a
graph model is proposed to represent the distributed tables and their rela-
tionships. Based on the model, we prove that a currency preserving query
is equivalent to a terminal tree in the graph, and give an algorithm to gen-
erate a query from a terminal tree. After that, we study the problem of
finding minimized currency preserving query. The problem is proved to
be NP-hard, and some heuristics strategies are provided to solve the prob-
lem. Finally, we conduct experiments on both synthetic and real data sets
to verify the effectiveness and efficiency of the proposed techniques.
key words: data quality, data currency, referential integrity constraints

1. Introduction

Low quality data can severely impact on the usability of
data, and may lead to huge losses. For example, the poor
quality of customer data costs the U.S. businesses $611 bil-
lion a year [1]. One of the issues that is worth paying at-
tention to is that with the elapse of time the quality of data
deteriorates rapidly [2], that is, some values which are once
correct may become wrong since the real world is chang-
ing. A survey revealed that 2% of the records in a common
customer database will become obsolete in one month. The
problem is so-called data currency problem, and low cur-
rency has been considered as one of the important factors
bringing down the quality of data [3].

In many circumstances, such as data integration or web
databases, many tables are distributively stored in different
data sources. These data sources may have overlaps, but
can hardly cover the entire required data set [4], and the fre-
quency of updates on each data source might be different. In
some applications, the tables which are less important may
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not be updated as frequently as the important ones for the
purpose of reducing the cost. This situation happens espe-
cially in the case of managing big data. Moreover, copying
between data sources is common in practice [5], [6], that
is, some sources obtain their data by copying from other
sources. If a source S obtains data by copying from source
S′, the copied values provided by S may be less up-to-date
than the value in S′. Consequently, a data source S may have
obsolete values either because the values are less important,
or because the values are copied from other sources.

To get all the most current values of a target data item,
some techniques have been proposed to find the temporal
orders between different values. On one hand, the copy de-
tection methods are proposed [5], [7]–[9], and the detected
copy relationships can be considered as the temporal orders
between different data sources. On the other hand, a rule
based model of data currency has been studied [3], [10]. Us-
ing the rules, the temporal orders of the values can be in-
ferred, and the most current value can be easily picked up
according to the temporal orders.

Unfortunately, we cannot always ensure that there is a
single table containing all the most current values of a target
table. Therefore, we may need to construct a conjunctive
query on multiple tables to get all the required current val-
ues. We name this kind of query currency preserving query.
The following example illustrates the motivation of finding
a currency preserving query.

Example 1 Figure 1 shows an example of multiple tables
and the corresponding temporal orders. D1 to D5 are five
tables containing the information of employees. D1 is the
target table required by users, and D2 to D5 are the tables
stored on other data sources. The overlaps of different ta-
bles are the columns with the same name. Assume that the
values of Addr and Sal in D1 are obsolete since they are not
updated timely.

The corresponding temporal orders are shown by the
red dashed arrows. According to the temporal orders, we
have following conclusions. (1) The values of Sal in D1 are
no more up-to-date than the values of Sal in D2. (2) The
values of Sal in D2 is no more up-to-date than the values of
Sal in D3. (3) The values of Addr in D1 is no more up-to-
date than the values of Addr in D4. Therefore, we need to
query D3 and D4 to get the most up-to-date value of Addr
and Sal when a user asked for table D1.

However, to construct the query, the temporal orders
can only indicate which table have the newest values, but
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Fig. 1 An example of multiple tables and the currency orders

cannot tell us the correspondences of those values. For in-
stance, we do not know the salary 5000 in D3 corresponds
to which employee in D1. Therefore, we need to leverage
other information to ensure that the newest values scattered
in D1, D3 and D4 can be correctly combined together.

Assume that we have four referential integrity con-
straints expressed by inclusion dependencies [11], which
are

D1[Phn]⊆ D5[Phn], D5[Dep]⊆ D4[Dep],
D5[Pos]⊆ D2[Pos], D5[Pos]⊆ D3[Pos].

These constraints indicate the relationships of foreign keys,
and are shown by the green solid lines in Fig. 1. Please
note that for brevity we assume that the attributes in the left
hand side and right hand side have the same names, but
the assumption is not necessary in practice. The referential
integrity constraints can be given by domain experts, and
some techniques, such as mappings relationships discover-
ing [12] and data polygamy [13], can help us to derive the
possible referential integrity constraints.

Using the temporal orders and the dependencies, we
can construct a currency preserving query Q which returns
all the most up-to-date values of D1, that is,

ans(X1,X2,X3,X4)←R1(X1,X2,Y1,Y2),R3(Y3,X4),
R4(Y4,X3),R5(X2,Y4,Y3),

where Ri is the schema of Di. The entities (i.e. employees)
in the result of Q is the same as those in D1, but the values
are the most up-to-date ones.

Some works focus on the query rewriting considering
the access restrictions and integrity constraints [14]–[16].
These works can give the proofs of answerability of a query
when the search space is limited by access restrictions and
can be extended through the integrity constraints. However,
the temporal orders between data sources are quite different
from the access restrictions. because the access restrictions
indicate two states, 0 or 1, but the temporal orders indicate
partial orders. More precisely, the temporal orders do not
restrict the condition of accessing a value, but determine
the priorities of selecting a value, that is, we always want
to select a value that is more up-to-date than other values.
Therefore, these works cannot be used to solve the problem

of generating currency preserving query.
In this paper, we focus on the two key challenges of

generating the currency preserving query, that is, how to
handle the temporal orders and how to leverage the refer-
ential integrity constraints. The main contributions are as
follows.

1. We formally define the currency preserving query. Given
a target table, the currency preserving query aims to re-
turn all the most up-to-date values of the target table.

2. We propose a graph model to represent the temporal or-
ders and the referential integrity constraints between dif-
ferent tables. The currency preserving query is proved to
be equivalent to a special tree, namely terminal tree. An
algorithm for generating currency preserving query from
a terminal tree is also given.

3. We study the problem of generating the minimized cur-
rency preserving query. We prove that the problem is
equivalent to finding a minimized terminal tree in the
graph, and is NP-hard. Two heuristic strategies are pro-
vided to solve the problem. Moreover, we discuss two
general cases of the graph model, and provide the strate-
gies of dealing with those cases.

4. We conduct experiments on both synthetic and real data
sets to verify the effectiveness and efficiency of the pro-
posed techniques.

The paper is organized as follows. Section 2 formally
defines the currency preserving query. Section 3 builds the
graph model and give the algorithm of transforming a ter-
minal tree to the corresponding currency preserving query.
Section 4 studies the problem of generating the minimized
currency preserving query. Section 5 experimentally evalu-
ates our approach. Section 6 discusses the related work, and
Sect. 7 concludes the paper.

2. Currency Preserving Query

2.1 Preliminaries

Let R = {R1, . . . ,Rn} be a set of schemas, where Ri =
(A1, . . . ,A|Ri|) is a set of attributes. D = {D1, . . . ,Dn} is an
instance of R, and the schema of the ith table Di is Ri. For
each tuple t ∈ Di, t ∈ dom(Ri[A1])× . . .× dom(Ri[A|Ri|]),
where Ri[A j] is the attribute belonging to the ith schema with
name A j, (e.g. R1[Sal] is the attribute “Sal” in schema R1)
and dom(Ri[A j]) represents the domain of Ri[A j].

We say that the attribute (a.k.a. column) A j of table D,
denoted by D[A j], describes a set of objects. For example,
the object represented by Addr of the first tuple in D1 of
Fig. 1 is the address of the Alice, and objects represented by
of D1[Addr] are the addresses of the employees.

