
2808
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

PAPER

High-Performance Super-Resolution via Patch-Based Deep Neural
Network for Real-Time Implementation

Reo AOKI†,††a), Kousuke IMAMURA†††, Akihiro HIRANO†††, Members, and Yoshio MATSUDA†††, Nonmember

SUMMARY Recently, Super-resolution convolutional neural network
(SRCNN) is widely known as a state of the art method for achieving
single-image super resolution. However, performance problems such as
jaggy and ringing artifacts exist in SRCNN. Moreover, in order to real-
ize a real-time upconverting system for high-resolution video streams such
as 4K/8K 60 fps, problems such as processing delay and implementation
cost remain. In the present paper, we propose high-performance super-
resolution via patch-based deep neural network (SR-PDNN) rather than
a convolutional neural network (CNN). Despite the very simple end-to-
end learning system, the SR-PDNN achieves higher performance than the
conventional CNN-based approach. In addition, this system is suitable
for ultra-low-delay video processing by hardware implementation using an
application-specific integrated circuit (ASIC) or a field-programmable gate
array (FPGA).
key words: super-resolution, deep neural network, deep leaning, real-time
processing

1. Introduction

In recent years, the resolution of video streams of cameras
and displays has increased to 4K/8K 60 fps. As such, the
demand for upconverting from conventional image quality,
such as Full-HD, in real time has arisen. In particular, in
the fields of endoscopic surgery and telemedicine, it is dif-
ficult to increase the resolution of video sources because of
physical restrictions in the imaging or transmission system.
Therefore, a viewer-side real-time super-resolution upcon-
verting system is needed.

Generally, there are two types of approaches to the
implementation of real-time image processing. Software-
based approaches, such as those involving a CPU or
GPU, and hardware-based approaches, for example using
an application-specific integrated circuit (ASIC) or field-
programmable gate array (FPGA). However, in order to
keep up with recent high-resolution trends such as 4K/8K
60 fps video and accomplish non-frame delay process-
ing, which is crucial in the field of endoscopic surgery,
hardware-based approaches are preferred for the display
system.
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Fig. 1 The proposed super-resolution deep neural network outperforms
the SRCNN. More details are provided in Sect. 4.2 (the Set 5 dataset with
an upscaling factor of 3).

Recently, learning based approaches for super resolu-
tion have been remarkably studied [1]. Especially, super res-
olution convolutional neural network (SRCNN) proposed by
Dong et al. [2], [3] consists of feed-forward-processing ar-
chitecture that does not require iterative processing. How-
ever, hardware cost for the SRCNN is high. Furthermore,
jaggy and ringing still remain [4] as shown in Fig. 1.

The contribution of the present paper is to provide a
novel neural-network-based architecture for super resolu-
tion. It is patch-based and can reduce jaggy and ringing ar-
tifacts. In addition, we also provide cost performance eval-
uation for the hardware implementation such as ASIC and
FPGA.

The remainder of the present paper is organized as fol-
lows. Section 2 presents the detailed related works. Sec-
tion 3 presents the proposed method. Section 4 presents
the experimental results. Section 5 describes the ease of
cost-performance tuning for the proposed method. Finally,
Sect. 6 concludes the present paper.

2. Related Work

Single-image super-resolution is a classical problem in the
image processing field, and numerous algorithms have been
proposed thus far [1]. In recent years, machine learning ap-
proaches involving example-based super resolution have en-
abled remarkable achievements.

Example-based super resolution, first proposed by
Freeman et al. [5], is a primitive dictionary-based method
that restores the high-resolution image from a dictionary that
consists of paired patch images of low resolution and corre-
sponding high resolution.
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Because of the patch-based approach, example-based
super resolution can be applied to images of any size. How-
ever, practical performance requires a considerable number
of paired images as well as a significant search cost.

Later, Yang et al. proposed sparse-coding super resolu-
tion (ScSR) [6], [7]. In ScSR, the patched image is encoded
as coefficients of a few of (sparse) base functions that are
pre-learned by machine learning, therefore, the dictionary
size is remarkably reduced. From the viewpoint of real-
time processing, ScSR is a good approach to compressing
the prior information to a dictionary in offline processing.
However, in online processing, iterative processing, such as
orthogonal matting pursuit (OMP) [8], is required in order
to obtain a sparse encoding of inputs.

