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PAPER

Speeding up Extreme Multi-Label Classifier by Approximate
Nearest Neighbor Search∗

Yukihiro TAGAMI†,††a), Member

SUMMARY Extreme multi-label classification methods have been
widely used in Web-scale classification tasks such as Web page tagging and
product recommendation. In this paper, we present a novel graph embed-
ding method called “AnnexML”. At the training step, AnnexML constructs
a k-nearest neighbor graph of label vectors and attempts to reproduce the
graph structure in the embedding space. The prediction is efficiently per-
formed by using an approximate nearest neighbor search method that ef-
ficiently explores the learned k-nearest neighbor graph in the embedding
space. We conducted evaluations on several large-scale real-world data
sets and compared our method with recent state-of-the-art methods. Ex-
perimental results show that our AnnexML can significantly improve pre-
diction accuracy, especially on data sets that have a larger label space. In
addition, AnnexML improves the trade-off between prediction time and
accuracy. At the same level of accuracy, the prediction time of AnnexML
was up to 58 times faster than that of SLEEC, a state-of-the-art embedding-
based method.
key words: extreme multi-label classification, k-nearest neighbor graph,
approximate nearest neighbor search, learning-to-rank

1. Introduction

Extreme multi-label classification has recently been receiv-
ing much attention. Its objective is to learn a classifier
that can automatically annotate a data point with the most
relevant subset from an extremely large label set (104 to
106) [2], [3]. In one example, an extreme multi-label classi-
fier is learned to tag a new Wikipedia article by using a sub-
set of the most relevant Wikipedia categories [4]. In another
example, a classifier is built to display a subset of online ad-
vertisements to Web users, given the users’ Web browsing
histories and search keywords.

When a label space is extremely large, a traditional
baseline approach that builds a one-versus-rest classifier
for each label is computationally expensive [5], [6]. More
specifically, this naive approach needs to train an extremely
large number of binary classifiers. Thus, some methods of
dealing with this problem attempt to reduce the effective
number of labels. Some “embedding-based” approaches
rely on the low-rank label matrix assumption [7]–[9]. This
assumption means that there are correlations between labels,
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so these approaches learn a small number of “latent” fac-
tors of labels. Regressors are learned to perform prediction
on these “latent” factors of labels with features and project
them back onto the original high-dimensional label space.
However, this assumption is violated in many real-world
data sets because of the number of “tail” labels that only
a few data points have [3], [9].

To address this problem, Sparse Local Embeddings for
Extreme Classification (SLEEC) [3] was developed. SLEEC
is also an embedding-based method, but is free of any low-
rank label matrix assumptions. This method first partitions
data points by using k-means clustering and then learns a
projection matrix (or regressor) for each partition by pre-
serving distances from a relatively small number of nearest
neighbors in the label space. In other words, SLEEC re-
duces the effective number of labels by converting a multi-
label classification problem into a set of regression problems
by using nearest neighbors in the label space. The number
of these regression problems is independent from the num-
ber of labels, whereas the above naive one-versus-rest ap-
proach needs to train the same number of classifiers as la-
bels. Prediction is performed by using the labels of training
points close to the test point in the embedding space. In
other words, SLEEC uses a k-nearest neighbor classifier in
the embedding space.

However, SLEEC also has three problems. The first
problem is learning to partition data. SLEEC partitions
training points with k-means clustering before learning em-
beddings. This means SLEEC only uses feature vectors and
does not access label information in this procedure. There-
fore, data points that have similar label vectors are not guar-
anteed to be assigned to the same partition. This partitioning
could affect the quality of embeddings learned in subsequent
steps. The second is learning embeddings. In the predic-
tion step, SLEEC predicts labels of the test point by using
the nearest training points in the embedding space, as de-
scribed above. Hence, the order of distance plays a crucial
role, whereas the values themselves are not very important.
Thus, the objective function of SLEEC is somewhat indirect
for this purpose. In addition, SLEEC’s optimization process
for learning regressors is slightly complicated because of
sparsity-induced and rank-constraint regularization terms.
The third problem is prediction speed. The authors [3] re-
ported that SLEEC made predictions in 8 milliseconds per
test point compared with 0.5 milliseconds for the tree-based
FastXML [2] on a WikiLSHTC-325K data set, but SLEEC
made predictions much more accurately than FastXML. Al-
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though this prediction time would be acceptable for most
real-world applications, much faster prediction is preferable
for scaling up to solve Web-scale classification problems.

In this paper, we present a novel graph embedding
method named “AnnexML†,” which copes with the all three
problems in a comprehensive and more direct way based
on the k-nearest neighbor graph (KNNG). The key idea of
AnnexML is reproducing the KNNG of label vectors in the
embedding space to improve both the prediction accuracy
and speed of the k-nearest neighbor classifier. The KNNG
consists of training points as vertices. A directed edge con-
nects from the i-th vertex to the j-th one if the j-th point is
included in the set of the nearest neighbors of the i-th point
in a certain metric space.

More specifically, AnnexML tackles the above three
problems as follows. For the first problem, AnnexML
learns a multiclass classifier, which partitions the approx-
imate KNNG of the label vectors in order to preserve the
graph structure as much as possible. Then, for the second
problem, AnnexML projects the each divided subgraph into
an individual embedding space by formulating this problem
as a ranking problem instead of regression one. This objec-
tive function is easily optimized with simple stochastic gra-
dient descent. For the third problem, AnnexML efficiently
retrieves approximate nearest neighbors of a test point by
exploring the learned KNNG in the embedding space. This
technique improves the trade-off between prediction time
and accuracy.

