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PAPER

Feature Selection of Deep Learning Models for EEG-Based RSVP
Target Detection

Jingxia CHEN†a), Zijing MAO††b), Ru ZHENG†c), Yufei HUANG††d), Nonmembers, and Lifeng HE†,†††e), Member

SUMMARY Most recent work used raw electroencephalograph (EEG)
data to train deep learning (DL) models, with the assumption that DL mod-
els can learn discriminative features by itself. It is not yet clear what kind
of RSVP specific features can be selected and combined with EEG raw
data to improve the RSVP classification performance of DL models. In this
paper, we tried to extract RSVP specific features and combined them with
EEG raw data to capture more spatial and temporal correlations of target or
non-target event and improve the EEG-based RSVP target detection perfor-
mance. We tested on X2 Expertise RSVP dataset to show the experiment
results. We conducted detailed performance evaluations among different
features and feature combinations with traditional classification models and
different CNN models for within-subject and cross-subject test. Compared
with state-of-the-art traditional Bagging Tree (BT) and Bayesian Linear
Discriminant Analysis (BLDA) classifiers, our proposed combined features
with CNN models achieved 1.1% better performance in within-subject test
and 2% better performance in cross-subject test. This shed light on the
ability for the combined features to be an efficient tool in RSVP target de-
tection with deep learning models and thus improved the performance of
RSVP target detection.
key words: RSVP, EEG, feature selection, deep learning, CNN

1. Introduction

Brain computer interfaces (BCI) rely on machine learning
(ML) algorithms to decode the brain’s electrical activity
into decisions. One application of BCI is to use electroen-
cephalograph (EEG) signals to detect rare target images
within a large collection of non-target images using a rapid
serial visual presentation (RSVP) paradigm [1]. There are
multiple detection and classification approaches that have
been applied to the RSVP tasks, including bagging tree
(BT) [2], linear discriminant analysis (LDA) [3], Bayesian
Linear Discriminant Analysis (BLDA) [4], support vector
machines (SVM) [5], hierarchical discriminant component
analysis (HDCA) [6], [7], xDAWN [8], and deep learning
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(DL) methods [9]. Deep learning is a class of machine
learning algorithms with a multi-layered architecture which
has recently achieved outstanding performance in a variety
of applications including images, videos, speech, and text
recognition [10]–[15]. The key to DL’s success is its abil-
ity to automatically extract discriminant feature represen-
tations directly from big raw data. Although DL applica-
tion in EEG data classification is still in its infancy, as the
dataset size increases, the advantage of DL over traditional
machine-learning techniques is becoming more apparent.

A few existing works has demonstrated the power of
DL in EEG classification, especially convolutional neu-
ral network (CNN). In [16], a CNN was applied for pre-
dicting epileptic seizure based on intracranial EEG raw
recording. [17] transformed EEG activities into a sequence
of topology-preserving multi-spectral images and trained a
deep recurrent convolutional network for learning feature
representations that are invariant to inter and intra subject
differences. [18] explored a deep CNN architecture for
generalized single-trial EEG raw data classification across
subjects. Another CNN proposed in [19], [20] applied
XDAWN [20] to each of the time samples across all the EEG
channels in its convolution layer. The CNN model described
in [21], [22] was built for a single channel EEG recording
and the inputs to CNN were time-frequency spectrum power
values of the channel. Our previous work [23], [24] investi-
gated the impact of different convolutional filters in DL and
showed different techniques of training DL models to im-
prove the EEG classification performance in RSVP target
detection tasks.

Above recent work all used raw EEG data to train DL
models, with the assumption that DL models could learn
discriminative feature representations by itself [25]. How-
ever, this is based on enough training samples are avail-
able. It is not yet clear what kind of specific features can
be selected and combined with EEG raw data working bet-
ter in capturing spatial and temporal correlations in EEG
stimulated by RSVP task and improve the performance of
DL models. From another aspects, feature selection is non-
trivial because useful features for classification tasks will
definitely benefit the performance greatly [26], [27], specif-
ically for RSVP task which normally has visual evoked po-
tential at P300, and also the visual evoked potential at the
image showing frequency rate, such as the 5.5 Hz pattern
showed in X2 Expertise RSVP dataset from BCIT [28]. In
this paper, we tried to extract RSVP specific features and
combined them with EEG raw data to improve the RSVP
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target classification performance. We tested on X2 Expertise
RSVP dataset to show the experiment results. We firstly pro-
posed to find the feature combinations that could achieve the
best performance for within-subject RSVP tasks. Then we
applied the combined features on different machine learning
and deep learning models to show the robustness of such
feature combinations on cross-subject RSVP tasks. Com-
pared with state-of-the-art traditional Bagging Tree (BT)
and Bayesian Linear Discriminant Analysis (BLDA) clas-
sifiers, our proposed combined features with CNN models
achieved 1.1% better performance in within-subject test and
2% better performance in cross-subject test.