In recent years, Dong et al. proposed SRCNN [2], [3].
The SRCNN uses a convolutional neural network (CNN)
based on a machine learning system. The network internal
parameters can be directly optimized via back propagation
of end-to-end mapping between low- and high-resolution
images. Here, the benefit of the end-to-end approach is that
it can achieve a higher level optimization as compared to
human-based design. Moreover, from the viewpoint of real-
time processing, a feed-forward-based architecture is easier
to implement than an iterative processing method, such as
ScSR.

Because of the simple end-to-end learning approach
and highly accurate restoration, the SRCNN is widely
known as a current state-of-the-art method in the field of
single-image super resolution, and the method is now ap-
plied to several applications, such as video super resolu-
tion [9] and character recognition [10].

However, SRCNN has a problem in terms of perfor-
mance because it often suffers from jaggy and ringing arti-
facts (Fig. 1). Moreover, realization of real-time processing
with a non-frame delay system involves some issues con-
cerning processing delay and implementation cost.

As post-SRCNN studies, Timofte et al. [11] proposed
seven techniques, such as data augmentation, back projec-
tion, cascading, etc., to improve performance of example-
based single image super resolution. However the most
effective cascading has an issue of significantly increas-
ing costs of implementation. As a similar approach, Kim
et al. [12] proposed a very deep convolutional network
(VDSR) that further stratified SRCNN. Although it is a very
excellent in performance, since it is composed of 20 layers
of CNN, it is also a problem that a very large amount of
calculation is necessary.

As a different approach from deepening, Shi et al. [13]
and Ohtani et al. [4] proposed a modified SRCNN structure
in order to improve the performance. They focused on the
fact that jaggy and ringing artifacts occurred from the bicu-
bic interpolation upon making the input signal. Therefore,
they tried to train SRCNNs independently for each inter-
polated pixel position. The performance was improved but
this approach requires multiple SRCNNs according to the
upscaling factor. Therefore, problems remain in terms of
structural complexity and implementation cost.

As a method suitable for real-time calculation, Romano
et al. [14] proposed a method of super-resolution with a sim-
ple optimized filter for each detected direction. However,
their method is inferior to SRCNN in performance, in addi-
tion, Gaussian pyramid based Kalman filtering [15] is nec-
essary for direction detection, so it is not suitable for low-
delay hardware processing. Another, Zeng et al. [16] pro-
posed the coupled deep auto-encoder (CDA), which is also a
neural-network-based approach and consists of two types of
auto-encoder for low resolution and high resolution image
patches. The concept of the CDA is similar to that of ScSR.
The paired auto-encoder works as a dictionary and the fully
connected network between the auto-encoders is optimized
to estimate high resolution features. Actually, the CDA is
a good approach for real-time processing because the pro-
cess is based on a patch-based approach. However, some
performance issues remain because the authors did not con-
sider interpolated pixel positions, and, essentially, the con-
straint of making the auto-encoder is not needed for restora-
tion from an end-to-end perspective.

On the other hand, in terms of real-time implementa-
tion, Kim et al. [17] proposed GPU implementation tech-
niques for the SRCNN. Normally, because the SRCNN is
based on multistage and multidimensional filter processing,
the memory cost of implementation is enormous, on the or-
der of the image size. However, by decomposing the input
image into small tile images, they reduced the implementa-
tion cost. Nevertheless, from the viewpoint of feasibility for
4K/8K 60 fps, it is not yet realistic.

For the above reasons, a method that is more suitable
for low-delay real-time processing and has better perfor-
mance than the SRCNN has not yet been proposed. In the
present paper, we propose a novel high-performance super-
resolution method for low-delay real-time processing with
a patch based deep neural network (PDNN) based on the
following concepts:

(a) A PDNN is more suitable for super resolution than a
CNN.
In the case of a CNN, the referenced area spreads for
each layer. This feature is important for understand-
ing the global meaning, especially in the field of gen-
eral image recognition. However, with regard to super
resolution, excessively broad information leads to an
increase in the difficulty of prediction. Therefore, a
PDNN is better than a CNN, because the PDNN can
estimate deeply with limited input information.

(b) Target simplification is necessary in order to maximize
the effectiveness of an end-to-end approach.
In the case of CDA, the regularization term is included
in the loss function for making a pair of auto encoders.
However, the regularization term does not degrade the
performance even if the value increases. Actually,
SRCNN [2], [3] and VDSR [12] do not include the reg-
ularization term in their loss function, and their perfor-
mance is better than CDA. (CDA performance is infe-
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rior to SRCNN 9-5-5). Therefore, in our opinions, the
regularization term is unnecessary from the viewpoint
of end-to-end perspective. Furthermore, CDA does not
consider interpolated pixel positions, which means the
learning target includes unnecessary variations. There-
fore, the result would be an averaged result.