To summarize, our main contributions are as follows.

• We present a novel method of learning to partition data
points by using an approximate KNNG as weak su-
pervision, instead of unsupervised k-means clustering
(Sect. 3.1)

• For learning embeddings, we formulate this problem
as a ranking one and optimize the objective function
by using simple stochastic gradient descent (Sect. 3.2)

• For faster prediction, we use an approximate k-nearest
neighbor search technique by efficiently traversing the
learned KNNG in the embedding space (Sect. 3.3)

• We conducted experiments on several large-scale real-
world data sets and compared our method with recent
state-of-the-art methods in terms of prediction accu-
racy and time (Sect. 4)

2. Problem Formulation

In this paper, we consider a data setD = {(xi, yi)}Ni=1, which
consists of N training points, where xi ∈ X ⊆ RM is an
M-dimensional feature vector and yi ∈ Y ⊆ {0, 1}L is the
corresponding L-dimensional label vector. yi j = 1 if the i-th
sample has the j-th label, and yi j = 0 otherwise. Multi-label
learning aims to build a classifier, f : RM → {0, 1}L, that
accurately predicts the label vector for a given sample.

†Approximate Nearest Neighbor Search for EXtreme Multi-
Label Classification

Algorithm 1 Overview of training single learner
Require: Training data: D = {(xi, yi)}Ni=1
1: PartitionD into K subsetsD1, . . . ,DK � Section 3.1
2: for each parition c do
3: Learn projection matrix Vc usingDc � Section 3.2
4: Zc ← Vc Xc

5: end for
6: return {(D1,V1, Z1), . . . , (DK ,VK , ZK )}

Algorithm 2 Overview of prediction with single learner
Require: Test point: xt , number of nearest neighbors: n
1: ct ← partition closest to xt

2: zt ← Vct xt

3: Ñ (t)
Zct
← approximate n-nearest neighbors of zt in Zct � Section 3.3

4: ŷt ← empirical label distribution for points in Ñ (t)
Zct

5: return ŷt

In the context of extreme multi-label learning, the num-
ber of labels L is large and in the same order as the num-
bers of training points N and features M (see Table 2 for
the statistics of the data sets used in the experiments). For
example, a naive approach, which uses the one-versus-rest
technique where an independent classifier is learned for each
label, needs to train a massive number of binary classifiers.
In addition, at the prediction time of this approach, all binary
classifiers are applied to each test point. Thus, this naive ap-
proach might be computationally expensive in terms of both
training and prediction time.

To overcome the above problem, some methods devel-
oped for extreme multi-label classification attempt to reduce
the effective number of labels. We briefly describe these
methods in Sect. 5.

3. Proposed Method

In this section, we introduce our proposed method, An-
nexML.

Hereafter, we represent an index set of entire training
points as I = {1, 2, . . . ,N}. Let X = [x1; . . . ; xN] ∈ RM×N

be the data matrix and Y =
[
y1; . . . ; yN

] ∈ RL×N be the label
matrix.

First, we describe training and prediction overviews.
These high-level overviews are similar to those of
SLEEC [3]. However, we stress that AnnexML is a graph
embedding method that copes with the three problems of
SLEEC in a comprehensive and straightforward way based
on KNNG, which consists of training points as vertices.

Algorithm 1 shows an overview of the training proce-
dure. First, AnnexML splits the data points into K partitions
and then learns a linear map Vc ∈ Rd×M that projects the
data points to a low-dimensional subspace for each partition
c ∈ {1, . . .K}, instead of a global projection map. The em-
bedding vector zi ∈ Rd is mapped from the feature vector
xi by using Vc for each i ∈ Ic. Here, Ic is the index set of
data points in the partition c. The data matrix of partition c
is denoted as Xc. In a similar way, Yc and Zc represent the
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Table 1 Label frequency of training data used in experiments. For ex-
ample, more than 174,000 labels occur in at most five training points in
WikiLSTHTC-325K data set.

Frequency WikiLSHTC-325K Amazon-670K
1 79,732 (24.82%) 71,817 (10.76%)
≤ 2 112,788 (35.11%) 309,976 (46.45%)
≤ 3 137,596 (42.84%) 435,442 (65.25%)
≤ 4 157,541 (49.04%) 509,203 (76.31%)
≤ 5 174,341 (54.27%) 555,905 (83.30%)
≤ 10 226,956 (70.65%) 637,379 (95.51%)

All 321,222 (100.00%) 667,317 (100.00%)

label and embedding matrix, respectively. AnnexML is able
to improve its prediction accuracy by learning an ensemble
of multiple learners with different random initializations, as
described later (Sect. 3.1).

Algorithm 2 shows an overview of the prediction pro-
cedure. AnnexML first determines the partition to which
a test point xt belongs, finds approximate k-nearest neigh-
bors (training points) in the low-dimensional subspace cor-
responding to the partition ct, and finally predicts labels on
the basis of the labels of neighbors. To make predictions
with an ensemble of multiple learners, first, all sets of near-
est neighbors obtained by learners are aggregated; then, An-
nexML outputs an empirical label distribution of points in
the aggregated nearest neighbors.