The remainder of the paper was organized as follows.
Section 2 described material and methods including the
RSVP dataset, the acquisition of EEG data, data prepro-
cessing, feature extraction and selection and the proposed
DL models. Section 3 reported the testing experiments and
the results. Section 4 discussed the results. Section 5 of-
fered some concluding observations and suggestions for fu-
ture work.

2. Material and Methods

2.1 Dataset Introduction

In this paper, we used BCIT X2 Expertise RSVP EEG
dataset [28], [29] to carry out our experiments. This dataset
consisted of a rapid presentation of color photographs (512×
662 pixels) of indoor and outdoor scenes. The images were
presented at the frequency of 5 Hz (∼200 ms per image)
and subtended a visual angle of approximately 9◦. Every
10s a blank screen with the word “blink” was presented to
give participants a chance to blink without missing stim-
uli. There were 10 subjects and each subject participated
5-session experiments. Each session of RSVP task consisted
of 6 blocks of 10 min each. All scenes contained only inan-
imate objects and were manually scaled and cropped. Some
scenes contained target objects and others did not. Before
each block participants were instructed as to the class of tar-
get objects for that block. There were 5 classes of target ob-
jects: containers, chairs, doors, stairs, and posters. Before
the beginning of each block, the “ready screen” would indi-
cate the target class for that block. During the RSVP, par-
ticipants were instructed to press a button only when they
saw an object from the current target class. The order of
the target classes was randomly chosen for each participant
(blocks 1–5); however, the last block (block 6) always had
the same target class as the first block. In addition to target
class, target probability varied across each block. Six target
probability values (0.01, 0.03, 0.05, 0.07, 0.09, and 0.11),
one for each block, were randomly assigned at the begin-
ning of the task [28], [29]. EEG recordings were digitally
sampled at 512 Hz from 256 scalp electrodes over the entire
cortex of each subject using a BioSemi Active Two system
(Amsterdam, Netherlands).

2.2 Data Preprocessing

X2 Expertise RSVP raw dataset was preprocessed with the
PREP pipeline [30] which performed automated noise re-
moval, bad channel detection, and referencing in a way that
allowed users to specialize the data to particular applica-
tions without having to work with the raw data. With PREP
pipeline, the raw EEG data was firstly band-pass filtered
with a bandwidth of 0.1-32 Hz to remove its line noise.
Then the true signal mean was estimated and the signal ref-
erenced by this mean was used to find the bad channels. A
robust z-score algorithm was used to detect noisy channels
that contain any NaN (not-a-number) data or that have sig-
nificant periods with constant values or very small values.
The spherical option of EEGLAB eeg interp function was
used for channel interpolation. The original channel size of
this dataset was 256, but we selected a subset of 64 channels
based on the 10-20 system 64-channel locations. Its original
sampling rate was 512 Hz and then down sampled to 64 Hz
for the convenience of calculation.

Following the procedures described in [31], epochs
were extracted across time and all contained channels. In
[32], one second after an image onset event was often used
to capture the dynamics that user see a target at about 300ms
and analysis it at about 600ms. Others in [33] also recom-
mend to extract epoch between 200ms before and 800ms
after image onset. In this paper, for each of 10 subjects, we
extracted one-second epochs of his initial EEG data time-
locked to each target/non-target image onset as target/non-
target epochs, resulting in the size of each epoch is 64 (chan-
nels) by 64 (time points). To balance the training data, we
randomly selected the same number of non-target epochs as
target epochs, resulting in a total of 107,592 epochs for ten
subjects and ∼10,000 epochs including ∼5,000 target epochs
and ∼5,000 non-target epochs for per subject. We then or-
ganized the raw EEG feature for each subject by randomly
selecting 10% target and non-target epochs as testing sam-
ples, the left 90% as training samples including random 10%
as validating samples.