In order to achieve the high throughput required for 4K/8K
60 fps, the present paper focuses on hardware implementa-
tion, such as an ASIC or a FPGA.

3. Proposed Method: SR-PDNN

In this section, we describe in detail the proposed super-
resolution method via patch-based deep neural network
(SR-PDNN).

3.1 PDNN Architecture

First, considering the definition of ideal input and output is
very important in designing the target neural network sys-
tem. For example, if we set the low resolution and high
resolution images as direct input/output learning data, the
target networks start by learning to approach the input level,
followed by learning to obtain the output data. However,
by using the concept of ResNet [18], the ideal output of the
neural network becomes only for a residual component. Fig-
ure 2 shows the flow from low resolution quality (LR) image
which is already upscaled by bicubic interpolation to esti-
mated high resolution quality (HR) image. Here, even if the
output of PDNN is zero, the final output is the same as the
LR image. That’s mean, the PDNN can focus on the restora-
tion of lost high-frequency components that we would like
to restore.

Here, the components of the image to be restored with
super resolution are considered to be approximately the
same as high-frequency components of HR, and the resid-
ual structure does not need to consider the lightness abso-
lute values to fit the output lightness. This means that im-
provements in convergence speed and performance can be
expected. For the reasons stated above, we define the PDNN
role as:

at learning : PDNN(y)← x − y (1)

at estimation : x̂ = PDNN(y) + y (2)

where y ∈ Rn and x ∈ Rn are column vectors of LR and

Fig. 2 Outline of the super resolution via patch-based deep neural net-
work (SR-PDNN).

HR patch images, and x̂ ∈ Rn is an estimated result of
x. At a learning step, the PDNN is optimized to output
the difference between y and x. In an estimation step, the
PDNN outputs the estimated difference. Figure 3 (a) shows
the structure and data flow of PDNN. There are three lay-
ers in PDNN. The first input layer is Feature Extraction, the
second middle layer is Estimation, and the last output layer
is Restoration. In the following, we described the details of
these layers.

3.1.1 Restoration (Output Layer)

In the case of super resolution, the component to be re-
stored can be regarded as mixed high-frequency compo-
nents. Therefore, the output of PDNN(y) can be expressed
as a sum of base vectors without a bias component:

PDNN(y) = Σi[atomi × p(atomi|y)] (3)

= Watom × p(Watom|y) (4)

where atom ∈ Rn is a base vector to express a high-
frequency component, and Watom, which is an fh × n matrix,
represents a group of atomi. Figure 3 (b) shows the rela-
tion between atom and Watom. As the figure, the atom is an
element of Watom and the size is same as the output patch
image. Moreover, p(atomi|y) is defined as a contribution of
an atomi when input y is given, and p(Watom|y) ∈ R fh rep-
resents a group of p(atomi|y) as well. For more detail, the
concrete patterns of atoms are shown at Fig. 7 in Sect. 5.

As a non-bias expression, the optimization process for
bias, which is conventionally required for SRCNN, becomes
unnecessary. Moreover, the cost of implementation is ex-
pected to be reduced.

3.1.2 Feature Extraction (Input Layer)

The expected role of the input layer is to extract highly cor-
related features, which is useful for estimating p(Watom|y).
Here, we define the features estimated by a bank of filters,
the size of which is the same as that of input y. Then, the
input layer is described as follows:

Features = so f tsign(Σ j[ f ilter j × y]) (5)

= so f tsign(Wf ilter × y) (6)

where f ilter j ∈ Rn is a filter, and Wf ilter is an n × fl ma-
trix that is used as a filter bank. Figure 3 (b) also shows
the relation between f ilter and Wf ilter. As the figure, the
f ilter is an element of Wf ilter and the size is same as the in-
put patch image. And the concrete patterns of f ilters are
shown at Fig. 8 in Sect. 5. As a transfer function, we select
so f tsign(α) = α

1+|α| , because the feature that is expressed as
a high-frequency component should be transmitted. Then,
the feature is not dependent on the input bias that is ap-
proximately the same as the lightness expressed as a low-
frequency component.
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Fig. 3 The proposed PDNN structure for super resolution. (a) Data-flow and layer structure. (b) The
size relations between weight matrices for each layer.

Fig. 4 Relationship of jaggy artifacts and patch extracting position against the interpolation pixel position in the
case that the upscaling factor is 3. (a) The jaggy artifacts with 3 pixel period. (b) Patch images that have same
interpolated pixel patterns.