In the following subsections, we give details on the
training and prediction procedures. The key point of An-
nexML is reproducing the structure of the KNNG of the la-
bel vectors as much as possible in the embedding space. In
Sect. 3.1, we represent a novel method of learning to parti-
tion data. AnnexML learns a multiclass classifier to divide
the KNNG of the label vectors into subgraphs. Then, in
Sect. 3.2, we learn a projection matrix in order to preserve
the edge connections of each subgraph in an individual em-
bedding space. Regarding this problem as ranking one, we
apply a learning-to-rank technique that uses cosine similar-
ity. Finally, in Sect. 3.3, we present an approximate nearest
neighbor search method that efficiently explores the learned
KNNG in the embedding space. Replacing the naive brute-
force calculation with this method, AnnexML successfully
speeds up the prediction time without a noticeable drop in
accuracy.

3.1 Learning to Partition Data Points

AnnexML partitions data points before learning embed-
dings for efficient training and prediction, like SLEEC does.
While SLEEC simply uses k-means clustering for this pur-
pose, AnnexML aims to allocate the data points that have
similar label vectors to the same partition. This means that
AnnexML utilizes label information y but SLEEC only ac-
cesses feature vectors x. The label frequency of an extreme
multi-label classification data set follows a “heavy tailed”
distribution [3], [9]. Table 1 shows the label frequency in
the training data of WikiLSHTC-325K and Amazon-670K
data sets. About 54% and 83% of the labels occur in at most
five training points on each data set. Without label informa-

tion, the data points that have the same tail label might be
allocated to different partitions as the number of partitions
increases. Thus, this difference between AnnexML and
SLEEC could affect the quality of the embeddings learned
in the subsequent steps and the final prediction results.

From the perspective of reproducing the KNNG of the
label vectors, AnnexML divides the graph into K subgraphs
while keeping the structure as much as possible. Hence,
this problem can be regarded as finding the minimum K-way
graph cut [10]. However, in contrast with the common min-
imum K-cut problem, we need to learn a multi-class classi-
fier to predict the partition of an unknown test point. Thus,
we use a novel sequential maximization procedure for learn-
ing the classifier.

To construct the KNNG of the label vectors, we find
the nearest neighbors N (i)

Y for each i-th data point from the
indices of all training points I. The set of nearest neighbors
N (i)

Y is defined by using the inner product between normal-
ized label vectors y/|y| as:

N (i)
Y := arg max

S :S⊆I,|S |=n,i�S

∑
j∈S

yT
i y j

|yi||y j| , (1)

where S is the index set in which the number of elements
equals n and |yi| = ∑

j yi j is the number of labels that a data
point has.

The computational cost of naively finding N (i)
Y for all

data points is O(N2). Thus, this naive approach is infeasi-
ble for a large N ∼ 106. If the label vectors y are suffi-
ciently sparse, we can efficiently find the nearest neighbors
N (i)

Y by using an inverted index. In this case, we first con-
struct a list of references of data points that have each la-
bel, and then we just have to evaluate pairs of data points
in each list. This procedure is similar to calculating the dot
product between two sparse vectors, which only considers
dimensions where both vectors have nonzero elements and
sums up the products of their values. The estimated com-
putational cost is

∑L
j=1 n j(n j − 1)/2, where n j is the number

of data points that have the j-th label or the size of the j-th
list. However, if a few nj corresponding to “head” labels
are near N, which means almost all data points have the
same label, the above cost reaches O(N2). Efficient algo-
rithms for top-k retrieval on an inverted index [11] or find-
ing approximate k-nearest neighbors [12] can be applied to
this situation. However, we focus on tail labels and ignore
head labels in some cases. In other words, we expect that
the number of data points corresponding to head labels in
each partition is enough to not affect the subsequent step,
even if head labels are ignored in this step. Thus, we only
consider the l tail labels and their corresponding lists under
the conditions

∑l
j=1 n j(n j − 1)/2 ≤ αN, n1 ≤ n2 ≤ . . . ≤ nL

to find approximate nearest neighbors Ñ (i)
Y in order to keep

the computational cost within O(N) by using the adjusting
parameter α 
 N. Note that it is easy to determine l that sat-
isfies the above condition by sorting n js and accumulating
n j(n j − 1)/2 in ascending order.

After approximate nearest neighbors Ñ (i)
Y are obtained
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for all data points, we learn the weight vector wc for each
partition c in order that the data points having the same
tail labels are allocated in the same partition while the data
points are divided almost equally among partitions. Using a
sequential maximization procedure like stochastic k-means
clustering [13], we sequentially maximize the following ob-
jective function for each i-th sample.

max
wci

∑
j∈Ñ (i)

Y

logσ(wT
ci

x j)+
∑
k∈S −

logσ(−wT
ci

xk)−λ|wc|1, (2)

where ci = arg max
c

wT
c xi is the partition to which the i-

th point belongs at this time step, S − is the set of indices
randomly selected from I, σ(z) = 1/(1 + exp(−z)) is a sig-
moid function, and λ is a regularization parameter. We learn
the linear classifier wc’s by using the FTRL-Proximal algo-
rithm [14] with AdaGrad [15] learning rate adjustment.

The first term of the above objective function is in-
tended to assign the approximate nearest neighbors Ñ (i)

Y to
the same partition ci to which the i-th point belongs. The
second term aims for the randomly selected points S − to not
be included in the partition ci. Since some partitions that
have a lot of data points cause the training and prediction
time to become long, this term prevents a lot of data points
from being allocated in a single partition. The last term is
the L1-regularization term to make wc’s sparse. Sparse wc’s
are also preferable for faster prediction.