2.3 Feature Extraction and Selection

We extracted EEG features from time domain and frequency
domain separately. In time domain, we took the amplitudes
of the extracted 1-s EEG epochs as raw EEG feature (Raw)
which can directly reflect the statistical characteristics of
EEG signals in a period of time. Due to great difference of
raw feature magnitude over different epochs will leads to in-
stable numerical calculation and poor testing performance,
we also extracted the normalized feature (Norm) of each
epoch of raw EEG feature by firstly normalizing the train-
ing and validating data across epochs by z-score normaliza-
tion [24] and the normalized parameters Mu and sigma were
then used to normalize the testing data across epochs. Event
related potentials (ERP) such as P300 [30] are also widely
used time-domain features for RSVP tasks. So, we extracted
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the ERP which allocated at 200-400ms of each 1-s epoch as
P300 feature.

ERP can also be achieved in the frequency domain. In
sensorimotor control, the amplitudes of mu (8-12Hz) and
beta (18-25Hz) rhythm were used to map thoughts to one or
two-dimensional movement [34]. We extracted frequency
ERP features by Auto Correlation and Fast Fourier Trans-
form to convert the raw EEG feature into power spectral
data at specified frequency range of 5-6Hz, 1-10Hz and
the whole frequency range of 0.1-32Hz which were called
Freq5-6Hz, Freq1-10Hz and Freq feature separately. We
also extracted the power spectral density (PSD) of the whole
frequency range of the raw EEG feature to intuitively ob-
serve the distribution and variation of EEG rhythm. We ap-
plied 0.25-second Hanning window without overlapping on
each channel of 1-s epochs to extract 16 PSD features per
channel. As a result, we obtained 7 different types of sin-
gle EEG features including Raw, Norm, P300, Freq5-6Hz,
Freq1-10Hz, Freq and PSD for each subject.

Feature selection was often applied after feature ex-
traction to eliminate the unrelated and redundant features,
so as to learn the discriminative feature subset, reduce the
number of features and improve the accuracy of the model.
The feature selection algorithms include filter and wrapper
approaches, where filter approaches select subsets by their
information content without directly evaluating their clas-
sification performance and wrapper methods use a classi-
fier to search subsets by their predictive accuracy on test
data. Filter approaches are much faster, while the wrapper
methods can produce a set that achieves better classifica-
tion performance. In this paper, we did not apply any filter
and wrapper method to make feature selection. As com-
bination features took into account both local features and
global features of EEG data, we just selected some of the
above single features and make them combined. We inves-
tigated RSVP target classification performance of shallow
classifiers and deep learning models on these seven different
simple features and their selected combinations respectively
to find out the best one exhibiting the highest performance
and make sure which kind of features are most efficient for
deep learning models.

2.4 Deep Learning Models

In this paper, we explored the deep learning models espe-
cially CNN models for target prediction in RSVP tasks. The
CNN architecture contained multiple convolutional layers
followed by fully connected layers (Fig. 1 (b)). In each con-
volutional layer, multiple filters or kernels were convolved
with the input data (vectorized EEG epochs). These filters
were designed to capture different local spatial features. The
output of a convolution layer from one kernel was called
a feature map (FM). The fully connected layers then com-
bined all the feature maps at the output of the last convolu-
tion layer. Here we used the CNN architecture described in
[7], [35]. Let Wk

c represent the cth weight of the kth kernel
for c = 1, . . . , 64 channels and k = 1, . . .K, where K was

Fig. 1 (a) The designed DNN architecture with fully connected modules
and hidden units expressed in gray ovals; (b) the designed CNN architec-
ture. There were N convolution layers and blue boxes represented con-
volution operations, where the texts inside represented [kernel shape]/MP
width × Feature Map Size. “FM” denoted feature map.

a hyper-parameter to be learned. Let v ∈ RM×1 denote an
input vector with M = 64×64 in this case. Then, the kth FM
at the output of the convolutional layer was:

convolution(v)kt = ReLU

⎛⎜⎜⎜⎜⎜⎝
64∑

c=1

Wk
c vct

⎞⎟⎟⎟⎟⎟⎠

for t = 1, . . . , 64 (1)

where vct was the input element corresponding to the EEG
measurement from channel c at time t, ReLU [4] represented
the rectified linear function f(x) = max(0, x). We saw from
the Eq. (1) that the kernel filters for all channels at time
t formed a spatial filter. After the convolutional layer, a
multilayer perceptron (MLP) was applied to combine all
FMs for prediction of target/non-target events. The number
of FMs and the number of hidden units were CNN hyper-
parameters [9] to be tuned during training.

