
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.10 OCTOBER 2018
2501

PAPER

Individuality-Preserving Gait Pattern Prediction Based on Gait
Feature Transitions

Tsuyoshi HIGASHIGUCHI†, Nonmember, Norimichi UKITA††a), Senior Member,
Masayuki KANBARA†, Member, and Norihiro HAGITA†, Fellow

SUMMARY This paper proposes a method for predicting individuality-
preserving gait patterns. Physical rehabilitation can be performed using vi-
sual and/or physical instructions by physiotherapists or exoskeletal robots.
However, a template-based rehabilitation may produce discomfort and pain
in a patient because of deviations from the natural gait of each patient. Our
work addresses this problem by predicting an individuality-preserving gait
pattern for each patient. In this prediction, the transition of the gait patterns
is modeled by associating the sequence of a 3D skeleton in gait with its
continuous-value gait features (e.g., walking speed or step width). In the
space of the prediction model, the arrangement of the gait patterns are opti-
mized so that (1) similar gait patterns are close to each other and (2) the gait
feature changes smoothly between neighboring gait patterns. This model
allows to predict individuality-preserving gait patterns of each patient even
if his/her various gait patterns are not available for prediction. The effec-
tiveness of the proposed method is demonstrated quantitatively. with two
datasets.
key words: gait, human skeleton, individuality-preserving prediction

1. Introduction

In walking rehabilitation, it is important to take into account
the gait pattern of the individual patient. Gait patterns have
been analyzed with various factors such as aging [1], [2],
fatigue [3], and medical conditions such as hemiplegia [4],
cerebral palsy [5], and Parkinson’s disease [6]. On the ba-
sis of these analyses, patients can be instructed in ways that
take into account their specific symptoms. Recently, instruc-
tions are given not only by specialists (e.g., medical doctors
and physical therapists) but also by robotic devices such as
exoskeletal robots [7], [8] and multi-modal systems [9]. It is
known that an unnatural gait pattern provided by the instruc-
tion may cause unusual muscle responses [10] or degrade
the effect of rehabilitation [11], [12].

For measuring the current natural gait pattern of each
patient, various off-the-shelf motion capture systems can be
used. In general, however, a motion given in a rehabilitative
instruction should be modified from the current gait pattern
in order to improve his/her physical condition. For example,
in order to increase the step length of a patient from snow to
snow + Δ, where snow is the current step length, a gait cycle
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in snow +Δ of this patient must be predicted because it is un-
known. In this predicted motion, the individual gait patterns
such as bow-legs should remain for comfortable rehabilita-
tion optimized for each patient. To achieve this prediction,
individuality-preserving gait prediction is the goal of this
paper. In this work, individuality-preserving gait prediction
for providing snow + Δ to each patient is defined as follows:
if individuality is preserved in a predicted gait when one of
gait features (e.g., walking speed and step width) is changed,
the 3D skeleton sequence of the predicted gait is similar to
that of its source gait except for the gait feature changed for
this prediction. In this definition, the individuality preserva-
tion does not mean person identification (e.g., gait recogni-
tion [13]) but means that the gait pattern of a target person is
preserved. More specifically, we evaluate the individuality
preservation in terms of two different criteria: the difference
between a predicted 3D skeleton and its ground truth (see
Sect. 4) and the deviations of gait features in the predicted
3D skeleton (see Sect. 5). If individuality is preserved, both
of the difference in the 3D skeleton and the deviation of gait
features must be small.

This paper addresses the following issues:

• Difficulty in individuality-preservation: The
individuality-preserving gait prediction only from an
observed current gait cycle is an ill-posed problem be-
cause it is difficult to specify what are individualities
in this gait cycle. We define the individualities with a
huge number of training gait patterns.
• Difficulty in prediction: The prediction of gait change

is challenging than classification [14], [15] because of
the complex dynamics of gait. In the literature on
biomechanics, the focus is on the stochastic properties
of the observed gait data (e.g., the effect of aging on
gait [1], [2], [16]) rather than on the prediction of gait
change.
• Difficulty due to a full-body structure (i.e., high-

dimensional features): Previous studies focused on
simple gait features rather than the entire geometric
structure of the skeleton. For example, a change in
the toe clearance was predicted based on acceleration
in [17]. However, the motion of the full-, lower-, or
upper-body skeleton is required for several applications
such as an exoskeletal robot operation.
• Difficulty in gait-cycle prediction: A small number of

future frames in a gait pattern can be predicted from the
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past few frames when sophisticated machine learning
is used [18]. While such short-term prediction is useful
for gait tracking [19], [20], all frames in one gait cycle
must be predicted to meet the goal of this study.