The above L1-regularization term reduces the final
model size as well as the prediction time. At training time,
wc’s are favored to to be stored in dense vectors for faster
training. These vectors use O(KM) space. Note that the
number of partitions K depends on the number of entire
training points N (see Sect. 4). Thus, this space complexity
is infeasible for large N and M. To remedy this problem, we
use a hashing trick [16] for storing wc’s in 24-bit space (ap-
proximately 16.7 millions of bins) instead of O(KM) space.
In practice, we did not notice a drop in accuracy when using
this technique.

Since the above objective function is non-convex
(when ci is not fixed), AnnexML is also able to improve
its prediction accuracy by learning an ensemble of multiple
learners with different random initializations of wc, like the
k-means clustering of SLEEC.

At the prediction step (line 1 in Algorithm 2), the par-
tition ct to which a test point xt belongs is determined by
using the learned wc’s as ct = arg max

c
wT

c xt.

3.2 Learning Embeddings

For learning embedding vector zi and projection matrix Vc,
AnnexML employs a pairwise learning-to-rank approach.
This is because the learning objective of AnnexML is to
reconstruct the KNNG of label vectors in the embedding
space. In other words, arranging the k-nearest neighbors
of the i-th sample is regarded as a ranking problem if we
consider an i-th point and other points as a query and items,

respectively. Thus, we use the pairwise learning-to-rank ap-
proach similar to S2Net [17] and DSSM [18] in order to op-
timize k-nearest neighbors in the embedding space more di-
rectly.

To represent the objective function of AnnexML, we
first define the relevance score between xi and x j as cosine
similarity between embedding vectors zi = Vcxi and z j =

Vcx j:

R(xi, x j) := cos(zi, z j) =
zT

i z j

‖zi‖‖z j‖ =
xT

i VT
c Vcx j

‖Vcxi‖‖Vcx j‖ .

We also represent the conditional probability by using the
above relevance score and softmax function as follows:

P(x j | xi) :=
exp(γR(xi, x j))

exp(γR(xi, x j)) +
∑

k∈S −c exp(γR(xi, xk))

=
exp(γ cos(zi, z j))

exp(γ cos(zi, z j)) +
∑

k∈S −c exp(γ cos(zi, zk))
,

where γ is a scaling parameter that magnifies cos(zi, z j)
from [−1,+1] to the range of larger values and S −c ⊆ Ic is
the set of indices randomly selected from data points in the
corresponding partition c. Then, we minimize the negative
log likelihood:

min
Vc

∑
i∈Ic

∑
j∈N (i)

Yc

− log P(x j | xi).

Here, the set of nearest neighbors N (i)
Yc

is almost the same

as N (i)
Y (see Eq. (1)) but is selected from Ic rather than I.

Note that the computational cost of finding exact N (i)
Yc

for
all i is not very large since the number of data points in a
cluster |Ic| is much smaller than that of all training points
N = |I| (the number of clusters to which K should be set to
fulfill this condition). Thus, we can use the exact N (i)

Yc
for

learning embeddings. The above negative log likelihood is
transformed as:

− log P(x j | xi)

= − log

(
exp(γ cos(zi, z j))

exp(γ cos(zi, z j)) +
∑

k∈S −c exp(γ cos(zi, zk))

)

= − log

(
1

1 +
∑

k∈S − exp(γ(cos(zi, zk) − cos(zi, z j)))

)

= log

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 +
∑
k∈S −c

exp(−γΔi jk))

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,
where Δi jk = cos(zi, z j)−cos(zi, zk) is the difference between
two cosine values. Hence, this objective function aims to
increase the difference between these cosine values.

We learn the projection matrix Vc by using stochas-
tic gradient descent with AdaGrad [15]. Let a, b, and c be
zT

i z j, 1/‖zi‖, and 1/‖z j‖, respectively. The gradient of the
cos(zi, z j) is derived as:

∂ cos(zi, z j)

∂Vc
=
∂

∂Vc

⎛⎜⎜⎜⎜⎝ zT
i z j

‖zi‖‖z j‖
⎞⎟⎟⎟⎟⎠
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Algorithm 3 ANNSearch(Query q, Ball tree T , KNNG G)
1: H ← empty heap
2: TreeSearch(q, T .root, H)
3: GraphSearch(q, G, H)
4: return H

= −abc3 zixT
i − acb3 z jxT

j + bc(zixT
j + z jxT

i ).

Using cosine similarity instead of the inner product has
some advantages. First, the objective function is regularized
by the normalizing factor of a cosine. Hence, the explicit
regularization term of Vc is not needed, so this learning pro-
cedure is simple. Second, we can easily apply an approxi-
mate nearest neighbor search technique that uses the learned
KNNG for speeding up the prediction. We give the details
of this technique in Sect. 3.3.

3.3 Faster Prediction using Approximate Nearest Neigh-
bor Search on KNNG

The prediction of AnnexML mostly relies on the k-nearest
neighbor search in the embedding space (see Algorithm 2).
Thus, for faster prediction, we need to speed up this nearest
neighbor search task. Instead of SLEEC’s naive brute-force
search, we apply an approximate k-nearest neighbor search
method to this task. This method efficiently explores the
learned KNNG in the embedding space by using an addi-
tional tree structure and a pruning technique via the trian-
gle inequality. Note that we construct the KNNG precisely
in the training phase and perform an approximate and fast
search on the graph in prediction phase.