For convolution filters, we considered 8 combinations
of local (L)/global (G) with spatial (S)/temporal (T) fil-
ters. A spatial (S) (or temporal (T)) filter referred to the
one that focused on EEG channels (or time samples), be-
cause EEG data had both spatial and temporal correlations.
All together, these 8 combinations of local (L)/global (G)
vs spatial (S)/temporal (T) filters were: LS, LT, GS, GT,
LSLT, LSGT, GSLT, GSGT. Our previous experiment re-
sults [23], [24] had shown that GT and GSLT convolution
filters had better performance than others. For testing sim-
plicity, we applied GTCNN and GSLTCNN models on our
selected features to test the RSVP target classification per-
formance and considered a local filter with kernel size of
5 across time samples and a global filter with kernel size
across all channels which number were 64 in our dataset.

Model selection was an important step in CNN train-
ing, which determined the model hyper-parameters includ-
ing the number of hidden layers, the hidden unit size, the po-
sition of dropout modules, the max-pooling width, and the
number of feature maps. Specific model parameters needed
to be trained and their search space for each of the 8 de-
signed CNNs were convolution layer size (1 to 3 layers) and
feature map size (8 to 128 feature maps in log2 scale) for
each convolution layer. The search space was defined to bal-
ance the trade-off between a deeper architecture and limited
training samples. For simplicity, we fixed the local filter
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kernel size as 5 × 5. If pooling was applied, the pool-
ing kernel size would be 2 × 2. The top fully-connected
DNN modules (Fig. 1 (a)) had 2 hidden layers with 128 hid-
den units in each layer. Dropout layer was after the first
fully-connected layer and all layers used the ReLU acti-
vation function for faster approximation. All models were
trained using stochastic gradient descent (SGD) on a mini-
batch size of 32 epochs with an exponential decay for the
learning rate and momentum. The strategy of early stop-
ping [36] was applied to determine the training iterations,
where the maximum training iteration was set to be 10,000.
The initial learning rate was 0.01 with a decay rate about
1.01, the momentum was 0.9, and decay weight was 0.0005.
Here, we applied random search [37] to find the best model
combination, where we tested 32 randomly picked models
and the best model was selected as the one that produced
the largest Area Under the Curve (AUC) on the validation
dataset.

3. Experiments and Results

3.1 ERP of RSVP Experiment

For X2 Expertise RSVP dataset, we performed normaliza-
tion before we put target and non-target epochs into train-
ing. This process tried to eliminate the strong image show-
ing pattern which is about 5 Hz of each evoked potential
region corresponding with the image showing frequency in
the experiment. The top of Fig. 2 indicates the non-target
and target epoch ERPs of raw data in X2 Expertise Exper-
iment, and there is no obvious difference can be observed
between ∼200ms and ∼300ms with the image showing pat-
tern smearing on target ERP and there is slightly more ob-
vious pattern smearing on target ERP at ∼400ms. These
two patterns correspond to the visual (∼300ms) and analy-
sis (∼400ms) events. While after normalization, patterns at
these two locations have been emphasized and showed in
the bottom of Fig. 2. The transition of activation in target
ERP is from occipital region to parietal and frontal lobe also

Fig. 2 X2 Expertise ERP of raw data (top) and normalized data (bottom)
of target and non-target epochs

indicates the visual process.