We resolve these issues by extending latent dynamics
models that allow us to predict high-dimensional motions
via the low-dimensional latent space. We extend this model
so that transition between similar gait cycles are explicitly
modeled for individuality-preserving gait cycle prediction.

2. Gait Data Representation and Gait Features

2.1 Gait Representation Using a Sequence of Skeletons

2.1.1 Gait Measurement by Kinect V2

A gait cycle is represented by the temporal sequence of a
3D skeleton measured by a motion capture system. Instead
of using optical markers attached to a user’s body, a Kinect
V2 sensor was used in our experiments. Kinect V2 has a
generic RGB camera and a set of IR camera and projector,
and measures the depth of a 3D scene based on a Time-of-
Flight technology [21]. The accuracy of Kinect V2 is better
than that of Kinect V1 [22] and its effectiveness for detailed
scientific gait analysis has been demonstrated [23], [24].

For easy and reliable measurement, a single Kinect V2
was used to record a subject from the front. When the sensor
observation is made from the side of a subject, measurement
accuracy is unreliable due to the narrow view angle of the
sensor. Our experiments showed that a 3D skeleton can be
measured accurately at a distance of around 3m between the
subject and the sensor.

2.1.2 Normalization of Gait Data

The skeleton measured by Kinect V2 comprises 25 points
including joints and endpoints. Since measurement ac-
curacy of the endpoints is lower than that of the other
joints [23], the skeleton used in our experiments comprised
16 joints, the neck, spine shoulder, spine mid, spine base,
left/right wrists, elbows, shoulders, hips, knees, and ankles
(Fig. 1 (a)), denoted by B:

B = {Neck, SShoulder, SMid, SBase, LShoulder,

RShoulder, LElbow,RElbow, LWrist,RWrist,

LHip,RHip, LKnee,RKnee, LAnkle,RAnkle} (1)

The 3D coordinates of the raw measurement data (i.e.,
in the Kinect coordinate system) are spatially aligned so that
(i) the z-axis coincides with the walking direction of a sub-
ject, (ii) the y-axis is equal to the vertical upward axis, and
(iii) the origin at each frame coincides with the spine base.
The walking direction is approximated by the 3D direction
Dw from the spine base at the beginning frame to that at the
ending frame. This approximate definition allows us to sta-
bly align the 3D coordinate system at each frame because
it is difficult to estimate the instantaneous walking direction

Fig. 1 16 joints used for the skeleton representation of a human body.

robustly against the measurement noise of Kinect V2.
For the aforementioned alignment, the 3D coordinates

of i-th joint in the Kinect coordinate system (denoted by
Kt,i = (Kt,i,x,Kt,i,y,Kt,i,z)T , 1) are transformed to those in the
coordinate system (denoted by Pt,i) at frame t as follows:

Pt,i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
cos(θ) 0 − sin(θ) 0

0 1 0 0
sin(θ) 0 cos(θ) 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 −Kt,i,x

0 1 0 −Kt,i,y

0 0 1 −Kt,i,z

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ Kt,i

(2)

where θ denotes the angle from Dw to the z-axis in the
Kinect coordinate system. Note that we assume that Kinect
V2 is spatially aligned so that the y-axis of its coordinate
system is equal to the vertical upward axis.

One gait cycle is defined to be between two frames in
which the z-coordinate of the right knee is at a temporally-
local maximum.

Finally, the skeleton at t (denoted by St) is represented
by a set of normalized 3D vectors each of which is defined to
fall between two neighboring body joints (Fig. 1 (b)). Then,
normalized 3D vector J t,c is expressed as follows:

J t,c =
lmean

||Pt,c − Pt,p||
(
Pt,c − Pt,p

)
, (3)

where Pt,c and Pt,p denote the 3D coordinates of the child
and parent joints, respectively. lmean denotes the mean of
||Pt,c − Pt,p|| over all frames of all the gait data. Since one
of the 16 joints is a root joint that has no parent, the skele-
ton is represented by 15 × 3D = 45D vectors, as shown in
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Fig. 1 (b), where each arrow indicates a 3D vector. The root
joint in our experiments was the spine base.