Representing the nearest neighbor search task more
concretely, we find the following index set N (t)

Zc
from train-

ing points Ic in a certain partition c with cosine similarity:

N (t)
Zc
= arg max

S :S⊆Ic,|S |=n

∑
j∈S

cos(zt, z j) = arg max
S :S⊆Ic,|S |=n

∑
j∈S

zT
t z j

‖z j‖ ,

where zt = Vcxt is the embedding vector that corresponds
to a test point xt.

For efficient indexing in a metric space, the triangle
inequality is a key element, as suggested by Sugawara et
al. [19]. We also want to utilize the triangle inequality for
efficient retrieval, but the cosine distance 1− cos(zt, z j) can-
not satisfy this inequality. Fortunately, if the indexed vectors
z j are normalized in advance, that is, ‖z j‖ = 1 for all j, the
above N (t)

Zc
becomes the same as the following index set of

nearest neighbors by using Euclidean distance:

arg min
S :S⊆Ic,|S |=n

∑
j∈S
‖zt − z j‖2 = arg min

S :S⊆Ic,|S |=n

∑
j∈S

(
‖z j‖2 − 2zT

t z j

)
.

Thus, we use Euclidean distance between normalized vec-
tors as metrics for searching. Note that this transformation
does not change the structure (or edge connections) of the
learned KNNG.

Algorithms 3, 4, 5, and 6 are the pseudo codes that rep-
resent the approximate k-nearest neighbor search procedure

Algorithm 4 TreeSearch(Query q, Tree node N, Heap H)
1: if N is a leaf node then
2: LineSearch(q, N.S , H)
3: else
4: ldist← d(q, N.left.center)
5: rdist← d(q, N.right.center)
6: if ldist < rdist then
7: TreeSeach(q, N.left, H) � follow the left child node
8: else
9: TreeSeach(q, N.right, H) � follow the right child node

10: end if
11: end if

Algorithm 5 LineSearch(Query q, Index set S , Heap H)
1: for i ∈ S do
2: dist← d(q, zi)
3: if dist < LargestDistance(H) then
4: PopAndPushHeap(H, i, dist)
5: end if
6: end for

Algorithm 6 GraphSearch(Query q, KNNG G, Heap H)
1: C ← index of H � a queue of candidates
2: D← empty set � a set of already evaluated
3: while C is not empty do
4: i← pop from C
5: if i in D then
6: continue
7: end if
8: D← D ∪ {i}
9: dist← d(q, zi)

10: if dist < LargestDistance(H) then
11: PopAndPushHeap(H, i, dist)
12: for j in N (i)

Zc
do � nearest neighbors in G

13: push j to C
14: end for
15: end if
16: end while

using the KNNG. In these pseudo codes, the embedding of
a test point zt is represented as query vector q. To efficiently
find reasonable starting points from the graph, our method
combines the KNNG with a ball tree. Please refer to the
papers [20], [21] for the indexing method of the ball tree.

A query q first traverses from the root to the leaf nodes
of the ball tree (Algorithm 4). At each internal node, the test
point determines which child node (left or right) is to be fol-
lowed by using the distances from the centers of the balls.
After the test point reaches a leaf node, the distance from
each indexed point corresponding to the node is calculated
and pushed into the heap (Algorithm 5). Using these data
points as seeds, the KNNG is explored (Algorithm 6). In
the exploration step, if a data point is satisfied with the con-
dition and pushed into the heap, the nearest neighbors are
also pushed into the queue of candidates for the subsequent
evaluation.

To summarize, we first obtain a reasonable set of ap-
proximate nearest neighbors by using a ball tree and then
improve the approximation quality by exploring the KNNG
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on the basis of local search. Since we only need to calculate
the distances to a small number of balls’ centers and subset
of training points, we can speed up this search task.

3.4 Comparison with SLEEC

In this subsection, we clarify the difference between An-
nexML and SLEEC.

As noted in the beginning part of this section, the train-
ing and prediction procedures of AnnexML are similar to
those of SLEEC. In other words, Algorithms 1 and 2 also
show overviews of the training and prediction procedures
of SLEEC, respectively. However, there are three improve-
ments of AnnexML compared to SLEEC, which are de-
scribed in the above subsections.

For partitioning data points (line 1 in Algorithm 1),
SLEEC simply applies usual k-means clustering to feature
vectors of data points whereas AnnexML learns the classi-
fiers by considering both feature and label vectors. There-
fore, AnnexML is more likely to allocate the data points that
have similar label vectors to the same partition and improve
the quality of embeddings learned in subsequent steps.

For learning embeddings (line 3 in Algorithm 1),
SLEEC utilizes the following objective function:

min
Vc

∑
i∈Ic

∑
j∈N (i)

Yc

∥∥∥yT
i y j − xT

i VT
c Vcx j

∥∥∥2

+λ
∑
i∈Ic

|Vcxi|1 + μ ‖Vc‖2F .

The first term indicates the sum of squared errors between
the inner product of label vectors and that of embedding
vectors. The second term is an L1-regularization term for
embedding vectors zi = Vcxi, which leads to sparse em-
beddings for reducing the size of models and the predic-
tion time as well as avoiding overfitting. The last is the
L2-regularization term of Vc. λ and μ are regularization
parameters corresponding to the second and last terms, re-
spectively. This objective function is non-convex and non-
differentiable. Thus, the optimization process is divided into
two phases and done using singular value projection and
ADMM.

Obviously, the above objective function of SLEEC is
a regression problem of minimizing the sum of squared er-
rors. This means SLEEC learns the projection matrix Vc

to reproduce the inner product values of label vectors by
using embedding vectors. However, at the prediction step,

Table 2 Statistics of datasets used in experiments.