A conjunctive query [11] Q is in the form of

ans(ϑ)← Rc1(ϑ1), . . . ,Rch(ϑh).
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where the symbols are defined as follows:

• ans(ϑ) is called the head of Q, denoted by head(Q),
and ϑ is a sequence of variables which are called head
variables;
• the right-hand side of the symbol← is the body of Q,

denoted by body(Q), where Rci is a schema belongs to
R, and ϑi is a sequence of variables, which are called
body variables;
• each variable occurring in ϑ must also occur at least

once in ϑ1, . . . ,ϑh.

Please note that in general definition of conjunctive query,
constants can also occur in ϑ ,ϑ1, . . . ,ϑh, but here we do not
consider constants since they will not be used in solving our
problem.

Temporal orders. Some columns in different tables
may describe the same set of objects. Since the frequencies
of updates are not all the same, these columns may not be
consistent in data currency. That is, we may find temporal
orders between these columns. Temporal order is a partial
order, and is represented by the symbol� [3]. Di[A]�D j[B]
means that the column A of Di and the column B of D j de-
scribe the same set of objects, and A is no more up-to-date
than B. More precisely, for each value a in Di[A], D j[B]
contains a value that is either equal to or more up-to-date
than a. We assume that the temporal orders have the prop-
erty of transitivity, and the symbols ≺ and 	 represent the
relationships of strictly less and equal, respectively. Let Σ
be the set of temporal orders with the form Di[A] � D j[B],
where A and B are two attributes in Ri and R j. As is dis-
cussed in Sect. 1, Σ can be effectively obtained by the previ-
ous works [3], [5], [7]–[10], thus we consider Σ as an input
of our problem.

Referential integrity constraints. As is shown in Ex-
ample 1, we need referential integrity constraints to link the
newest values scattered in different tables. Inclusion de-
pendencies (INDs for short) are used to formalize the con-
straints. The syntax of an IND is Ri[α] ⊆ R j[β ], where
α ⊆ R1 and β ⊆ R2 are two subsets of attributes. D sat-
isfies Ri[α] ⊆ R j[β ] if for any tuple t1 ∈ Di there exists a
tuple t2 ∈ D j such that t1[α] = t2[β ]. The set of referential
integrity constraints defined on R is denoted by Ψ. To sim-
plify the discussion, we assume that the primary key of any
Ri has only one attribute, that is, for each Ri[α]⊆R j[β ]∈Ψ,
|α| = 1 and |β | = 1. By combining the primary key at-
tributes, our methods can deal with the cases that the pri-
mary key has more than one attributes.

2.2 Problem Definition

The most current values can be found according to the tem-
poral orders in Σ. Since each end of � is an attribute in
R, we can define the most current comparable attribute to
indicate the position of the most current values.

Definition 1 (Most Current Comparable Attribute) Given
R, D, A ∈ Ri and A′ ∈ R j, we say that Di[A] and D j[A′] are

comparable attributes if Di[A] � D j[A′] or D j[A′] � Di[A]
according to the temporal orders in Σ. Di[A] is a compara-
ble attribute of itself.

Di[A] and D j[A′] are equivalent comparable attributes
if Di[A]�D j[A′] and D j[A′]�Di[A], that is, Di[A]	D j[A′].

D j[A′] is the most current comparable attributes of
Di[A] if Di[A] � D j[A′], and one of the following two con-
ditions are satisfied.

• �A′′ ∈ Rk such that D j[A′]� Dk[A′′], or
• for each Dk[A′′] satisfying D j[A′] � Dk[A′′], we have

D j[A′]	 Dk[A′′].

Intuitively, Most Current Comparable (MCC for short)
attributes are the “maximal” attributes in the temporal or-
ders. If D j[A′] is an MCC attributes of Di[A], then any other
attributes can only have three relationships with D j[A′], that
is, (1) not comparable, (2) not up-to-date than D j[A′], or
(3) equivalent comparable with D j[A′]. We use MCC(Di[A])
to represent the set of MCC attributes of Di[A]. Thus, if a
user requires the values of Di[A], the most up-to-date val-
ues which can be found in D is the values of MCC(Di[A]).
Please note that Di[A] may have multiple MCC attributes. If
a user requires a table DT with schema RT , then, under the
ideal situation, we need to generate a new table Dc

T which
contains all the most up-to-date values corresponding to DT .
More precisely, Dc

T should satisfy following two conditions:
(1) with schema RT , (2) the values of Dc

T are from the MCC
attributes of DT .

Our work aims to construct a query to find Dc
T for a

given table DT . The query is named Currency Preserving
Query (CPQ for short). Given R, D, Σ, Ψ and DT , a cur-
rency preserving query can be found in two steps: (1) find
the MCC attributes for each attribute in DT , (2) use the ref-
erential integrity constraints to link all the MCC attributes.
Now we first use an example to illustrate the intuitive idea
of generating CPQ, then give a formal definition of the CPQ
generating problem.

Example 2 Consider D = {D1,D2,D3,D4,D5} in Fig. 1,
assume that DT = D1, R1 = {Name,Phn,Addr,Sal}. Re-
mind that the red dash lines indicate three temporal or-
ders D1[Sal] � D2[Sal], D2[Sal] � D3[Sal] and D1[Addr] �
D4[Addr]. Thus we have

MCC(D1[Name]) = {D1[Name]},
MCC(D1[Phn]) = {D1[Phn]},
MCC(D1[Addr]) = {D4[Addr]},
MCC(D1[Sal]) = {D3[Sal]}.
First, we link MCC(D1[Name]), MCC(D1[Phn]) and

MCC(D1[Addr]). According to the green solid lines which
indicate the INDs D1[Phn] ⊆ D5[Phn] and D5[Dep] ⊆
D4[Dep], we first use D1 and D5 to perform a equal join
on Phn, then use the result and D4 to perform an equal join
on Dep. After that, according to D5[Pos]⊆D3[Pos], we con-
tinue to join the result and D3 on Pos to link D1[Sal]. Now
all the MCC attributes are linked, and the query is
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ans(X1,X2,X3,X4)←R1(X1,X2,Y1,Y2),R3(Y3,X4),
R4(Y4,X3),R5(X2,Y4,Y3).

It is the same one shown by Example 1.

In Example 2, two tables can perform an equal join
only on the attributes contained by an IND. The two at-
tributes occurring in the same IND are called joinable
attributes. In other words, Di[A] and D j[B] are the joinable
attributes if there exists an IND Ri[A]⊆ R j[B] in Ψ.

Base on the comparable attributes and joinable at-
tributes, the currency preserving query can be defined as
follows.

Definition 2 (Currency Preserving Query) A currency pre-
serving query QMCC is a conjunctive query,

ans(ϑ)← Rc1(ϑc1), . . . ,Rch(ϑch),

which satisfies following conditions.

1. The number of variables in ϑ is |RT |.
2. Let ϑ (i) represent the ith variable in ϑ , then for an

arbitrary attribute Ai ∈ RT , there exists one attribute
Ac jk ∈ Rc j such that (1) Rc j occurs in body(QMCC), (2)

Dc j [Ac jk] ∈MCC(DT [Ai]), (3) ϑ (i) = ϑ (k)
c j , that is, the

kth variable in ϑc j is same as the ith variable in ϑ .

3. For each Rc j1
and Rc j2

( j1 � j2) in body(QMCC), there
must exist Rci1

, . . . ,Rcik
in body(QMCC) such that (1)

j1 = i1, (2) j2 = ik, (3) Rcil
and Rcil+1

have at least one
pair of joinable attributes.