St = {J t,c} (4)

c ∈ B \ SBase

2.2 Gait Features Influencing a Gait Pattern

Typical aging effects appear on gait features such as the
walking speed, step width, and leaning forward angle [1],
[25], [26]. The risk of falling is affected by several gait
features including the walking speed, and lateral body
sway [27]–[29]. In our experiments, the walking speed, step
width, leaning forward angle, and lateral body sway were
used as the gait features.

2.2.1 Walking Speed

Since the 3D coordinate system is defined so that the walk-
ing direction coincides with the z-axis, the walking speed
fv is computed only along z-axis. Specifically, the walking
speed fv is computed from the z-coordinates of the spine
base at the beginning and ending frames (denoted by frames
B and E, respectively) of a gait cycle as follows:

fv =
N( f ps)

N(cycle)
(P(K)

E,SBase,z − P(K)
B,SBase,z),

where N( f ps) and N(cycle) denote the number of frames cap-
tured in a second and included in a gait cycle, respectively.
P(K)

t, j,z denotes the z-coordinate of joint j at the t-th frame.

2.2.2 Step Width

The step width is equal to the distance between the left and
right ankles in their respective stance phases. In accordance
with the literature [30], in our experiments, the step width
fw is computed from the x-coordinates of the left and right
ankles, each of whose y-coordinates is minimized:

fw = ||Pt′l ,LAnkle,x − Pt′r ,RAnkle,x||,
where t′l = argmin

t
(Pt,LAnkle,y), t′r = argmin

t
(Pt,RAnkle,y). In

other words, fw is a distance from the z-axis (i.e., the walk-
ing direction Dw). We define fw by Dw rater than by the
instantaneous walking direction because it is difficult to be
computed robustly to measurement noise.

2.2.3 Leaning Forward Angle

The leaning forward angle, fθ, is defined to be the angle be-
tween the vertical axis and the torso around the x-axis. The
torso was defined so that its two endpoints are SBase and
the midpoint of LShoulder and RShoulder. This midpoint
was used instead of other candidates (i.e., SMid, SShoulder,
and Neck) because 1) Neck can be bent and 2) it is difficult
to correctly localize SMid and SShoulder because they are
more inside the body rather than the right and left shoulders

as validated in experiments; see Table 3.

fθ =
1

E − B + 1

E∑
t=B

tan−1

( ||Pt,SS,y + Pt,SS,y||
||Pt,SS,z + Pt,SS,z||

)
,

where SS denotes SShoulder.

2.2.4 Lateral Body Sway

The lateral body sway represents the moving distance of the
body centroid along the x-axis. The body centroid at t is de-
termined by the weight-weighted centroid of 16 joints with
the approximate weight ratios of the body parts (i.e., head =
8%, arms = 12%, torso = 46%, and legs = 34%). The lateral
body sway, fs, is the difference between the max and min
x-coordinates of the body centroid in each gait cycle.

fs = ||max
t

(
Pt,Centroid,x

) −min
t

(
Pt,Centroid,x

) ||.
3. Individuality-Preserving Gait Prediction

This section describes a methodology for individuality-
preserving gait prediction. The learning process of our
method, which is based on low-dimensional latent represen-
tation [18] introduced in Sect. 3.1, is proposed in Sect. 3.2.
With a model acquired in the learning process, we can pre-
dict an individuality-preserving gait pattern, as described in
Sect. 3.3.

3.1 Latent Representation of Gait Cycles Lying along the
Transition of a Gait Feature

It is not easy to model gait patterns because the dimensions
of the gait data are large; our 3D skeleton representation
St is a 45D vector. When modeling high-dimensional data,
dimensionality reduction is useful, and principal component
analysis (PCA) is one of the most popular techniques. In the
low-dimensional latent space, the distribution of data can be
represented efficiently. This efficient representation allows
us to model the dynamics of the gait data even with a small
amount of training data. However, PCA is inappropriate for
representing complex temporal data such as gait data.

Gait data are therefore modeled in a low-dimensional
latent space acquired by Gaussian Process Dynamical Mod-
els (GPDM) [18]. Given a temporal sequence of D-
dimensional observation data Y = (y1, · · · , yT ), where T de-
notes the number of training observation data, GPDM [18]
acquires the following:

1. A mapping function from the latent space to the obser-
vation space:

FO(xt) = yt, (5)

where xt denotes a d-dimensional latent variable (d �
D) at time t.