Dataset
#Train #Test #Features #Labels Avg. points Avg. labels

N Ntest M L per label per point
AmazonCat-13K 1,186,239 306,782 203,882 13,330 448.57 448.57

Wiki10-31K 14,146 6,616 101,938 30,938 8.52 18.64
Delicious-200K 196,606 100,095 782,585 205,443 72.29 75.54

WikiLSHTC-325K 1,778,351 587,084 1,617,899 325,056 17.46 3.19
Wikipedia-500K 1,813,391 783,743 2,381,304 501,070 24.75 4.77
Amazon-670K 490,449 153,025 135,909 670,091 3.99 5.45

these learned values are used only for retrieving k-nearest
neighbors. In contrast, the objective function of AnnexML
focuses on whether a data point is included in the set of k-
nearest neighbors or not. Thus, the learning procedure of
AnnexML is more intuitive and consistent with the predic-
tion procedure.

Instead of the approximate nearest neighbors search of
AnnexML (line 3 in Algorithm 2), SLEEC just performs
an exact and brute-force search for prediction. Note that
the brute-force calculation of SLEEC cannot be directly re-
placed with our approximate search procedure because it
does not use cosine similarity (or Euclidean distance) but
rather the inner product as the metric in the embedding
space. Some Maximum Inner-Product Search (MIPS) meth-
ods [21]–[23] might be applicable to SLEEC for faster pre-
diction. However, such a study is beyond the scope of this
paper. We leave this direction as future work.

4. Experiments

In this section, we evaluated our method on six large scale
multi-label data sets. These data sets were provided by
the Extreme Classification Repository [24] and had already
been pre-processed and separated into training and test sets.
We did not use any additional meta data. The statistics for
the data sets are summarized in Table 2.

We compared AnnexML with several state-of-the-
art methods: SLEEC [3], FastXML [2], PfastreXML [25],
PLT [26], and PD-Sparse [5]. To represent the prediction
difficulty of each data set, we also show the performance of
a naive baseline that makes predictions by using the k-most
common labels in the training data.

We evaluated the performance of the methods with pre-
cision at k (k ∈ {1, 3, 5}), which is a widely used metric for
extreme multi-label classification and ranking tasks:

P@k :=
1

kNtest

Ntest∑
i=1

k∑
l=1

yiπ(l).

Here, π(k) = j means that the j-th label is ranked in the
k-th position by the predicted score. We also evaluated the
performances with normalized Discounted Cumulative Gain
(nDCG) at k. However, since the results showed the same
tendency, we only report those with P@k. At least, by defi-
nition, the value of nDCG@1 is the same as that of P@1.

We implemented AnnexML in C++. In all experi-
ments, we used ten default hyper-parameters for training
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Table 3 Experimental results. Unavailable values are denoted as “–” (see text for details).

Dataset AnnexML SLEEC FastXML PfastreXML PLT PD-Sparse Most common
P@1 0.9355 0.8919 0.9310 0.8994 0.9147 0.8931 0.2988

AmazonCat-13K P@3 0.7838 0.7517 0.7818 0.7724 0.7584 0.7403 0.1878
P@5 0.6332 0.6109 0.6338 0.6353 0.6102 0.6011 0.1486
P@1 0.8650 0.8554 0.8295 0.8263 0.8434 0.7771 0.8079

Wiki10-31K P@3 0.7428 0.7359 0.6756 0.6874 0.7234 0.6573 0.5050
P@5 0.6419 0.6310 0.5770 0.6006 0.6272 0.5539 0.3675
P@1 0.4666 0.4703 0.4320 0.3762 0.4537 0.3437 0.3873

Delicious-200K P@3 0.4079 0.4167 0.3868 0.3562 0.3894 0.2948 0.3675
P@5 0.3764 0.3888 0.3621 0.3403 0.3588 0.2704 0.3552
P@1 0.6336 0.5557 0.4975 0.5810 0.4567 0.6126 0.1588

WikiLSHTC-325K P@3 0.4066 0.3306 0.3310 0.3761 0.2913 0.3948 0.0603
P@5 0.2979 0.2407 0.2445 0.2769 0.2195 0.2879 0.0380
P@1 0.6386 0.5839 0.4934 0.5891 – – 0.1529

Wikipedia-500K P@3 0.4269 0.3788 0.3351 0.3937 – – 0.0583
P@5 0.3237 0.2821 0.2586 0.3005 – – 0.0368
P@1 0.4208 0.3505 0.3697 0.3919 0.3665 0.3370 0.0028

Amazon-670K P@3 0.3665 0.3125 0.3332 0.3584 0.3212 0.2962 0.0027
P@5 0.3276 0.2856 0.3053 0.3321 0.2885 0.2684 0.0023

AnnexML: the number of partitions in a learner: K =

N/6000�, the embedding dimension: d = 50, the num-
ber of learners: 15, the number of (approximate) nearest
neighbors and randomly sampled points used in learning
both partitionings and embeddings: n = 10, the number
of epochs for learning both partitionings and embeddings:
10, the initial learning rate of AdaGrad: η0 = 0.1, the L1-
regularization parameter in Eq. (2): λ = 4, the scaling pa-
rameter for cosine: γ = 10, the adjustment parameter for
finding approximate nearest neighbors: α = 5000, and the
number of edges in the KNNG for prediction: 50. These
default values of hyper-parameters were determined in pre-
liminary experiments with small-scale data sets. Thus, we
avoided hyper-parameter tuning for the large-scale data sets
and significantly reduced the total training time.