3.2 Baseline Results on Within-Subject Experiment with
Selected Features

The motivation of this preliminary test was to search the
stable feature combinations that provided the best perfor-
mance based on two state-of-the-art RSVP algorithms: BT
and BLDA [22]. Bagging tree is one of efficient machine
learning algorithms based on bootstrap aggregating method,
which can ensemble meta-algorithm designed to improve
the stability and accuracy of statistical classification and re-
gression. It also reduces variance and helps to avoid overfit-
ting [2]. BLDA is a three-level hierarchical Bayesian model
which yields a fast algorithm resulting in reasonable com-
parative performance in terms of test set likelihood [4]. In
our previous studies [22], these two algorithms had been
proved to perform better than the other traditional ones on
EEG classification. Therefore, we chose them as baseline
algorithms comparing with DL models. Here, we used X2
Expertise RSVP dataset to test the within-subject prediction
performance on selected features. We preprocessed the ini-
tial EEG data and made feature extraction and selection as
the methods described in Sects. 2.2 and 2.3. As a result, we
got 7 types of single features including Raw, Norm, Freq,
Freq5-6Hz, Freq1-10Hz, P300, PSD for each subject. For
each type of these features, we carried out 10-fold (from S01
to S10) cross validation experiments. For each fold, 10%
target and non-target epochs of its subject was randomly se-
lected as testing samples, the left 90% as training samples
including random 10% as validating samples. We made the
average performance of these 10 folds as the final result of
each type of feature. Figure 3 showed our provided base-
line results for these 7 types of single features. From Fig. 3,
we observed that in frequency domain both BT and BLDA
models had its best performance (0.66 and 0.67) on Freq fea-
tures which covered the whole frequency range and in time
domain BLDA had the best performance of 0.7 on Raw and
Norm feature as well as the BT model. The next step was to
find out feature combinations with better performance.

We chose to use either Raw or Norm feature combined
with other 5 types of features because Raw and Norm fea-

Fig. 3 Tested baseline results for 7 types of single features
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Fig. 4 Tested baseline results for combined features

Fig. 5 The performance of three models for within-subject X2 Expertise
RSVP dataset

tures achieved the best performance according to the above
results. Therefore, we had 10 different combinations. Fig-
ure 4 showed the testing results on these combined features
in five blocks, among which each block included three re-
sults from the original feature, the combined features with
raw and normalized feature. We observed both BLDA and
BT models have the best performance of 0.73 and 0.69 on
Freq feature combined with the Raw feature (Freq+R) and
have the suboptimal performance of 0.69 and 0.68 on Freq
feature combined with the Norm feature (Freq+N). So, we
selected to use the three best single features including Freq,
Raw and Norm and their two types of combined features in-
cluding Freq+N and Freq+R to carry out the within-subject
and cross-subject experiments on DL models.

3.3 Within-Subject Performance on DL models

We tested the above five selected features on our de-
signed CNN model with global spatial filters (GSCNN)
and CNN model with global spatial and local temporal fil-
ters (GSLTCNN). Figure 5 showed the within-subject per-
formance of three models on 10-fold X2 Expertise RSVP
dataset, which indicated the performance increased when
combining Raw feature with Freq feature. GLSTCNN and
GSCNN models both achieved the best performance on
Freq+R feature. What’s more, DL models all presented
higher performance than BLDA model on all features ex-
cept Norm feature. GSLTCNN also presented the same per-
formance tendency as GSCNN. Figure 6 showed the train-
ing, validation and testing learning curve for GSLTCNN
model. From this figure, we observed the training accuracy
always increased with training iteration, while testing and

Fig. 6 Learning curve of GSLTCNN model trained on within-subject
cross validation test for X2 Expertise RSVP experiment. Three lines rep-
resents the 10-fold mean learning curve, the three half transparent areas
under the three average learning curves are the standard deviation for the
10-fold results.

Table 1 Structure of 5-fold cross-subject validation datasets for X2 Ex-
pertise RSVP task

validation accuracy stopped increasing (reach the plateau)
in the middle of training. This indicated the overfitting of
training data after about 3K iterations.

3.4 Cross-Subject Performance on DL Models

We proposed to perform the cross-subject test on X2 Ex-
pertise RSVP dataset in the next step and aimed to show
the Freq+R feature with DL models would achieve the
best performance. The initial EEG data was preprocessed
and epochs were extracted as the methods introduced in
Sects. 2.2 and 2.3. In previous within-subject experiments,
we had obtained five types of features including Freq, Raw,
Norm, Freq+N and Freq+R for each subject. Here, for
each type of these features, we built 5 folds of cross-subject
validation datasets and each fold contained the training set
structured by the training data of this type of feature of each
odd-numbered subject (S01, S03, S05, S07 or S09) and the
testing set structured by the testing data of this type of fea-
ture of each even-numbered subject (S02, S04, S06, S08 or
S10). The detail structure of this 5-fold cross-subject vali-
dation dataset was shown as Table 1. We made the average
performance of these 5 folds as the final result of each type
of feature.

We firstly tested the baseline performance of BLDA
and BT models on 5-fold cross-subject dataset of these five
types of features, which result was shown as Fig. 7.