2. A sequence of data in the latent space, which is denoted
by X = (x1, · · · , xT ).

3. A mapping function from t to t + 1 in the latent space:
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FD(xt) = xt+1.

The above two mapping functions are modeled as fol-
lows:

FO(xt) =
∑

j

b jψ j(xt) + ny,t, (6)

FD(xt) =
∑

i

aiφi(xt) + nx,t, (7)

where φi and ψ j are basis functions with weights A =

[a1, . . . ] and B = [b1, . . . ], and nx,t and ny,t are noise. Under
the assumption that the noise is zero-mean Gaussian, the fol-
lowing likelihood for Y can be obtained by marginalization
of the basis functions:

p(Y|X, θ) = 1√
(2π)T D‖KY‖D

exp
(
−1

2
tr(K−1

Y YYT )
)
, (8)

where KY , in which KYi, j = kY (xi, x j), is a kernel matrix
with hyperparameters θ. Similarly, the likelihood for X can
be obtained with hyperparameters θX . GPDM training is
achieved by optimizing the hyperparameters θ and θX for
maximizing the joint likelihood for Y and X.

A mapping function from the observation space to the
latent space is not explicitly provided by GPDM. From one-
to-one correspondences between Y and X, a mapping func-
tion from the observation space to the latent space can be
obtained:

FL(yt) = xt, (9)

We represent FL by Gaussian Process Regression, GPR.
In our experiments, GPDM and GPR use the RBF ker-

nel and are optimized with a full training set (i.e., with no
sparse optimization) by a scaled conjugate gradient descent.

GPDM can be optimized not only from one sequence
but also from multiple sequences of observation data (i.e.,
the gait cycles of many subjects, in our case).

3.2 Learning Relationship between Gait Patterns and a
Gait Feature Transition in the Latent Space

Figure 2 shows an example of gait cycles in the latent space.
In this paper, GPDM is extended for representing the change
in gait cycles in accordance with each gait feature. In the
proposed method, the gait cycles should be arranged so that
the gait features of neighboring cycles change smoothly as
indicated by the color of the gait cycles shown in Fig. 2 (a).
This arrangement makes it possible to derive gait predic-
tion while preserving individuality, as shown in Fig. 2 (b)
and discusses below in Sect. 3.2. GPDM arranges xi and x j

close to each other in the latent space if their respective 3D
skeletons, yi and y j, are close to each other. With this prop-
erty, gait cycles can be arranged along the transition of a gait
feature in the latent space by embedding the gait feature into
the observation data as follows. Each observation, yt, con-
sists of a skeleton, St, and a gait feature, g ∈ { fv, fw, fθ, fs}:
yt =

(
ST

t , g
)T

(10)

Fig. 2 Gait cycles lying along the transition of a gait feature. This ex-
ample shows the distribution of gait cycles lying along the walking speed
in the 3D latent space. Each point corresponds to a 3D skeleton and each
ring-shaped sequence of points indicates a gait cycle. The walking speed
becomes larger from gait cycles indicated by red to those indicated by blue.

All elements of this 46D vector yt are linearly normalized
to the range [0, 1] before being applied to GPDM in order to
ensure computational stability. By smoothly arranging g of
Eq. (10) in the latent space using GPDM, gait cycles repre-
sented by a sequence of yt are smoothly changed according
to the gait feature g as illustrated in Fig. 2 (a).

For individuality-preserving gait prediction, the map-
ping function, FP,k, is learned in the latent space:

FP,k(xt(g),Δ) = xt(g + Δ), (11)

where xt(g) corresponds to an observation yt =
(
ST

t , g
)T

.
k ∈ {walking speed, step width, leaning forward angle, lat-
eral body sway} denotes the ID of a gait feature. This map-
ping function is produced for each of the gait features and
was implemented using Gaussian process regression in our
experiments. For example, assume that k is the walking
speed and FP,k(xt(g),Δ) is learned with Δ = 0.1 km/h. Given
a 3D skeleton observed when g = 1 km/h, FP,k(xt(g),Δ) pre-
dicts the 3D skeleton that will be observed when g = 1.1
km/h. Δ should be determined appropriately for each gait
feature so that Δ is the minimum step for changing this gait
feature. By iterative use of FP,k(xt(g),Δ), we can predict
a larger change also. For example, the following equation
predicts the gait cycle of (g + 2Δ) from that of g:

xt(g + 2Δ) = FP,k(FP,k(xt(g),Δ),Δ) (12)
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For ideal individuality-preserving gait prediction,
FP,k(xt(g),Δ) is learned using xt(g) and xt(g + Δ) collected
from the same subject. However, this condition is unrealistic
because a gait cycle including xt(g+Δ) is unnatural when the
one including xt(g) is natural in the same subject. Our pro-
posed method therefore assumes that only natural gait cy-
cles are collected from each subject. To approximately meet
the aforementioned condition, similar gait cycles of different
people are treated as pairs of gait cycles, xt(g) and xt(g+Δ).
The generalization capacity of the Gaussian process allows
us to predict a change in the gait pattern of different people
having similar gait patterns as follows:

Step 1: GPDM gets the latent variables of all N gait cycles.
Step 2: Let Xi =

(
xi,1, · · · , xi,Ti

)
be a sequence of Ti latent

variables corresponding to the i-th gait cycle. Assume
that gait feature k of Xi has the value g. Gait cycles
whose gait feature k falls between g+Δ−δ and g+Δ+δ
are extracted from all the gait cycles. The threshold
δ = 0.1Δ, in our experiments. Figure 2 (b) shows an
example where the gait feature is the walking speed,
g = 4.0 km/h, and Δ = 0.4 km/h. In this example, only
gait cycle C1 is extracted because the walking speed of
C2 is beyond the threshold.

Step 3: Let X′j be the j-th gait cycle in a set of gait cy-
cles extracted in step 2. The root mean square error
(RMSE) between Xi and X′j is computed. RMSE be-
tween Xi and X′j is computed as follows:

RMSE =

√√√
1
Ti

Ti∑
p=1

||xi,p − x j,q′ ||2 (13)

q′ =
T j

argmin
q
||xi,p − x j,q||2

Let X̂
′

be the one whose RMSE is the smallest over all
the extracted gait cycles. The pair of Xi and X̂

′
is used

for learning the mapping function FP,k in the next step.
In the example shown in Fig. 2 (b), each dotted arrow
depicts a pair. The primary objective of this process is
to find the closest pair framewise for learning smooth
mapping FP,k. Therefore, temporal continuity of a gait
cycle is neglected in Eq. (13), while it is useful for gait-
wise matching taking into account temporal continuity
such as dynamic time warping. Note that some gait cy-
cles having a higher value of g (more specifically, val-
ues near the highest g) may not have the paired sample,
X̂
′
, and are not used in the following steps.

Step 4: After steps 2 and 3 have been performed for ∀i ∈
{1, · · · ,N}, the mapping function FP,k is learned from
all the pairs of Xi and X̂

′
.

Step 5: Steps 2, 3, and 4 are performed for all gait features.

3.3 Gait Prediction through the Latent Space

Given a gait cycle, Y =
(
y1, · · · , yT

)
, where yt is expressed

by Eq. (10), yt is projected to the latent space by xt = FL(yt)

(Eq. (5)). From xt, individuality-preserving gait prediction
for gait feature k is achieved by x′t = FP,k(xt,Δ) (Eq. (11)).
x′t is then projected back to the observation space by y′t =
FO(x′t) (Eq. (9)). A 3D skeleton St that consists of 15 J t,c

(Eq. (4)) is extracted from y′t to acquire the 3D coordinates
of all joints P′t,i (Eq. (3)).

4. Evaluation with Ground Truth

The proposed method was evaluated quantitatively by com-
paring predicted skeletons with their respective ground
truth. This comparison was conducted using the walking
speed as a gait feature. Each subject walked on a treadmill
at 10 different speeds ranging from 2.0 km/h to 5.6 km/h
at intervals of 0.4 km/h. Kinect V2 measured the subject
as illustrated in Fig. 3. The treadmill allowed the subject
to walk at the predefined speed. One gait cycle was mea-
sured at each speed, after the subject had walked until the
gait became stable and natural. We recruited 24 subjects
with ages ranging between 22 and 42 years of age. In total,
10 × 24 = 240 gait cycles were measured. With these data,
we conducted cross validation, where the gait cycles of 5
and 19 subjects were used for testing and learning, respec-
tively. Δ was 0.4 km/h in accordance with the speed interval
of the learning samples.

From the predicted data y′t at each t-th frame, the 3D
coordinates of all joints P′t,i (i ∈ B where B denotes a set
of all joints defined in Eq. (1)) were acquired as described
in Sect. 3.3. Then the 3D error distance between each joint
of the predicted skeleton, P′t,i, and its ground truth, P(gt)

t,i , is
computed one by one in order to evaluate the RMSE of P′t,i.