For the other baseline methods, if P@k on each data
set is reported in the original papers, we used those values
for fair comparison. Otherwise, we used the C++ and MAT-
LAB implementations for SLEEC, FastXML, PfastreXML
and PD-Sparse, provided by the authors [24]. In this case,
the suggested hyper-parameters were used. Since we use
ordinary (not propensity scored) precision at k as the evalu-
ation metrics, the propensity scores of PfastreXML were set
to the same value for all labels. For PLT, we referred only
to the values reported in the original paper because hyper-
parameters were tuned by an off-the-shelf optimizer in the
experiments.

4.1 Results

The experimental results are summarized in Table 3. The
bold elements indicate the best performance of the meth-
ods. For PLT, since we referred only to the values reported
in the original paper [26], as mentioned above, the scores on
Wikipedia-500K data set are not available. The scores of
PD-Sparse on three data sets are also unavailable because
of excessive memory usage and training time in our experi-
mental setting. Thus, we referred to the scores on Delicious-
200K and WikiLSTHC-325K data sets reported in the Ex-

Table 4 Comparing results of our three improvements proposed in
Sect. 3.

E E+P E+A E+P+A

Learning Embeddings ✓ ✓ ✓ ✓
Learning to Partition data ✗ ✓ ✗ ✓
ANN search for prediction ✗ ✗ ✓ ✓

P@1 0.9381 0.9353 0.9374 0.9355
AmazonCat-13K P@3 0.7835 0.7853 0.7809 0.7838

P@5 0.6320 0.6353 0.6289 0.6332
P@1 0.8703 0.8655 0.8690 0.8650

Wiki10-31K P@3 0.7448 0.7431 0.7446 0.7428
P@5 0.6454 0.6435 0.6447 0.6419
P@1 0.4670 0.4660 0.4669 0.4666

Delicious-200K P@3 0.4018 0.4038 0.4077 0.4079
P@5 0.3705 0.3717 0.3770 0.3764
P@1 0.6108 0.6378 0.6024 0.6336

WikiLSHTC-325K P@3 0.3907 0.4102 0.3836 0.4066
P@5 0.2875 0.3008 0.2819 0.2979
P@1 0.6323 0.6410 0.6215 0.6386

Wikipedia-500K P@3 0.4156 0.4299 0.4048 0.4269
P@5 0.3144 0.3261 0.3056 0.3237
P@1 0.3670 0.4248 0.3631 0.4208

Amazon-670K P@3 0.3190 0.3698 0.3161 0.3665
P@5 0.2862 0.3309 0.2834 0.3276

treme Classification Repository [24].
AnnexML performed the best in almost all cases.

There were especially large improvements for data sets that
have larger label spaces. For example, AnnexML improved
over SLEEC by about 8% and 6% in absolute terms of P@1
and P@5 on WikiLSHTC-325K data set. On Amazon-670K
data set, AnnexML was also superior to SLEEC by approx-
imately 7% and 4% in absolute terms of P@1 and P@5.
These substantial improvements indicate AnnexML is not
just a minor updated version of SLEEC. There is still much
room to improve the prediction accuracy of AnnexML by
tuning the hyper-parameters for each data set, like SLEEC
does. However, we leave this as future work.

Table 4 compares the results of the three improvements
proposed in Sect. 3. Method E+P+A equals AnnexML in Ta-
ble 3. If we did not use the proposed partitioning or ap-
proximate nearest neighbor search, we used k-means clus-
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Fig. 1 Precision versus prediction time when the number of learners changes. Number of learners
was {1, 2, 4, 8, 15} for AnnexML, AnnexML-BF, and SLEEC, and {1, 2, 4, . . . , 128, 256} for FastXML
and PfastreXML. This experiment was conducted with C++ implementations on single CPU thread of
the same machine for fair comparison.

tering and a brute-force cosine calculation, like SLEEC
does. Method E outperformed SLEEC on almost all data
sets. Thus, our learning procedure that uses the learning-to-
rank approach successfully improved the embedding qual-
ity. In comparison with E and E+P, the proposed partition-
ing method significantly improved P@k on the data sets that
have a larger label space. In comparison with E and E+A,
the approximate nearest neighbor search technique for faster
prediction had slightly poorer accuracy on all data sets ex-
cept Delicious-200K. These results are consistent with our
objective of proposing method A, which is not to make pre-
diction more accurate, but rather faster. One possible expla-

nation for the unexpected improvement on Delicious-200K
was that the number of nearest neighbors retrieved for pre-
diction was small (set to be 10 for all data sets). The number
suggested by SLEEC’s authors is 70 for this data set. Hence,
the approximate nearest neighbor search retrieved more di-
verse samples, and these samples could fortunately stabilize
the prediction result. Next, we present the speed-up effect
of the approximate nearest neighbor search.

Figure 1 plots the prediction time and performances
of AnnexML, AnnexML-BF, SLEEC, FastXML, and Pfas-
treXML when the number of learners changes. A higher
precision at the same prediction time (upper left line) in-
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dicates better results. This experiment was conducted by
using a single CPU thread on a machine with two Xeon E5-
2680v3 processors and 128 GB of RAM that ran the Linux
operating system. AnnexML-BF is the same method as E+P
in Table 4, which uses a brute-force cosine calculation for
prediction. Note that AnnexML is the same as E+P+A. We
chose SLEEC, FastXML and PfastreXML for comparison
since these methods are also ensemble methods, and we can
easily control the trade-off between prediction time and ac-
curacy by just changing the number of learners. To con-
duct a fair comparison, we used our own C++ implementa-
tion for SLEEC’s prediction, instead of the provided MAT-
LAB codes. This is almost the same as the implementation
of AnnexML-BF. For FastXML and PfastreXML, we used
the provided C++ implementations with careful coding op-
timizations for improving efficiency.