4. If there exists two body variables ϑ (k)
ci = ϑ (l)

c j , then
Dci [Acik] and Dc j [Ac jl ] are joinable attributes.

In Definition 2, the first and second conditions en-
sure that the result have RT columns and the ith column
corresponds to an MCC attribute of the ith attribute of
DT . The third condition guarantees that all the schemas in
body(QMCC) are not isolated, that is, any two tables have to
be linked by a sequence of joinable attributes. The fourth
condition restricts that two tables can only perform join on
a pair of joinable attributes.

The problem of this paper is that given a target table
DT with schema RT , how to use Ψ and Σ to get a CPQ QMCC

for DT such that executing QMCC on D will return Dc
T . The

formal definition is as follows.
Input: DT , RT , R = {R1, . . . ,Rn}, D = {D1, . . . ,Dn},

Σ and Ψ.
Output: a CPQ QMCC.
In following sections, we first give the graph model

representing the temporal orders and INDs, then provide a
method of generating CPQ based on the model and study
the problem of minimized CPQ.

3. A Graph Model for Generating CPQ

3.1 Schema Currency Graph

Schema Currency Graph (SCG for short) is defined for rep-
resenting the temporal orders and INDs. The formal defini-
tion is as follows.

Definition 3 (Schema Currency Graph) A schema cur-
rency graph GR,D,Σ,Ψ = (V ,(E1,E2,E3)) is constructed
based on R, D, Σ and Ψ, where V is the node set, E1, E2
and E3 are three disjoint edge sets. The detailed definitions
of V , E1, E2, and E3 are as follows.

• |V | = |R| =
n
∑

i=1
|Ri|. The nodes in V have one-to-one

correspondence to the attributes in R, and the attribute
corresponding to node v is denoted by attr(v). More
precisely, attr(v) = R j[Ai] if v corresponding to Ai ∈
R j.

• E1 is the schema edge set consisting of undirected
edges for linking the attributes belonging to the same
schemas. ∀vi,v j ∈ V , a schema edge (vi,v j) ∈ E1 only
if attr(vi) and attr(v j) belong to the same schema Rk.

• E2 is the temporal edge set consisting of directed edges
denoting the temporal orders. ∀vi,v j ∈ V , assume
that attr(vi) = Rk[A], and attr(v j) = Rl [B], there ex-
ists a temporal edge (vi,v j) from vi to v j in E2 if
∃Dk[A] � Dl [B] ∈ Σ. There exists two temporal edges
(vi,v j),(v j,vi) ∈ E2 if ∃Dk[A]	 Dl [B] ∈ Σ.

• E3 is the dependency edge set consisting of undirected
edges denoting the INDs. ∀vi,v j ∈ V , a dependency
edge (vi,v j)∈ E3 if there exists attr(vi)⊆ attr(v j)∈Ψ.

Please note that the set of three types of edges in SCG
can be empty, which are special cases of SCG. For example,
a graph without schema edges is a special cases of SCG.
The situation behind this kind of SCG is that all schemas
have only one attribute. In other words, each schema only
has one attribute and thus each table only has one column. In
this case, there are no two attributes belonging to the same
schema, so there is no schema edge in the NSCG.

According to the definition of schema edges, the sim-
plest way to organize the schema edges is to make the at-
tributes in the same schema comprise a clique. The orga-
nization of schema edges can be substituted for other def-
initions according to practical working conditions, i.e., the
attributes in the same schema can also comprise a path, or a
tree, or any other structures.

Example 3 Consider the case that the columns of a table
has an access constraint “φ : if you want to access both
A and B, you must access C”. Specifically, A and B can
indicate the patient’s name and illness, and C indicates the
authorization status. Only the authorized doctor can see the
patient’s name and disease at the same time. In this case,
a better way is to organize A, B and C as a path shown by
Fig. 2 rather than a clique. C is in the path between A and
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Fig. 3 Schema currency graph, SCG

Fig. 2 An example of schema edges of A, B and C

B to ensure that C must in the TerTree if both A and B are in
the TerTree, that is, to ensure the access constraint φ to be
true.

However, enumerating different practical working con-
ditions is beyond the topic of this paper, thus we only use the
simple structure, i.e. clique, to represent the nodes belong-
ing to the same schema. Since the attributes and the nodes
have one-to-one correspondence, we will alternately use the
terminologies “attribute” and “node” on the basis of the con-
text in the rest part of this paper.

Figure 3 shows the corresponding SCG of Fig. 1, where
the green solid single lines represent the schema edges, the
brown dash arrows represent the temporal edges, and the
blue solid double lines represent dependency edges.

It is easy to observe that the paths comprised by tem-
poral edges can be used to determine the temporal orders of
the attributes on the path. Thus we can further define tem-
poral connected component to indicate which attributes are
equivalent comparable attributes.

• vi is temporal reachable from v j if there is a path
comprised only by temporal edges from v j to vi in
SCG GR,D,Σ,Ψ. For example, R3[Sal] is temporal reach-
able from R1[Sal] in Fig. 3, but R1[Sal] is not temporal
reachable from R3[Sal].

• vi and v j are temporal connected if they are tempo-
ral reachable from each other. Assume that attr(vi) =
Rk[A] and attr(v j) = Rl [B], if vi and v j are temporal
connected, then we have Dk[A] � Dl [B] and Dl [B] �
Dk[A] according to the transitivity of�, that is, Dk[A]	
Dl [B].

• A subgraph G′ of GR,D,Σ,Ψ is a temporal connected
component if ∀vi, v j in G′, vi and v j are temporal con-
nected.
• G′ is maximal temporal connected component if �G′′�

G′ such that (1) G′ is a subgraph of G′′, and (2) G′′ is a
temporal connected component.

For each A ∈ RT , the MCC attributes corresponds to
the farthest temporal reachable node from A, which can be
expressed by Terminal Node (TN for short) in SCG.

Definition 4 (Terminal Node) Given SCG GR,D,Σ,Ψ = (V ,
(E1,E2,E3)), v ∈V is a terminal node if and only if ∃v′ ∈V
s.t. attr(v′) is in RT and one of the following conditions
holds.

1. v � v′, v is temporal reachable from v′, and either (a)
v’s out-degree of temporal edges is 0, or (b) for each
v′′, if v′′ is temporal reachable from v, then v and v′′
are temporal connected.

2. v = v′, and for each v′′, if v′′ is temporal reachable from
v, then v and v′′ are temporal connected.

Theorem 1 Assume that node vA corresponds to Ri[A], and
vA′ corresponds to RT [A′], vA is a TN of vA′ if and only if
Di[A] ∈MCC(DT [A′]).

Proof 1 ⇒: If vA satisfies condition 1, then vA � vA′ and
DT [A′] � Di[A]. According to the transitivity of �, con-
dition 1(a) in the definition of TN means that and �A′′
s.t. DT [A] � Di[A′′]. If condition 1(a) is not satisfied,
condition 1(b) will ensure that for each DT [A] � Di[A′′],
we have DT [A] 	 Di[A′′]. If vA satisfies condition 2, then
vA = vA′ (i.e., Ri[A] = RT [A]) and an arbitrary Di[A′′] satis-
fying DT [A]� Di[A′′] is an equivalent comparable attribute
of RT [A]. According to Definition 1, Di[A] ∈MCC(DT [A′]).
⇐: If Di[A] ∈ MCC(DT [A′]), there are two mutually

exclusive cases: (a) �D j[A′] such that Di[A] � D j[A′], or
(b) for each D j[A′] which satisfies Di[A] � D j[A′], we have
Di[A] 	 D j[A′]. For case (a), the out-degree of the node
corresponding to Di[A] must be 0, thus the condition 1(a) in
the definition of TN is satisfied. For case (b), Di[A]	D j[A′]
means temporal connected in the SCG. Therefore, if Di �
DT then condition 1(b) of the definition of TN is satisfied,
otherwise condition 2 of the definition of TN is satisfied.