RMSE =

√√√
1

T |B|
T∑

t=1

∑
i∈B

||P(gt)
t,i − P′t,i||2, (14)

where T denotes the number of frames in this gait.
Table 1 shows the mean RMSEs (mm) over all subjects.

In Table 1, the row and column indicate the walking speeds
of the source and predicted gait cycles, respectively. While
our model can predict only snow + Δ km/h gait cycle from
snow km/h gait cycle where snow is the walking speed of the
source gait, i-times iteration of our prediction model allows
us to predict snow + iΔ km/h gait cycle, as shown in Eq. (12).
It is called the iterative prediction process. Single use of
our prediction model is called one-time prediction process.
A value in the row of ss km/h and the column of sd km/h
denotes the mean RMSE (mm) between the ground truth of

Fig. 3 Gait measurement with a treadmill using Kinect V2.
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Table 1 Mean RMSEs (mm) of the 3D coordinates of skeleton joints
in predicted gait cycles. Gait cycles were predicted for different walking
speeds. The velocity indicated in the row and column denotes the walking
speeds of the source and predicted gait cycles, respectively. Each RMSE
was computed by subtraction of the predicted 3D skeleton from its corre-
sponding ground truth.

Predicted walking speed (km/h)
2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6

2.0 28 31 33 33 36 38 43 44 49
2.4 27 31 31 33 35 42 43 48
2.8 30 31 29 34 41 42 48
3.2 29 28 31 33 35 41
3.6 29 29 33 34 40
4.0 33 36 36 42
4.4 31 32 37
4.8 29 34
5.2 33

Table 2 Comparative experiments. The mean RMSEs (mm) of the 3D
coordinates of skeleton joints in predicted gait cycles are computed by three
different methods.

Predicted walking speed (km/h)
2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6

Ours 28 27 30 29 29 33 31 29 33
GPDM 35 41 40 38 34 44 45 52 56
Mean 50 49 64 50 44 41 42 84 44

the sd km/h gait cycle and the sd km/h gait cycle predicted
from the ss km/h gait cycle.

The following observations are made from the experi-
mental results:

• Iterative prediction processes increase the error. For
example, from the 2.0 km/h gait cycle, the mean RMSE
when predicting the 5.6 km/h gait cycle (i.e., 49 mm)
was larger than when predicting the 2.4 km/h gait cycle
(i.e., 28 mm).
• The mean RMSEs in one-time prediction process were

a bit larger at faster speeds. For example, the mean
RMSE of the prediction from the 5.2 km/h gait cycle to
the 5.6 km/h gait cycle (i.e., 33 mm) is slightly greater
than that from 2.0 km/h to 2.4 km/h (i.e., 28 mm). This
is because the range of joint motion is larger at faster
walking speeds.

The effectiveness of the proposed method was demon-
strated by comparing its RMSEs with those of different
methods. Table 2 shows mean RMSEs in one-time predic-
tion process results (e.g., from a 2.0 km/h gait to a 2.4 km/h
gait) with the mean RMSEs of our proposed method in the
top row. To confirm the effect of our extension proposed in
Sect. 3.2, the latent space was modeled by GPDM [18] with
no gait features in the observation data (i.e., yi = ST

i ). The
results of only GPDM are shown in the second row of Ta-
ble 2. The bottom row shows the mean RMSEs between
the means of all observed gait cycles at sd km/h, which was
regarded as a base result for individuality-ignoring gait pre-
diction, and each observed gait cycle at sd km/h.

At all walking speeds, the proposed method was su-
perior. The effect of individuality-preservation can be seen

Table 3 Mean RMSE (mm) between the predicted 3D coordinates and
their ground-truth values in each joint. For this evaluation, all results shown
in Table 1 are used.

Neck SShoulder SMid Sbase LShoulder RShoulder
10 31 48 60 11 15

LElbow RElbow LWrist RWrsit Lhip RHip
22 30 40 39 42 48

LKnee Rknee LAnkle RAnkle – –
23 28 65 59 – –

Fig. 4 Gait measurement on a floor using Kinect V2.

from the fact that both approaches outperformed the base
result. The superiority of the proposed method over the one
using only GPDM [18] is achieved by employing a gait fea-
ture in the observation data (i.e., yi = (ST

i , g)). Since g al-
lows the gait cycles to be arranged in the latent space so
that their gait features change smoothly between neighbor-
ing gait cycles (as illustrated in Fig. 2), it is easy to model
the individuality-preserving mapping function fP,k.