Comparing AnnexML and AnnexML-BF, we see that
the approximate nearest neighbor search technique success-
fully sped up prediction time with a slight drop in accuracy.
On WikiLSHTC-325K data set, AnnexML made predictions
more than four times faster than AnnexML-BF when using
the same number of learners. In other words, the prediction
time with an ensemble of four AnnexML learners was al-
most the same as that of a single AnnexML-BF model. In
this case, AnnexML made predictions in approximately 0.34
milliseconds per test point and achieved an about 5% higher
P@1 than that of AnnexML-BF in absolute terms (0.6121
vs. 0.5657). Compared with FastXML and PfastreXML,
AnnexML also achieved a higher P@k at a 1 millisecond
budget per test point in almost all cases. AnnexML achieved
the same prediction accuracy as SLEEC with an ensemble of
at most four learners, which also made predictions within 1
millisecond per test point. In particular, on WikiLSHTC-
325K data set, a single model of AnnexML achieved almost
the same P@1 as an ensemble of 15 SLEEC learners. This
AnnexML’s prediction time was about 58 times faster than
that of SLEEC (0.08 milliseconds vs. 4.66 milliseconds).

5. Related Work

Extreme multi-label learning typically follows two major
types of approaches: tree based [2], [25], [26] and embed-
ding based [3], [7]–[9].

Tree-based methods are common in extreme multi-
label classification because of their fast prediction.
FastXML [2] is a state-of-the-art tree-based classifier. At
the training phase, FastXML recursively partitions the fea-
ture space corresponding to the internal node by using a lin-
ear classifier optimized for nDCG-based ranking loss. A
test point traverses the tree from the root node to a leaf
node, and FastXML then makes predictions by using the
labels of training points that correspond to the leaf node.
PfastreXML [25] is an improved version of FastXML, made
by replacing the nDCG loss with its propensity scored vari-
ant and using additional classifiers designed for tail labels.
Jasinska et al. [26] developed PLT, which is a tree-based
classifier that maximizes the F-measure. More recently, we

gave a brief overview of a simple tree-based approach in a
work-in-progress paper [27].

Most embedding-based approaches reduce the effective
number of labels on the basis of the low-rank label matrix
assumption. LEML [7] learns a low-rank projection matrix,
which maps features to labels, by using a generic empirical
risk minimization framework. Mineiro and Karampatziakis
developed another embedding-based method, named “Rem-
brandt” [8], by using techniques of randomized linear alge-
bra. REML [9] decomposes the label matrix into a low-rank
structure and sparse component, which represents label cor-
relations and outliers, respectively. Si et al. proposed Goal-
directed Inductive Matrix Completion (GIMC) [28] and also
applied this method to multi-label classification. In this pa-
per, since SLEEC was reported to achieve better or compa-
rable performance to the above embedding-based methods
on larger data sets [3], [8], [9], [28], we only compared our
method with SLEEC.

PD-Sparse [5] uses primal and dual-sparse formulation,
which consists of the dual-sparse loss and the primal-sparse
regularizer. Using these two types of sparsity and hash-
ing techniques, PD-Sparse can be efficiently learned and
achieves fast prediction.

Distributed learning is another approach to extreme
multi-label classification. Babbar and Schölkopf proposed
DiSMEC [6], which is a large-scale distributed framework
for learning one-versus-rest linear classifiers. Using a dis-
tributed framework, DiSMEC learns a L2-regularized L2-
loss SVM for each label in parallel. To reduce the model size
and make prediction faster, they pruned ambiguous weights
in the region near zero after training. They reported that
the model for an entire WikiLSHTC-325K data set can be
trained in approximately 6 hours on 400 cores and 3 hours
on 1,000 cores. In this paper, we did not compare our
method with DiSMEC because we focus on non-distributed
approaches. Note that the ensemble of 15 AnnexML mod-
els on the aforementioned data set were trained within 4
hours by using 24 cores on the single machine described
in Sect. 4.1.

In an approximate similarity search task for neural
word embeddings, Sugawara et al. [19] compared hash-
based, tree-based, and graph-based algorithms. They re-
ported that a graph-based indexing method (NGT [29]) out-
performed other methods. NGT is an indexing method that
combines a variant of a vantage point tree [30] with an ap-
proximate KNNG. In our experiments, the KNNG com-
bined with the ball tree also successfully accelerated the pre-
diction speed without a noticeable drop in accuracy.

6. Conclusion

In this paper, we presented AnnexML by dealing with three
problems affecting SLEEC. The key idea of AnnexML is
reproducing the KNNG of label vectors in the embedding
space to improve both the prediction accuracy and time of
the k-nearest neighbor classifier. Experimental results on
several large-scale data sets showed that AnnexML can sig-
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nificantly improve prediction accuracy, especially on larger
data sets. In addition, the prediction time of AnnexML was
up to 58 times faster than that of SLEEC at the same level
of accuracy.

We released our implementation of AnnexML on the
github.com†. Our code would be useful for both re-
searchers who compare their results with ours and practi-
tioners who try to solve real-world Web-scale classification
problems.
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