Given an attribute A in RT , the corresponding TNs can
be easily found by scanning the SCG once. Based on the
TNs, we can further refine SCG to get Normalized Schema
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Fig. 4 Normalized schema currency graph, NSCG

Currency Graph (NSCG for short).

Definition 5 (Normalized Schema Currency Graph) The
normalized schema currency graph GR,D,Σ,Ψ,N = (V ,(Es,
Ed)) is built based on SCG GR,D,Σ,Ψ.

• |V | = |R| =
n
∑

i=1
Ri, and each node v ∈ V corresponds

to an attribute attr(v) in R. Every v ∈ V has a la-
bel (attr(v), ter(v)), where attr(v) can be considered
as the identifier of v, ter(v) represents whether v is the
a TN, if ∃v′ ∈ RT s.t. v is a TN of v′, then ter(v) = v′,
otherwise ter(v) =⊥.

• Es equals to the schema edge set of GR,D,Σ,Ψ, and
(vi,v j) is a schema edge is denoted by (vi,v j)/ ∈ Es,
where the subscript “/” indicates the type of the edge.

• Ed equals to the dependency edge set of GR,D,Σ,Ψ, and
(vi,v j) is a dependency edge is denoted by (vi,v j)// ∈
Ed, where “//” indicates the type of the edge.

Figure 4 shows the corresponding NSCG of Fig. 3. The
four colored nodes indicate the TNs, and the other nodes are
ordinary nodes. Single lines represent the schema edges,
and double lines represent the dependency edges.

3.2 The Algorithm of Generating CPQ

To simplify the discussion, first we assume that each at-
tribute of RT corresponds to a single TN. In Sect. 4, we will
further discuss the case of multiple TNs.

Since the TN is unique for each attribute, there are ex-
actly |RT | TNs in a given NSCG. If all the TNs are con-
nected either by schema edges or by dependency edges, then
we can find a tree which contains all the TNs. The tree is
called Terminal Tree (TerTree for short).

Definition 6 (Terminal Tree) Let ρ be a tree in NSCG, the
node set of ρ is denoted by Vρ . ρ is a terminal tree if and
only if ρ contains exactly |RT | TNs, and ter(ρ) = RT , where
ter(ρ) ={ter(v)|v ∈Vρ , ter(v) �⊥}.

Example 4 In Fig. 4, the edges (R1[Name],R1[Phn]),
(R1[Phn],R5[Phn]), (R5[Phn],R5[Dep]), (R5[Dep],R4[Dep]),
(R4[Dep],R4[Addr]), (R5[Phn],R5[Pos]), (R5[Pos],R3[Pos]),
(R3[Pos],R3[Sal]) and the corresponding nodes comprise a
TerTree. It is easy to observe that a NSCG can have multiple
TerTrees.

Algorithm 1 Generating CPQ from a TerTree
Input: TerTree ρ
Output: a query Qρ
1: Head(Qρ ) = ans(X1, . . . ,X|RT |) //Initialize the head of the query
2: for each v ∈Vρ do
3: if attr(v) = Rci [Aci j] then
4: if Rci do not belong to the body of Qρ then
5: Add Rc1 (Yc11,Yc12, . . . ,Yc1 |Rc1 |) to the body of Qρ

6: cor(v) = Yci j //cor(v) is the corresponding variable of v
7: for each terminal node u ∈Vρ do
8: if ter(u) is the kth attribute of RT then
9: change cor(v) into Xk

10: for each v,v′ ∈Vρ do
11: if ∃e ∈ Eρd and cor(v′) � cor(v) then
12: //Eρd is the dependency edge set of ρ
13: change cor(v′) into cor(v)

A TerTree connects all the TNs, and each TN corre-
sponds to an MCC attribute of DT . Remind that the aim of
finding CPQ is to link all the MCC attributes of RT , thus
we can generate a CPQ from a TerTree. Here we provide
an method for generating a query from a TerTree, and prove
that the query generated by our method is a CPQ.

The method for generating a query from a TerTree
is shown by Algorithm 1. Each step is explained as fol-
lows. Initially let head(Qρ) = ans(X1,X2, . . . ,X|RT |) and
body(Qρ) be empty. Then, for each v∈Vρ , Rci(Yci1,Yci2, . . . ,
Yci|Rci |) is added to body(Q) if attr(v) = Rci [Aci j]. The
variable Yci j corresponds to Rci [Aci j]. For each v ∈ Vρ , if
ter(v) = RT [Ak] and attr(v) = Rci [Aci j], then change variable
Yci j into Xk. Finally, for each pair of nodes connected by a
dependency edge (i.e., joinable attributes), change their cor-
responding variables to be the same one. The loop in Line 1
needs to check each pair of nodes, thus the time complexity
of Algorithm 1 is O(|Vρ |2). Following theorem ensures the
correctness of Algorithm 1.

Theorem 2 The output of Algorithm 1 is a CPQ.

Proof 2 We prove that Qρ satisfies all the conditions in
Definition 2. In Line 1, the head variables are set to be
X1, . . . ,X|RT | and do not be changed in following steps, thus
condition 1 of Definition 2 is satisfied. Theorem 1 indicates
that each TN corresponds to an MCC attribute of RT . The
loops in Line 1 ensures that all the MCC attributes (i.e., TN)
exists in body(Qρ). The loops in Line 1 ensures that for
each Ak ∈ RT , Ak’s corresponding variable is the same to
its MCC attributes. Thus, condition 2 in Definition 2 is sat-
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isfied. Since ρ is a tree, all the nodes must be connected.
Thus, there do not exists isolated attributes, the condition 3
of Definition 2 is satisfied. Line 1 set all the variables to be
different at the beginning, and two body variable is set to be
same one only if they are joinable variable in Line 1. There-
fore, condition 4 in Definition 2 is satisfied. In conclusion,
all the conditions of Definition 2 is satisfied, Qρ is a CPQ.

Example 5 illustrates how to generate a CPQ from
TerTree.

Example 5 Consider the NSCG in Fig. 4 and the TerTree ρ
in Example 4. The CPQ is generated as follows.

1. head(Qρ) is set to be ans(X1,X2,X3,X4) and body(Qρ)
is empty.

2. The attributes involved in ρ belong to the schemas R1,
R3, R4, R5, thus we add R1(Y11,Y12,Y13,Y14), R3(Y31,
Y32), R4(Y41,Y42) and R5(Y51,Y52,Y53) are to body(Qρ).

3. For each terminal node v, i.e. v satisfying ter(v) � ⊥,
we set cor(v) the same to cor(ter(v)), where cor(v) is
the corresponding variable of v. That is, we change
Y11,Y12,Y32,Y42 into X1,X2,X4,X3, respectively. Now,
body(Qρ)=R1(X1,X2,Y13,Y14),R3(Y31,X4),R4(Y41,X3),
R5(Y51,Y52,Y53).