We then tested on our designed GSCNN and
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Fig. 7 Baseline performance for selected features on cross-subject X2
RSVP dataset

Fig. 8 The performance of cross-subject test for X2 Expertise RSVP
dataset

Fig. 9 Learning curve of GSCNN model trained on 5-folder cross-
subject X2 Expertise RSVP experiment. Three lines represents the 5-fold
mean learning curve, the three half transparent areas under the three aver-
age learning curves are the standard deviation for the 5-fold results.

GSLTCNN models and the results of 5-folder cross-subject
test is shown as Fig. 8 which demonstrated the performance
increased when combining Raw feature and Freq feature.
Figure 9 showed the training, validation and testing learn-
ing curve for the best model GSCNN on the best feature.

From this figure, we can see the training accuracy always
increases with training iteration, while testing and valida-
tion accuracy stop increasing and reach the plateau in the
middle of training. This indicates the overfitting of training
data after about 3K iterations.

4. Discussion

Through experiments, we firstly analyzed the target and
nontarget event related ERP of the raw EEG data and
their normalized data collected in X2 Expertise RSVP task
through experiment. The results (Fig. 2) showed that the
EEG signals induced in this RSVP task had the time-locked
property which meant when the time of the target/non-target
image onset was known, the delay of the ERP stimulated
by the target/non-target image was always invariant, usu-
ally 0.3-0.6s after the stimulus onset which corresponds to
the visual (∼300ms) and analysis (∼400ms) events. This
proved our 1-s epochs extracted from the initial EEG data
time-locked to each target/non-target image onset was ef-
fective and discriminative for RSVP target event classifica-
tion and the normalization helped to demonstrate the visual
difference between two ERP patterns related to target and
non-target images.

When testing the within-subject baseline results on 7
types of single features, we could see from Fig. 3 that the
trend of performance for frequency feature as frequency
range increased was ascending and achieved the highest per-
formance considering the full range of frequency from 0.1
to 32 Hz (by BLDA, 0.675, ANOVA p = 0.0013), which in-
dicated more complete range of frequency domain informa-
tion benefit more on classification. However, the classifica-
tion on PSD feature did not achieve a good performance (8%
degradation comparing with Freq features, t-test p = 2e-5),
even considering full range of frequency components. This
might because the time samples which was 64 points was
too small, and the power given both time and frequency
might not be accurate. Similarly, from the temporal domain,
we also considered P300 features which allocate at 200ms
to 400ms. We observed better performance (by BLDA, 9%
improvement with Raw feature, t-test p = 2e-5) when using
all the temporal information comparing with P300 features.
There was no significant difference observed when applying
raw features and normalized features (t-test p = 0.62).

In order to find the feature combinations with best
performance, we tested the baseline performance on dif-
ferent 10 combined features. From the results in Fig. 4,
we observed the Freq feature covering the whole frequency
range and combined with the Raw feature covering the
whole-time range achieved the best performance of 0.73
by BLDA model, even 3% (t-test p = 9.5e-4) better than
that of using single type of Raw feature. The tendency
of performance as including more frequency information
(from frequency range 5-6 Hz to 0.1-32 Hz) also increased.
The combination of Raw/Norm feature with PSD or P300
even though improved the performance comparing to sim-
ply using PSD/P300 features, they did not show better
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performance than using Raw or Norm features. In addi-
tion, considering the two baseline models, BLDA was ob-
served gaining slightly better performance (1%, ANOVA
p = 0.164) than BT. So, we selected to use the three best
single features including Freq, Raw and Norm and their
two types of combined features including Freq+Norm and
Freq+Raw to carry out within-subject and cross-subject ex-
periments on DL models.

As to within-subject test on DL models, from Fig. 5,
we observed statistical results of Norm feature comparing
to Raw feature was not significant (t-test, p = 0.72), while
Raw feature combined with Freq feature showed signifi-
cance improvement comparing with Norm feature (t-test,
p = 0.0076), Raw feature (t-test, p = 0.0033) and Freq
feature (t-test, p = 0.0017). Freq+R data with GSLTCNN
model achieved the best performance of 74.1% which was
1.9% better comparing with the best performance of 72.2%
using single Raw feature, and when comparing with Raw
data versus Norm data, 2.6% (t-test p = 0.043) better per-
formance was observed when using Raw data, while no sig-
nificant difference was observed when comparing Freq+N
data with Norm data results (p = 0.205). Additionally, when
the results of two DL models were compared, only slightly
improvement for GSLTCNN was observed (0.2%, ANOVA
p = 0.885). While comparing with the best baseline algo-
rithm BLDA, we observed 1.1% (t-test p = 0.023) better
performance in GSLTCNN model. In sum, we observed
significant improvement when using Freq+R feature com-
paring with other features and DL models had better perfor-
mance than traditional best BLDA model in within-subject
X2 Expertise RSVP test.