3.1.3 Estimation (Middle Layer)

Based on the extracted features, p(Watom|y) is defined as the
following nonlinear mapping:

p(Watom|y) = so f tsign(Wconvert × Features) (7)

where Wconvert is an fl × fh matrix as a fully connected es-
timation layer. In the present paper, we focus on the cost-
performance balance. Therefore, we select a single-layer-
based non-linear mapping for the estimation.

3.2 Training

Learning condition simplification is very important in ma-
chine learning in order to obtain good results. Figure 4
shows the relationship of jaggy artifacts and patch extracting
position against the interpolation pixel position in the case
that the upscaling factor is 3. In Fig. 4 (a), the left image is a
sample of an input image degraded by bicubic interpolation.
The center image is a part of the left image to show the jaggy
clearly. Here, the size of jaggy period is same as upscaling
factor. The white dash square area indicates a sample of an
extracted patch region. In this case, the patch size is set to

9 × 9 pixels. The right figure shows periodic interpolated
pixel patterns (P1-P9) of the extracted patch image. Here,
the 3×3 area which is separated by the black dash lines cor-
responds to 1 × 1 pixel of the low resolution image which
is not upscaled, and the number of interpolated pixel pat-
terns is derived from the upscaling factor. In short, jaggy
and ringing artifacts are occurred by bicubic interpolation,
and the period of artifacts correspond to the positions of the
interpolated pixel patterns defined by the upscaling factor.
In other words, to reduce the artifacts, it is important to con-
sider the interpolation pixel positions. As reported by Shi
et al. [13] and Ohtani et al. [4], the SRCNN-based approach
can improve the performance by using parallel independent
CNNs to match the interpolation pixel position to each neu-
ron. However, their approach requires multiple SRCNNs
according to the upscaling factor. Therefore, problems re-
main in terms of structural complexity and implementation
cost.

On the other hand, when we set the sliding step to the
upscaling factor, each neurons are assigned to specific in-
terpolation pixel positions. Figure 4 (b) shows an example
of this situation with upscaling factor of 3. In the figure,
the gray-boxes indicate the P1 positions that are located at
same positions in the 3 × 3 areas as same as Fig. 4 (a), and
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the both patch of the solid line and the dash line have same
interpolated pixel patterns. This position matching makes it
possible to perform learning appropriate for each interpola-
tion pixel positions, and it is expected to reduce the artifacts
such as jaggy and ringing.

From the above viewpoint, the proposed method gen-
erates the learning dataset by the following steps.

Step 1. Generate a paired dataset of LR/HR
In order to obtain a paired dataset of HR and LR im-
ages, learning sample data are regarded as HR images,
and the paired LR images are generated by degrada-
tion of the HR images. The degradation is achieved
by downscaling and upscaling with the target scal-
ing factor. And we select bicubic interpolation for
the scaling processes as well as Yang et al. [7] and
Dong et al. [2], [3]. Since the proposed method is
a learning-based single image super-resolution, not a
reconstruction-based, the low resolution image with in-
tentional aliasing is unnecessary.

Step 2. Generate paired patch images
Paired patch size images are generated by cropping
the dataset while scanning at a fixed interval that is
the same value as the target scaling factor. Here, to
match the sliding step for learning database creation
and target scaling factor is important to get a good re-
sult. In Sect. 4.3, the effectiveness of this matching is
described.

By preparing the training dataset by the above procedure,
each pixel position in the patch image corresponds to the in-
terpolation pixel position. Therefore, unnecessary variation
of learning is suppressed.

In order to train SR-PDNN parameters, it is necessary
to minimize the loss function, which is defined as follows:

Loss(Θ) =
1
Ns

Ns∑

n=1

||PDNN(yn;Θ) − (xn − yn)||2 (8)

Θ = {Wf ilter,Wconvert,Watom} (9)

where Ns is defined as the number of samples in the dataset
and Θ is the parameter set of all the matrices to be learned.
Also, PDNN(yn;Θ) is defined as the output of PDNN(yn)
when the parameter Θ is set.

3.3 Super-Resolution

Since PDNN corresponds to a specific patch size, in order
to achieve the super resolution for an arbitrary image size,
it is necessary to decompose the image into patches and su-
perimpose the respective processing results.