4. We change the variables corresponding to the pairs of
nodes connected by dependency edges into the same
one. That is, we change Y51,Y52,Y53 into X2,Y41,Y31,
respectively. Now, body(Qρ) = R1(X1,X2,Y13,Y14),
R3(Y31,X4),R4(Y41,X3),R5(X2,Y41,Y31).

Finally, we get a CPQ

ans(X1,X2,X3,X4)←R1(X1,X2,Y13,Y14),R3(Y31,X4),
R4(Y41,X3),R5(X2,Y41,Y31)

It is the same one with Example 1 and 2 if we substitute the
variables Y13,Y14,Y31,Y41 by Y1,Y2,Y3,Y4, respectively.

Since the INDs indicate referential integrity con-
straints, i.e. the foreign key relationships, Ψ does not con-
tain two INDs Ri[A]⊆ R j[B] and Rk[A′]⊆ Rl [B′] in such that
i = k and j = l. In this case, we can prove that a CPQ can
be equally transformed into a TerTree. Here we first provide
the method of transforming Q into a graph denoted by GQ,
then prove that GQ is a TerTree in NSCG. The transform-
ing method is as follows. First, initialize each schema Rci

in body(Q) to a set of nodes v1, . . . ,v|Rci |, and add a schema
edge (vi,vi+1)/ for each neighboring pair of vi,vi+1 to GQ.
Each node corresponds to a variable in Rci . Assume that the
jth body variable y in Rci corresponds to a node vy. If y is
different with all the other variables, then the label of vy is
(Rci [Aci j],⊥). If y is same to the kth head variable, then the
label of vy is (Rci [Aci j],RT [Ak]). If y is same to the hth body
variable of Rcl corresponding to node v′y, then the label of vy

is (Rci [Aci j],⊥), and a dependency edge between (vy,v′y)//

is added to GQ.

Theorem 3 Given CPQ Q, GQ is a TerTree if there do not
exist two INDs Ri[A]⊆ R j[B] and Rk[A′]⊆ Rl [B′] in Ψ such
that i = k and j = l.

Proof 3 It is obvious that the edge set of GQ is a subset of
the corresponding NSCG. According the generating method
of GQ, the nodes corresponding to same schema is lined
as a path. Condition 3 of Definition 2 ensures that all the
nodes in GQ is connected, thus GQ is a connected subgraph
of the NSCG. Moreover, each pair of schemas only have one
pair of joinable attributes, since there do not exist two INDs
Ri[A] ⊆ R j[B] and Rk[A′] ⊆ Rl [B′] in Ψ such that i = k and
j = l, Therefore, GQ is acyclic. Consequently, GQ is acyclic
connected subgraph of NSCG, that is, GQ is a tree.

According to Definition 2, each attribute in RT has an
MCC attribute in body(Q), the generating method of GQ en-
sures that each of these MCC attributes corresponds to a TN
in GQ. Thus, GQ contain all the TNs in the corresponding
NSCG, since the MCC attribute of each attribute is unique.
In summary, GQ is a TerTree.

According to Theorem 2 and 3, CPQ and TerTree are
transformable from each other. Therefore, to find a CPQ,
we can first find a TerTree in NSCG, then use Algorithm 1
to get a CPQ.

4. Minimized Currency Preserving Query

4.1 Strategies of Finding Minimized CPQ

Given a NSCG, there might be more than one TerTrees. Dif-
ferent CPQs may be generated from these TerTrees. Since a
CPQ needs to be performed on different columns of multi-
ple tables, obtaining these columns may lead to high cost.
In many applications, especially on the column-oriented
database management systems, a better choice is that we
only obtain the related columns for a CPQ. More concretely,
the columns of MCC attributes and joinable attributes is
needed, but the other nodes do not have to be in CPQ. Thus,
the reading and transmission expense will be much lower
than loading the whole database, and Dc

T can be quickly re-
turned. Therefore, we need to study the problem of mini-
mized CPQ.

Definition 7 (Minimized CPQ) A CPQ Q is a minimal
CPQ if and only if both of the following conditions hold.
(1) Q is a CPQ. (2) �Q′ such that Q′ is a CPQ, and
BC(Q′)⊂ BC(Q), where BC(Q) is the set of MCC attributes
and joinable attributes in the schemas in body(Q).

Q is a minimized CPQ if and only if both of the follow-
ing conditions hold. (1) Q is a minimal CPQ. (2) �Q′ such
that Q′ is a CPQ, and |BC(Q′)|< |BC(Q)|.

Since we have proved the correspondence of CPQ and
TerTree, we can try to find a TerTree ρm which has the least
nodes, and use ρm to generate a CPQ. Therefore, finding
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Fig. 5 An example that the dependency edges are not bridges

a minimized CPQ can be transformed into finding a min-
imized TerTree. The minimized TerTree problem (MTTP
for short) is defined as follows.

Input: A NSCG GR,D,Σ,Ψ,N ,
Output: A TerTree ρm s.t. there do not exist a tree in

GR,D,Σ,Ψ,N satisfying |Vρ ′ |< |Vρm |.
Theorem 4 The minimized TerTree problem is NP-hard.

Proof 4 This is a proof sketch. We use the minimized Steiner
Tree problem (MSTP for short) [17], [18] to do the reduc-
tion. The MSTP is that given a graph G = (V = (V1∪V2),E),
find the minimized tree T containing the node set V1.

First, we reduce MSTP to MTTP. Given a graph G =
(V = (V1 ∪V2),E), we can find the bridges in G in linear
time using Tarjan’s Algorithm [19]. We build G′: (1) the
node set of G′ is V1∪V2; (2) the bridges of G are the depen-
dency edges of G′, and other edges of G are schema edges of
G′; (3) the nodes in V1 be TNs of G′. It is easy to verify that
finding a Steiner tree in G is equivalent to finding a TerTree
in G′. Example 3 have showed that the dependency edge can
be any structure, so in general case, the two components at
both ends of the bridge can also be any kind of graph struc-
ture, that is, can be a clique, a tree, a single node, a path,
and so on. If there is no bridge in graph, then we can regard
it as a special case, that is, there are only schema edges but
no constraint edge in the NSCG.

Now we reduce MTTP to MSTP. Given a NSCG G,
we change all the edges in G to be the same, and con-
sider the set of TNs to be the necessary node set (i.e., V1)
in MSTP. Then, finding a TerTree in G is equivalent to find-
ing a Steiner tree in G′.

Since MSTP is NP-hard, MTTP is also NP-hard.

Please note that in the NSCG, the dependency edge
does not have to be a bridge, and thus the step of finding

the bridge in the proof is not necessary. It is just a opera-
tion to make the result of the construction look more simi-
lar to an ordinary NSCG. In fact, in extreme cases we can
even treat each Steiner tree problem as a TerTree problem
without dependency edges. We use the bridge as a depen-
dency edge is mainly because that the bridge connects two
relatively dense edges in the graph. This property is most
similar to the dependency edge in the NSCG. Therefore, it
is most appropriate to use a bridge to generate a dependency
edge. Figure 5 (a) gives an example to illustrate a situation
where the dependency edges are not a bridge. In the figure,
two dependencies R1[C1]⊆ R2[C2] and R1[D1]⊆ R2[D2] add
two dependency edges between schema R1 and R2. Thus
either edge of the two edges is not a bridge in the corre-
sponding NSCG. This may lead to more than one ways to
generate CPQ. More precisely, we can generate two differ-
ent CPQs by the two TerTrees shown by Figs. 5 (b) and 5 (c).
The cost of the different CPQs are also different.