As to cross-subject test on BLDA and BT models, we
observed from Fig. 7 that the Freq+R feature achieved the
best performance of 0.617 by BLDA, even 2% (t-test, p =
0.0489) better than the best performance of using single type
of Raw feature. In addition, considering the two baseline
algorithms, BLDA had 5.7% better performance than BT
(ANOVA p = 2.9e-05) on Freq+R feature.

As to cross-subject test on DL models, we observed
from Fig. 8 that GSCNN achieved the best performance of
0.637 on Freq+R feature, which was 2% (ANOVA, p =
0.135) better than that of BLDA model on the same fea-
ture, 2.3% better (t-test p = 0.0338) than that of using
Raw feature and 5.4% (t-test p = 0.0248) better than that
of using Norm feature. GSCNN model also gained 3.1%
(t-test p = 0.065) better performance when using Raw
feature than using Norm feature, 4.6% (t-test p = 0.057)
better performance when using Freq+N feature than using
Norm feature, while there was no significant difference ob-
served when comparing Raw feature with Freq feature re-
sults (0.8%, t-test p = 0.506). For GSLTCNN model, the re-
sults also showed the performance consistency applied with
different features and its results on Freq feature comparing
to Raw feature was also not significant (0.8%, t-test p =
0.405), while Freq+R feature showed significance improve-
ment comparing with Norm features (3.3%, p = 0.0228)
and Raw features (1.5%, p = 0.0853). In addition, when

comparing with two DL models, improvement for GSCNN
was observed (0.9%, ANOVA, p = 0.977). This analysis re-
sult indicated the performance of DL models on either Raw
or Norm features in both cross-subject and within-subject
tests was significantly improved after combining with Freq
features and the Freq+R feature had the best performance
comparing with other features. As well, DL models had
better performance than traditional best BLDA model in
both cross-subject and within-subject tests on X2 Expertise
RSVP dataset.

Considering the universality of our proposed method,
we had to admit that the present results were only for target
event classification of EEG data elicited by RSVP paradigm
with stimulus parameters as X2 Expertise RSVP data set.
We tested the universality of our proposed method on tradi-
tional classifiers and DL models in within-subject and cross-
subject RSVP experiments, but we were not sure whether
our proposed method worked better on classification of EEG
data elicited by other paradigms with different stimulus pa-
rameters. We will explore the universality of our proposed
combined features with DL models on other EEG data sets
in our future work, which is important when one discusses
the feature extraction and selection method.

5. Conclusion

This study established the combined features for deep learn-
ing models on RSVP EEG data and shed light on the ability
for combined Freq+R and Freq+N features to be an efficient
tool in RSVP classification tasks with deep learning models,
and thus improved the accuracy of the RSVP target classi-
fication. Apart from RSVP, or more generally, EEG feature
is individual specific feature which is also of great interest
to us for not only diminishing such feature when process-
ing BCI classification tasks but utilizing it to improve the
classification performance. The basic idea is to design algo-
rithms that allow learning models to separate and refine the
RSVP feature from individual specific feature. We have ex-
tracted epochs across all the BCIT data involving more than
200 subjects and designed deep learning models for training
individual specific EEG features, which is also one of our
work in the future.
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Appendix: Abbreviations

DL: Deep Learning; CNN: convolutional neural network;
RSVP: rapid serial visual presentation; EEG: electroen-
cephalograph; BT: Bagging tree; BLDA: Bayesian Lin-
ear Discriminant Analysis; BCI: Brain computer interfaces;
ML: machine learning; BT: bagging tree; LDA: linear dis-
criminant analysis; BLDA: Bayesian Linear Discriminant
Analysis; SVM: support vector machines; HDCA: hier-
archical discriminant component analysis; SNR: signal to
noise ratio; PSD: power spectral density; MLP: multilayer
perceptron; SGD: stochastic gradient descent; AUC: Area
Under the Curve; GSCNN: an CNN with global spatial fil-
ters; GSLTCNN: an CNN model with global spatial and lo-
cal temporal filters.
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