Here, we define Y ∈ RNp as a column vector of a input
LR image of Np pixels, Rp (p = 1, 2, · · · ,Np) as an operator
to extract the patch around pixel p, and yp as a define as
a patch image for pixel p. Then, the estimated HR patch
image x̂p is defined as follows:

yp = RpY (10)

x̂p = PDNN(yp) + yp (11)

Then, the whole HR image X̂ is calculated by averaging the
overlapping regions between adjacent patches as follows:

X̂ = (ΣpRT
p Rp)−1ΣpRT

p x̂p (12)

As for Σp, each of the patch positions is determined by slid-
ing step, and the sliding step for both horizontal and vertical
directions is set to the upscaling factor. For example, in the
case that the upscaling factor is 3, the all of gray boxes in
Fig. 4 (b) correspond to the corner of the extracted patches
as same as the patch positions in the figure. By doing this,
the position of each patch image matches the pattern of the
interpolation pixel as in learning. This is important to get a
good result, the effectiveness of this pixel position matching
is described in Sect. 4.3. In addition, because the proposed
method is based on the square patch process, this averag-
ing of adjacent patches by overlap is important to reduce the
influence of the patch shape. Note that although the above
equation is an expression of the entire image, when we de-
sign the hardware implementation, it can be processed in a
local related area.

4. Experiments and Results

4.1 Basic Configuration

In order to achieve a fair comparison, 91 images were used
as the training dataset, and Set 5 and Set 14 were used as the
test dataset† [3], [7]. The target scaling factor was set to 2,
3, and 4. In all of the experiments, we focused only on the
luminance channel in the YCbCr space. The peak signal-to-
noise ratio (PSNR) was calculated for objective evaluation.

As the parameter to specify the neural network, the in-
put and output patch size was set to n = 36(6×6), 81(9×9),
and 144(12 × 12) corresponding to upscaling factors of 2,
3, and 4, respectively. The number of filters was set to
fl = 200, and the number of atoms was set to fh = 800.

In the training dataset generation, we set the sliding
step to 2, 3, and 4, identical to the upscaling factor. We
used all patterns that could be obtained from 91 images as
the dataset for each scaling factor. In particular, we pre-
pared 4,916,516, 2,087,888, and 1,119,188 paired patches
for each dataset corresponding to upscaling factors of 2, 3,
and 4, respectively. Note that these numbers are the result
of augmentation by rotations for 90◦, 180◦, and 270◦.

For the training, we used the mini-batch approach. We
randomly extracted 1,024 samples from the target train-
ing dataset for each process. As the number of train-
ing iterations, we used 5,000 epochs in total. Here, one
epoch is equivalent to the number of times that the train-
ing set was turned around. In order to optimize the loss
function, we used Adam Optimizer [19] with a learning
rate of 0.0001. Before training, all of the learning targets
{Watom,Wf ilter,Wconvert}were initialized by the normal distri-
bution with a zero mean and a standard deviation of 0.001.

†http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
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Table 1 Results for PSNR on Set 5.
image scale PSNR (dB)

Bicubic ScSR A+ SRCNN Ours

baby 2 37.07 38.45 38.50 38.30 38.53
bird 2 36.81 40.56 41.10 40.64 41.38
butterfly 2 27.43 31.31 32.00 32.20 33.48
head 2 34.86 35.73 35.80 35.64 35.77
woman 2 32.14 34.95 35.30 34.94 35.64

average 2 33.66 36.20 36.55 36.34 36.96

baby 3 33.91 35.02 35.20 35.01 35.28
bird 3 32.57 34.35 35.50 34.90 35.84
butterfly 3 24.04 26.22 27.20 27.58 28.67
head 3 32.88 33.56 33.80 33.55 33.80
woman 3 28.56 30.33 31.20 30.91 31.84

average 3 30.39 31.90 32.59 32.39 33.09

baby 4 31.78 32.81 33.30 32.98 33.30
bird 4 30.18 31.55 32.50 31.97 32.89
butterfly 4 22.10 23.63 24.40 25.06 25.79
head 4 31.59 32.16 32.50 32.19 32.52
woman 4 26.46 27.66 28.60 28.20 29.24

average 4 28.42 29.56 30.29 30.08 30.75

4.2 Comparisons to State-of-the-Art Methods

The results of comparisons with conventional state-of-the-
art SR methods are shown in Tables 1 and 2. In these
tables, the left image column shows the name of the im-
ages and the scale column shows the upscale factor. And,
the other columns show the PSNR values against HR im-
ages. In particular, bicubic is same as input of proposed
method and ours is the result of proposed method. For the
conventional methods, we selected ScSR [7], A+ [20], and
SRCNN [3]. Regarding implementation, we used publicly
available codes provided by the authors. The performance
of the proposed method was found to be highest for most
images. In particular, in comparison with the SRCNN, the
average PSNR increased approximately 0.6 dB in Set 5 and
approximately 0.4 dB in Set 14 for all scaling factors.