We can transform the problem of minimized Steiner
tree to the problem minimized TerTree. Since the mini-
mized TerTree problem is NP-hard, we give two approxi-
mate methods to solve it.

Method based on the minimum spanning tree. The
details of this method are shown by Algorithm 2. The main
ideas of each step are as follows. (1) Initially let ρm be
empty. (2) We randomly pick a TN, and add it to ρm. (3)
A node v′ which is nearest to ρm is selected, and the cor-
responding shortest path is added to ρm. (4) Step (3) is re-
peated until all the TNs are added to ρm. In Line 2, the nodes
which belong to the same schemas with the nodes in ρm have
the priority for selection. This is because that Definition 2
ensures the distance between these nodes and ρm to be 1,
but if the schema edges are organized by other ways rather
than clique, this step is not necessary. In the worst cases,
Algorithm 2 need to compute the shortest path for each TN.
If we use Dijkstra’s Algorithm with a implementation based
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Algorithm 2 Generating CPQ from a TerTree
Input: NSCG GR,D,Σ,Ψ,N
Output: Approximate Minimized TerTree ρm

1: ρm = /0, Sρm = /0 //Sρm is the set of schemas corresponding to the nodes
in ρm

2: random select a terminal node v and add it to ρm

3: Sρm = Sρm ∪{Sv} //Sv is the schema corresponding to v
4: repeat
5: if ∃ terminal nodes which belongs to the schemas in Sρm but not in

ρm then
6: add these nodes into ρm

7: add edges to make the nodes in the same schema be a path
8: select the terminal node v′ which is nearest to ρm

9: add v′ and its corresponding shortest path into ρm

10: V ′ is the set of the new added nodes
11: Sρm = Sρm ∪{SV ′ } //add the new schema to Sρm

12: until all the terminal nodes are added to ρm

on a priority queue, the shortest paths for a given starting
node can be computed in O(|V | log |V |) time. Thus, the time
complexity of Algorithm 2 is O(|RT ||V | log |V |), where V is
the node set of NSCG. The approximation ratio is 2, and the
proof is similar to finding the minimized Steiner tree [20],
thus we do not repeat it here.

Method based on shortest paths. If |RT | is large,
and close to |V |, then the time complexity of Algorithm 2
is O(|V |2 log |V |). In this case, Algorithm 2 might not be
efficient enough, thus we give a simpler method for quickly
finding a TerTree ρ . The main step is as follows. Initially
let ρ be empty. First, we random choose a TN to be vstart .
Then, compute the shortest paths from vstart to all the other
nodes in NSCG. After that, add each TN and their corre-
sponding path to ρ . Finally, we cut the redundant edges to
make sure that ρ is a tree.

Since we only need to compute the shortest path
for a given starting node once, the time complexity is
O(|V | log |V |). This method is faster than Algorithm 2, but
it may generate a larger TerTree.

4.2 Discussions on General Cases of NSCG

4.2.1 Multiple MCC Attributes

In the above discussions, we assume that each attribute cor-
responding to a unique MCC attribute. However, the as-
sumption cannot always be satisfied in practice. In this sub-
section, we discuss how to deal with the case of multiple
MCC attributes. There are two reasons for an attribute cor-
responding to multiple MCC attributes. (1) Given A ∈ RT ,
if Di[B1] ∈ MCC(DT [A]), then for each D j[B2] 	 Di[B1],
D j[B2] also belongs to MCC(DT [A]). In this case, there are
more than one MCC attributes exist in the same temporal
connected component. (2) Some MCC attributes are not
comparable. That is, ∃Di[B1],D j[B2] ∈ MCC(DT [A]) such
that neither D j[B2]� Di[B1] nor Di[B1]� D j[B2]. Based on
these two reasons, we give three strategies to deal with mul-
tiple MCC attributes.

Strategy 1. The most intuitive strategy is to enumerate
all the single TN set.

Definition 8 (Single TN Set) Given a NSCG GR,D,Σ,Ψ,N,
the set of TNs is denoted by VT , VT S is a single TN set
iff (1) VT S ⊆ VT , (2) |VT S| = |RT |, (3) For each A ∈ RT ,
MA∩VT S � /0, where MA is the TN set of A.

VT S is a single TN set means that VT S contains exactly
one TN of each attribute in RT . Therefore, we can enumer-
ate all the single TN sets. For each single TN set VT S, we

build a new NSCG G(VT S)
R,D,Σ,Ψ,N . The only difference between

G(VT S)
R,D,Σ,Ψ,N and the original NSCG is that, in G(VT S)

R,D,Σ,Ψ,N , the
nodes in VT S are TNs while the nodes in VT \VT S are or-
dinary ones. We use the methods in Sect. 4.1 to generate
TerTrees, and chose the one has the least nodes as the final
TerTree. A total of ∏A∈RT

|MA| ≤ |V ||RT | single TN sets need
to be enumerated. If |MA| can be considered as a constant c,
then the number of single TN sets are c|RT |.

Strategy 2. Strategy 1 can be further optimized, that
is, we can consider the MCC attributes exist in the same
temporal connected component only once. More precisely,
we enumerate equivalent TN set.

Definition 9 (Equivalent TN Set) VT E is a equivalent TN
set iff (1) VT E ⊆ VT , (2) For each A ∈ RT , MA ∩VT E is a
maximal temporal connected component.

Based on Definition 9, Strategy 1 can be improved as
follows. First, we enumerate all the equivalent TN sets.
For each equivalent TN set VT S, we build a new NSCG

G(VT E )
R,D,Σ,Ψ,N . The method of building G(VT E )

R,D,Σ,Ψ,N is the same to

building G(VT S)
R,D,Σ,Ψ,N . Then, we use the methods in Sect. 4.1 to

generate TerTrees, but once a TN v is added to the TerTree,

all the nodes v′ that ter(v′) = ter(v) in G(VT S)
R,D,Σ,Ψ,N is changed

into ordinary nodes, that is, change ter(v′) to be ⊥. Finally,
we retain the TerTree which has the least nodes. A total
of ∏A∈RT

|SCA| equivalent TN sets need to be enumerated,
where |SCA| is the number of maximal temporal connected
component in MA. Finding the connected component can be
finished in linear time, thus this strategy can decrease the
time cost greatly.

Strategy 3. If a user has a good tolerance to large
TerTrees, the following heuristic strategy can quickly gen-
erate a TerTree. That is, we use the methods in Sect. 4.1
to find a TerTrees on the original NSCG, but once a TN v
is added to the TerTree, each node v′ that ter(v′) = ter(v)
is changed into ordinary nodes. The strategy is quite like
Strategy 2, but we do not need to enumerate any equivalent
TN sets. If a node is changed into an ordinary node, it is also
considered to be an ordinary node in the final TerTree. This
strategy can eliminate the time cost of enumeration, but the
shortage is that it may generate a large TerTree.

4.2.2 NSCG without Complete CPQ

In some cases, we cannot find a complete CPQ. That is, there
is no complete TerTree in NSCG. In this case, we try to find
an approximate TerTree ρ , and perform the corresponding
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Fig. 6 Running time of finding TerTree in NSCG with single MCC

query Qρ to return partial newest values of DT . The method
of generating an approximate TerTree is as follows.

1. We use the above methods to try to find a partial
TerTree ρ . When selecting TNs, we do not add those
TNs which do not have any paths to ρ .

2. For each A ∈ RT do not have any TN in ρ , we use an-
other newer (but not the newest) attribute to substitute
MCC(A). That is, we check the attributes which is
more up-to-date than A according to the temporal or-
ders from new to old. If we find DT [A] � Di[A′], and
Ri[A′] can be connected to ρ in NSCG, then we add
Ri[A′] into ρ .