For detailed analysis, the mean RMSE of each joint
over all subjects is shown in Table 3. Here, we focus on the
RMSEs of lower-body joints because these joints are domi-
nant for gait analysis. In the literature [31], it is shown that
50mm error is high enough for several rehabilitation tasks.
While 50mm error is not small enough, we regard this cri-
terion as a soft threshold in screening for inappropriate pre-
diction methods for gait rehabilitation tasks. In Table 3, we
can see that a maximum error up to 50mm is guaranteed in
all joints except noisy ankles.

5. Evaluation with Realistic Condition

Gait data were measured from 206 subjects with a mean age
of 78.5 in an elderly care home. Kinect V2 measured the
gait pattern of each subject when the subject walked in a
straight line for 7m. The experimental environment is illus-
trated in Fig. 4. While the official specification guarantees
that Kinect V2 reliably tracks a body skeleton within 4.5m,
a subject was observed within the range of 1m to 6m in our
experiments as shown in this figure. This is because the gait
cycle of a few subjects could not be captured within 4.5m,
while most gait cycles were captured within 4.5m. Each
subject was measured five times, and one gait cycle was ex-
tracted from each trial. In total, 5 × 206 = 1030 gait cycles
were collected and used for experiments.

In this dataset, the ground truth of a predicted gait is
not available. For validating the proposed method, the effect
of individuality preservation is quantitatively evaluated by
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Table 4 Difference/distribution in the leaning forward angle (degrees).
Its standard deviation (SD) over all measured gait cycles is shown in the
leftmost column. In other columns, the mean difference (degree) between
source and predicted gaits is shown.

SD Mean difference (degrees)
Walking speed Lateral sway Step width

8.2 2.9 1.1 1.2

comparing gait features between source and predicted gaits.
If the proposed method is able to preserve individuality in a
predicted gait when a gait feature is changed, other gait fea-
tures in the predicted gait should be similar to those in the
source gait; this is a definition of individuality preservation.
The change in the gait feature was evaluated by comparing
it with the distribution of the feature over all measured gait
cycles. In our experiments, the leaning forward angle was
used as a gait feature compared between the source and pre-
dicted gaits, while each of other gait features (i.e., walking
speed, lateral sway, and step width) is changed for gait pre-
diction. This is because, in our observed gait cycles, the dis-
tribution of the leaning forward angle was relatively smaller
within each subject, which is good for validating the effect
of individuality preservation.

The prediction models were learned for five gait fea-
tures; walking speed, step width, leaning forward angle,
and lateral body sway. In total, five prediction models were
learned for each test data. For all prediction models, the la-
tent space had three dimensions. Δ was set to 1.16 km/h, 13
mm, 19 mm, and 4.3 degrees for walking speed, lateral body
sway, step width, and leaning forward angle, respectively.
For evaluation, onefold cross validation was executed.

The mean difference of the leaning forward angle be-
tween the source and predicted gait cycles is shown in Ta-
ble 4. For comparison, the standard deviation of the leaning
forward angle over the gait cycles of all subjects, which cor-
responds to the sample distribution, was also computed. As
expected, the mean difference is smaller than the standard
deviation.

6. Concluding Remarks

This paper proposed a method for individuality-preserving
gait prediction. A gait cycle is predicted for the variation in
five gait features related to aging and a risk of falling. The
complex change in the gait cycle is predicted while preserv-
ing individuality by latent space modeling extended with
the gait feature. The effectiveness of the proposed method
was demonstrated quantitatively compared with prediction
methods that ignore individuality.

Future work includes detailed quantitative evaluation
against ground truth. Quantitative evaluation against ground
truth was conducted only for walking speed in this paper,
but it would be interesting to extend this evaluation to other
gait features. It is, however, difficult to obtain natural vary-
ing gait patterns from a single individual, while such gait
patterns may be collected by observation over a long term
(e.g., 10 years or more). Instead of the long-term observa-

tion, a gait dataset derived from a huge number of subjects
may provide a dataset of similar gait patterns that can be
treated as mimicking those from a single subject.

This study was supported by JSPS KAKENHI Grant
Number 15H01583.
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