The visual effects of these performance improvements
are shown in Fig. 5. The six images of Fig. 5 (c) are the re-
sults of “butterfly” (Set5) with an upscaling factor of 4, and
the white rectangle of Fig. 5 (a) indicates the cropped region.
Also, the six images of Fig. 5 (d) are the results of “comic”
(Set14) with an upscaling factor of 3, and the white rectangle
of Fig. 5 (b) indicates the cropped region. The circle marked
areas of Fig. 5 (a) and Fig. 5 (b) indicate the observed loca-
tions for jaggy and ringing. Specifically, ringing artifacts
can be seen at the circle 1 area and jaggy artifacts can be
seen at the circle 2 and 3 areas. As seen in the figures, the
ScSR results contain strong jaggy and ringing. The A+ re-
sults are better than ScSR, but the ringing still remains es-
pecially in circle 1 area. The SRCNN results still contain
jaggy and ringing, obviously. In contrast, our results re-
move the most of jaggy and ringing artifacts, and the visual
improvement can be observed at all of the circle areas. As
is well known, subjective image quality is not in proportion
to PSNR. In fact, in terms of the butterfly images, the PSNR
of the SRCNN is higher than that of the A+, as shown in
Table 1. However the A+ result seems better in visual than

Table 2 Results for PSNR on Set 14.
image scale PSNR (dB)

Bicubic ScSR A+ SRCNN Ours

baboon 2 24.86 25.59 25.65 25.62 25.74
barbara 2 28.00 28.70 28.70 28.59 28.64
bridge 2 26.58 27.67 27.78 27.70 27.91
coastguard 2 29.12 30.58 30.57 30.49 30.73
comic 2 26.02 27.99 28.29 28.27 28.80
face 2 34.83 35.71 35.74 35.62 35.74
flowers 2 30.37 32.72 33.02 33.03 33.55
foreman 2 34.14 36.91 36.94 36.23 37.05
lenna 2 34.70 36.48 36.60 36.50 36.72
man 2 29.25 30.69 30.87 30.82 31.07
monarch 2 32.94 36.52 37.01 37.18 38.29
pepper 2 34.95 36.73 37.02 36.73 37.08
ppt3 2 26.87 29.52 30.09 30.40 31.01
zebra 2 30.63 33.37 33.59 33.29 33.96

average 2 30.23 32.08 32.28 32.18 32.59

baboon 3 23.21 23.54 23.60 23.60 23.69
barbara 3 26.25 26.70 26.50 26.66 26.58
bridge 3 24.40 25.02 25.20 25.07 25.31
coastguard 3 26.55 27.18 27.30 27.20 27.34
comic 3 23.12 24.04 24.40 24.39 24.71
face 3 32.82 33.52 33.80 33.58 33.79
flowers 3 27.23 28.51 29.00 28.97 29.44
foreman 3 31.16 33.19 34.40 33.40 34.41
lenna 3 31.68 33.04 33.50 33.39 33.77
man 3 27.01 27.91 28.30 28.18 28.46
monarch 3 29.43 31.30 32.10 32.39 33.38
pepper 3 32.38 33.81 34.70 34.34 34.90
ppt3 3 23.71 25.06 26.10 26.02 26.75
zebra 3 26.63 28.38 29.00 28.87 29.64

average 3 27.54 28.66 29.13 29.00 29.44

baboon 4 22.44 22.66 22.70 22.70 22.77
barbara 4 25.15 25.57 25.70 25.70 25.87
bridge 4 23.15 23.58 23.70 23.65 23.91
coastguard 4 25.48 25.65 25.90 25.94 26.07
comic 4 21.69 22.28 22.50 22.53 22.80
face 4 31.55 32.09 32.40 32.12 32.51
flowers 4 25.52 26.41 26.90 26.84 27.30
foreman 4 29.38 30.45 32.20 31.46 32.49
lenna 4 29.83 30.81 31.40 31.20 31.63
man 4 25.70 26.38 26.80 26.65 26.96
monarch 4 27.46 28.80 29.40 29.89 30.48
pepper 4 30.59 31.70 32.90 32.34 33.12
ppt3 4 21.98 22.71 23.60 23.84 24.48
zebra 4 24.08 25.38 25.90 25.97 26.55

average 4 26.00 26.75 27.32 27.20 27.64

the SRCNN result. Similarly, our PSNR improvement is not
high, but the visual improvement is obvious.