3. The process of Step 2 is repeated until each A ∈ RT has
either a TN or a substitution of TN in ρ .

5. Experimental Results

We conduct the experiments on both real-life and synthetic
data sets. The codes are written in C++ and run on a ma-
chine with 3.10GHz Intel CPU and 4GB of RAM.

NBA player is a real-life data set containing the infor-
mation of NBA player and teams from 1946 to 2013. The
tables keep the information of players, teams, coaches and
arenas in different periods. NBA player totally contains 139
tables (i.e. |R| = 139), and each table has 3 to 8 attributes.
The temporal orders and the referential integrity constraints
are manually derived. Table 1 shows the details of these ta-
bles. Some tables are with the same schema, and the number
of tables with same schema are denoted by #T.

SYN is the set of synthetic data. We randomly gener-
ate different sizes of attributes and dependencies to test the
efficiency and effectiveness of the proposed technique.

The characteristics of the above two data sets can be
generalized to the general situation. The NBA player dataset
is a real dataset that meets the problems studied in this pa-
per. It is also used by many other papers that study the data
quality and is therefore authoritative. The data set SYN is
only used to test and compare the relative merits of different
methods. Because the data was generated randomly and we
did not make any presuppositions about it, the experimental
results on this data set can be generalized.

Table 1 Description of data sources

Schema #T
1 Abbreviation(Team, TeamAbbr) 1
2 Player(Rk, Player, Age, Tm, Lg, G, PTS) 67
3 Team(Franchise, Lg, Yrs, G, W, L, Champ) 6
4 Arena(Team, Arena, Location, Capacity) 13
5 Coaches(Lg, Team, Coaches) 52

5.1 Efficiency

The parameters which influence the efficiencies of our ap-
proaches are the number of schemas (sNum), the num-
ber of attributes (aNum), the number of INDs (indNum),
the number of MCC attributes corresponding to each at-
tribute (mccNum), the number of maximal temporal con-
nected components (sccNum), and the number of nodes in
TerTree when generating the CPQ. First, we test the effi-
ciencies of the methods of finding TerTree in both single
and multiple MCC cases, and then, we test the efficiency of
generating the CPQ using Algorithm 1. All the results are
the average results of 5 runs.

NSCG with single MCC. Figure 6 shows the efficien-
cies of the methods of finding TerTree when varying sNum,
aNum and indNum. In these experiments, each attribute cor-
responds to a unique MCC attribute. The x-axis indicates
the variety of parameters, and the y-axis indicates the run-
ning time. The lines with label “Spanning Tree” shows the
results of the method based on the minimum spanning tree.
The lines with label “Shortest Path” shows the results of the
method based on the shortest paths. Figure 6 (a) shows the
running time when varying sNum. We set aNum to be 10,
and varying sNum from 0 to 1,000. To keep the nodes in
NSCG connected, indNum should increase with the increase
of sNum, thus we set indNum = 2× sNum. The running
time increases with the increase of sNum, but the time cost
of Shortest Path is much less than Spanning Tree. In the ex-
periments shown by Fig. 6 (b), sNum = 10, indNum = 20.
aNum of all the schemas is the same, varying from 0 to 200.
It’s easy to see that |RT | = aNum, |V | = aNum× sNum,
Thus, the time complexity of Spanning Tree based strat-
egy is O(|RT ||V | log |V |) = O(aNum× (aNum× sNum)×
log(aNum× sNum)). The time complexity of Shortest Path
based strategy is O((aNum×sNum)× log(aNum×sNum)).
Therefore, the increase of the running time of Spanning Tree
is more dramatic than Shortest Path. The same trend can
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Fig. 7 Running time of finding TerTree in NSCG with multiple MCC

also be observed in the experimental results. In the exper-
iments shown by Fig. 6 (c), sNum = 100, aNum = 10 and
indNum is increased from 20 to 3,000. Since indNum only
influence the density of NSCG, and the density of NSCG
does not affect the time complexity of the two strategies, the
running time remains stable.

NSCG with multiple MCC. Figure 7 shows the effi-
ciencies of finding TerTree. when each attribute corresponds
to more than one MCC attribute. We use the shortest paths
based method as the basic method. The results labeled by
“Strategy 1” to “Strategy 3” are returned by the 3 strategies
in Sect. 4.2.1. According to the time complexity of each
strategies, the time cost of Strategy 1 grows exponentially
with base mccNum, the time cost of Strategy 2 grows ex-
ponentially with base sccNum, and the time cost of Strat-
egy 3 does not relate to mccNum and sccNum. Figure 7 (a)
shows the running time when varying sNum. We set aNum
to be 5, indNum = 2×sNum, mccNum = 4 and sccNum = 2
for all the attributes in RT . The running time of the three
strategies increases with the increase of sNum. Strategy 1
has the lowest efficiency, and Strategy 3 is the highest per-
former. In the experiments shown by Fig. 7 (b), sNum = 10,
indNum = 20, mccNum = 4 and sccNum = 2. The time cost
increases with the increase of aNum. The increase trend of
Strategy 1 is sharper than Strategy 2 and Strategy 3. Since
aNum = |RT |, and |RT | is the exponent of the time complex-
ities of Strategy 1 and Strategy 2, the running time of “Strat-
egy 3” grows much slower than the other two strategies.
Figure 7 (c) shows the efficiencies when varying indNum.
In the experiments, sNum = 100, aNum = 5, mccNum = 4
and sccNum = 2. Similar to the results of Fig. 6 (c), the in-
crease of indNum does not affect the efficiencies much. In
the experiments of Fig. 7 (d), sNum = 100, aNum = 5 and
indNum = 200. We increase mccNum from 1 to 10. When
mccNum ≤ 2, the TNs can hardly be partitioned into more
than one connected components, thus we set sccNum = 1

Fig. 8 Running time of generating CPQ

in these cases. When mccNum > 2, sccNum is set to be
2. There is a significant trend for an increase of the running
time of Strategy 1. The time cost of Strategy 2 is stable when
sccNum is not changed, and the time cost of Strategy 3 is un-
related to mccNum. In the experiments shown by Fig. 7 (e),
sNum = 100, aNum = 5, indNum = 200, mccNum = 10,
and sccNum grows from 1 to 5. It is easy to observe that
sccNum only influence Strategy 2, and the time costs of the
other two strategies are stable when sccNum increases. The
observation is consistent with the time complexity analysis
in Sect. 4.2.

Generating CPQs. Figure 8 shows the efficiency of
generating a CPQ from a TerTree. Since the running time
is only related to the size (i.e., the number of nodes) of
TerTree, we increase the size of TerTree from 20 to 200.
The time cost grows with the increase of size of TerTree,
but is much lower than the cost of finding a TerTree. When
there are 200 nodes in the TerTree, it only needs 5 ms to
generate the corresponding CPQ.

5.2 Effectiveness

We first use the data set SYN to evaluate the impacts of pa-
rameters sNum, aNum, indNum, mccNum and sccNum on
the size of TerTree. Then, use the real-life data set NBA
Player to test the effectiveness of the generated CPQ. Since
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Fig. 9 Size of TerTree in NSCG with single MCC

Fig. 10 Size of TerTree in NSCG with multiple MCC

the time cost of the exact method of finding minimized
TerTree is too high, and a TerTree contains at least |RT |
nodes, we use |RT | as an approximation of the exact result.

NSCG with single MCC. Figure 9 shows the impact
of sNum, aNum and indNum in the case of single MCC.
The x-axis shows the variation of parameters, and the y-
axis |ρapp| − |ρopt | shows the difference between the re-
sult of our methods (ρapp) and the exact result (ρopt). Fig-
ure 9 (a) shows the growth trend when sNum increases. We
set aNum = 10, indNum = 2× sNum, and increase sNum
from 0 to 1000. |ρapp| − |ρopt | increases with the growth
of sNum. The results of Spanning Tree based strategy are
better than the Shortest Path based one. Figure 9 (b) shows
the growth trend when aNum increases. We set sNum = 10,
indNum = 20, and increase aNum from 20 to 200. It can be
observed that |ρapp| − |ρopt | slightly increases. aNum has
almost no effect on the size of TerTree, because that we or-
ganize the attributes belonging to same schema as a clique,
which makes these nodes reach each other in one hop. How-
ever, sNum increases means that the nodes belonging to
different schemas increase, thus the size of TerTree has a
stronger growth. In the experiment shown by Fig. 9 (c), we
set sNum = 100, aNum = 10, and study the influence of
indNum on size of TerTree. As we have discussed, indNum

influence the density of NSCG. It is easier for the approxi-
mate method to find a small TerTree in a dense NSCG. Thus,
|ρapp| − |ρopt | is more close to 0 when indNum increases.
Consequently, |ρapp|− |ρopt | decreases with the increase of
indNum.

NSCG with multiple MCC. Figure 10 shows the size
of TerTree when each attribute in RT corresponds to multiple
TNs. For the efficiency reasons, we use the method based
on shortest paths as the basic method of finding TerTree.
Figure 10 (a) illustrates the results when sNum increases,
where aNum = 5, indNum = 2× sNum, mccNum = 4 and
sccNum = 2. It can be observed that the sizes of TerTrees
generated by the three strategies deviate from |ρopt | with the
increase of sNum. The size of TerTrees generated by Strat-
egy 3 is obviously larger than the TerTrees generated by the
other two strategies. Strategy 1 generates better TerTrees
than Strategy 2. The results shown by Fig. 10 (b) are the
size of TerTree when varying aNum. We set sNum = 10,
indNum = 20, mccNum = 4, sccNum = 2, and increase
aNum from 2 to 10. Similar to the case of single MCC, the
size of TerTree increases with the increase of aNum. Strat-
egy 1 get the best results, followed by Strategy 2, and Strat-
egy 3 always generates the largest TerTrees. The parame-
ters settings of the experiments are shown by Fig. 10 (c) are
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Fig. 11 Precision of CPQ on real dataset

sNum = 100, aNum = 5, mccNum = 4 and sccNum = 2.
Similar to Fig. 9 (c), |ρapp| − |ρopt | decreases with the in-
crease of indNum. Figure 10 (d) shows the experiments
when varying mccNum. We set sNum = 100, aNum = 5,
indNum = 200, and vary mccNum from 1 to 10. Similar to
Fig. 7 (d), when mccNum≤ 2, we set sccNum = 1, otherwise
set sccNum = 2. It can be observed that mccNum has al-
most no impact on the size of TerTree. The changing trends
of Strategy 1 and Strategy 2 are similar, but the results of
Strategy 1 are better than Strategy 2. Strategy 3 always gen-
erates the largest TerTrees. Figure 10 (e) shows the results
when varying sccNum. We set sNum = 100, aNum = 5,
indNum = 200, mccNum = 10, and increases sccNum from
1 to 5. We observe that sccNum only influence Strategy 2,
and the other two strategies are not affected. The results of
Strategy 2 are quite similar to Strategy 3 at first. With the
increase of sccNum, the results are more and more close to
Strategy 1. When sccNum = 5, each connected component
only has two nodes, thus the results of Strategy 2 nearly
equal to Strategy 1.

Effectiveness of generated CPQs. We use the pro-
posed methods to find TerTrees and to generate the cor-
responding CPQs for the data set NBA Player, and test
whether the CPQs can always return the most up-to-date val-
ues. The results are shown by Fig. 11. First, we consider the
case discussed in Sect. 4.2.2, that is, the NSCG has no com-
plete CPQ. Let |cmpQ| be the completeness of query Q, that
is, |cmpQ| equals to the number of attributes in RT which
have one TN in Q. Let precision be the most up-to-date
values which can be returned by Q. We increase |cmpQ|,
and run Q on NBA Player. The changing trend of preci-
sion is shown by Fig. 11 (a). Since the MCC attributes must
contain all the up-to-date values of the target attribute, the
precision is equivalent to |cmpQ|. After that, we consider
the case that the temporal orders are uncertain, that is, the
MCC attributes only contain partial up-to-date values of the
target attribute. We change the percents of up-to-date values
contained by the MCC attributes, and observe the chang-
ing trend of precision. The results are shown by Fig. 11 (b).
Precision is proportional to the percent of up-to-date values
contained by the MCC attributes.

6. Related Works

Recently, some approaches have studied how to determine
the data currency (i.e. temporal orders) based on rules [3],

[10]. Based on the proposed rules, their methods can de-
duce temporal orders of the tuples representing the same
entity. Combining with the techniques of entity resolution
on different data sources [21], the temporal orders can be
extended to the orders on different sources.

There are also a lot of works focusing on source depen-
dencies, source selection, and capturing uncertain relation-
ships in different types of networks [5], [7]–[9], [22]–[24].
These works propose methods aiming at finding the relation-
ships of different sources and evaluating the qualities of the
sources according to the relationships. The copy relation-
ships and the overlaps detected by these methods can easily
be extended to the temporal orders of columns on different
sources.

Some works aim at finding the most current replica of
the target data [25]–[27]. These works focus on how to find
up-to-date data according to the global time stamps and the
data updating model. However, the works assume that data
has exact time stamps and updating model, and the aims are
finding a current replica from a distributed storage system.
Our work is different from these approaches because we do
not assume all the required data items are stored in the same
replica, and we have no requirement for the time stamps and
updating model. The methods proposed in [28] focus on in-
tegrating data according to the time stamps and user defined
preference rules. It does not focus on finding the most up-
to-date values for a given target table, thus is different from
our work.

Another branch of works focus on the query rewrit-
ing considering the access-restrictions and integrity con-
straints [14]–[16]. These works extend the search space
through the integrity constraints, when the search space is
limited by access restrictions, However, these works are dif-
ferent with our research, because that the temporal orders
between data sources are quite different from the access re-
strictions. The access restrictions are a kind of 0-1 restric-
tions indicating the access methods of data items, but tempo-
ral orders are partial orders on different sources determining
the priorities of selecting a value. Therefore, these works
cannot solve the problem of generating currency preserving
query.

7. Conclusions and Future Work

We studied the problem of generating currency preserving
query. First, we proposed a graph model to represent the dis-
tributed table and their relationships. Based on the model,
we proved that a currency preserving query is equivalent to
a terminal tree in the graph, and gave an algorithm of trans-
forming a terminal tree to the corresponding query. Then,
we proved that generating the minimized currency preserv-
ing query is NP-hard, and provided heuristics strategies to
solve the problem. Finally, we conducted experiments on
both synthetic and real data sets to verify the effectiveness
and efficiency of the proposed techniques.

In future works, we will study how to deal with con-
ditional temporal orders, that is, the case that the temporal
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orders only exists in certain conditions. We will introduce
the operation of selection into the currency preserving query,
and extend our approaches by leveraging conditional tempo-
ral orders.
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