4.3 Effectiveness of Fitting to Interpolation Patterns

As described in Sect. 3, it is important to fit the patch im-
age extraction position to interpolation pixel position in both
restoration and learning phases.

Table 3 shows the change of performance against the
sliding steps of learning and restore. Where sr represents the
sliding step for restoration and sl represents the sliding step
for learning. And all values are average PSNR on Set5 with
an upscaling factor of 3. The other parameters are the same
as those in Sect. 4.1. Note that the patch size is 9 × 9 pixels
in this case, and the sliding step for restoration defines the
overlapping width. For example, when we set sr = 9, there
is no overlap.



2814
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

Fig. 5 The comparison of subjective image quality. (a) Thumbnail of “butterfly” (Set5). (b) Thumbnail of “comic” (Set14).
(c) Results for “butterfly” (Set5) with an upscaling factor of 4. (d) Results for “comic” (Set14) with an upscaling factor of 3.

In Table 3, the best performance was observed when
we set (sl, sr) = (3, 3). It means the effectiveness of match-
ing the positions of the learning and the restoration was con-
firmed.

In particular, Fig. 6 shows the case of sl = 3 in Ta-
ble 3. Also in the case of sr = 6 or 9, the PSNR becomes
high scores because the positions are also matched in these
cases. However, due to the reduction of overlapping effect,
the values are less than the case of sr = 3. In addition, when
the case of sr = 1, 2, 4, 5, 7, and 8, the performance drops
remarkably. This is because of the mismatch about the po-
sitions of learning and restoration.

On the other hand, in the case where the sl = 1 or 2,
since all the interpolation patterns are learned to each neu-

Table 3 The change of performance against the sliding steps of learning
(sl) and restore (sr).

sr PSNR (dB)
sl = 1 sl = 2 sl = 3

1 32.98 32.93 30.77
2 32.97 32.91 30.68
3 33.01 32.94 33.09
4 32.92 32.85 29.47
5 32.85 32.79 29.92
6 32.86 32.82 32.94
7 32.73 32.67 28.12
8 32.64 32.57 28.16

9 (without overlapping) 32.62 32.55 32.75
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Fig. 6 The relation between averages PSNR (dB) on Set5 with upscaling
factor of 3 and sliding step for restoration (sr) when the sliding step for
learning (sl) is set as 3.

ron, the influence of the sr setting is reduced. However,
since the variations of different interpolation pixel patterns
are included, the performance is lower than the matched
case.

From the above results, it was confirmed that if the
patch extraction position of learning and restoration is set
to match, the performance of image quality improves. This
effect also contributes to the reduction of artifacts such as
jaggy and ringing, and the effect can be visually confirmed
from Fig. 5.

4.4 Cost Performance Comparison in Real-Time Process-
ing

Since both the SR-PDNN and SRCNN are based on feed-
forward processing, fixed time hardware processing can the-
oretically be realized. However, in order to actually design
the hardware, it is necessary to consider the process delay
with respect to the input and the implementation cost.

4.4.1 Hardware Implementation Cost of the SRCNN

In order to specify the processing delay, it is necessary to
consider that the real-time video stream is input as a raster
scan. When we regard the video stream image itself as an in-
put image to the super resolution system, frame delay must
occur because the conventional SRCNN uses the filtered re-
sult of the entire image as the intermediate result. Therefore,
in order to realize the non-frame delay system, we need to
divide the video stream image into small images as input for
the SRCNN, in the manner of Kim et al. [17].

On the other hand, in order to estimate the hardware
cost, parameters such as filter size, number of features, and
input image size are needed. Dong et al. [3] proposed two
models in their paper: SRCNN (9-1-5) for cost, and SRCNN
(9-5-5) for performance. Using these models, the minimum
hardware cost required in order to obtain one pixel output
was calculated as shown in Table 4.

Here, Table 4 shows that SRCNN (9-1-5) requires a
13×13 sub image as input, 181,600 multiplication steps, and
2,569 pixels of memory for saving the intermediate results.
In the table, a pixel denotes a virtual unit for saving one

Table 4 SRCNN hardware implementation cost. Here, PSNR refers to
the Set 14 average PSNR with an upscaling factor of 2.

Model Input Memory Multi. PSNR

SRCNN (9-1-5) 13 × 13 2,569 pixels 181,600 steps 32.18 dB
SRCNN (9-5-5) 17 × 17 6,273 pixels 1,700,704 steps 32.45 dB

Table 5 SR-PDNN hardware implementation cost. Here, PSNR refers
to the Set 14 average PSNR with an upscaling factor of 2.

Model Input Memory Multi. PSNR

fh = 36 6 × 6 272 pixels 3,924 steps 32.26 dB
fh = 200 6 × 6 436 pixels 13,600 steps 32.52 dB
fh = 800 6 × 6 1,036 pixels 49,000 steps 32.59 dB

value.
In SRCNN (9-5-5), although the memory cost is dras-

tically increased, the performance improvement is only a
0.27 dB increase. Note that SRCNN (9-1-5) was trained
using the 91 images in Sect. 4.1, whereas SRCNN (9-5-5)
used 395,909 images obtained from ImageNet [21].

4.4.2 Hardware Implementation Cost of the SR-PDNN

In order to specify the implementation cost of the proposed
method, the size of the input/output patch images and the
matrices should be defined. Here, in order to allow a fair
comparison, we determined the performance change for the
proposed method when the number of atoms ( fh) was var-
ied. Figure 9 shows dependence of the performance on the
number of atoms. The PSNR increased with increasing fh,
and it overtook the level of SRCNN (9-1-5) at fh = 36, and
of SRCNN (9-5-5) at fh = 200. Note that all of the ex-
perimental conditions were as described in Sect. 4.1 with an
upscaling factor of 2, except for the number of atoms.

Based on the above results, we summarized the rela-
tionship between the cost and performance of the proposed
method, as shown in Table 5. Comparing Tables 4 and 5,
the proposed method has better cost performance than the
SRCNN. Specifically, in the case of fh = 36, the model cor-
responding to SRCNN (9-1-5), the required memory cost is
reduced by 89% and the accumulation number is reduced by
98%.

5. Discussion

In the following, we describe another advantage of the pro-
posed method, namely an ease method of cost performance
adjustment. First, the results of learning atoms and filters
with an upscaling factor of 2 and fh = 200 are shown in
Figs. 7 and 8. As shown in the figures, these atoms and
filters can be expressed as images because their size is the
same as that for the input/output patch image.

The atoms in Fig. 7 were arranged in order of the sum
of absolute values for each atom. The larger value means
the more significant atom that contributes to the output. Fig-
ure 10 shows the distribution for the case of fh = 36, 200,
and 800. As a trend, the number of valid atoms increased
with fh. However, in the case of fh = 800, the number
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Fig. 7 Learned atoms in the restoration layer ( fh = 200).

Fig. 8 Learned filters in the feature extraction layer ( fl = 200).

Fig. 9 Relationship between fh and performance. The PSNR is the Set
14 average PSNR with an upscaling factor of 2, and the points denote fh =
18, 36, 72, 100, 200, 400, 600, 800, and 1000, respectively.

of valid atoms did not increase beyond approximately 600.
This means that a performance improvement cannot be ex-
pected, even if fh is further increased, which agrees with the
results shown in Fig. 9.

In other words, the proposed method can determine
whether the performance limit has been reached by checking

Fig. 10 Number of valid atoms for various fh. The atom size means the
sum of the absolute values for each atom.

the number of valid atoms. In addition, when the network
has invalid atoms, as in the case of fh = 800, cost reduc-
tion can be achieved without re-learning by simply deleting
the components of Watom and Wconvert corresponding to the
unnecessary atoms.

In this way, an advantage of the PDNN is that the cost
can be easily reduced after learning. However, in the case of
the CNN, it is difficult to separate each layer after learning.
Moreover, this approach also suggests that it is possible to
adjust the cost performance balance based on the valid atom.
This is a new approach to adjusting cost performance, and
there is still potential for practical applications.

6. Conclusion

In the present paper, we proposed a novel high-performance
and cost-effective super-resolution via patch-based deep
neural network (SR-PDNN).

Using a PDNN-based architecture suitable for super
resolution and learning considering interpolated pixel po-
sitions, a performance increase of approximately 0.6 dB for
Set 5 and approximately 0.4 dB for Set 14 was obtained, as
compared to SRCNN.

The SR-PDNN is also suitable for real-time hardware
processing, for example, using an ASIC or an FPGA. When
the performance is comparable to that of the SRCNN, the
memory cost may be reducible by 89% and the multiplica-
tion logic cost may be reducible by 98%.

In the future, it will be necessary to investigate the mul-
tilayering of the estimation. Moreover, the calculation accu-
racy, including the transfer function, should be investigated
in order to realize hardware implementation.
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