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PAPER

Local Feature Reliability Measure Consistent with Match
Conditions for Mobile Visual Search

Kohei MATSUZAKI†a), Kazuyuki TASAKA†b), and Hiromasa YANAGIHARA†c), Members

SUMMARY We propose a feature design method for a mobile visual
search based on binary features and a bag-of-visual words framework. In
mobile visual search, detection error and quantization error are unavoid-
able due to viewpoint changes and cause performance degradation. Typical
approaches to visual search extract features from a single view of reference
images, though such features are insufficient to manage detection and quan-
tization errors. In this paper, we extract features from multiview synthetic
images. These features are selected according to our novel reliability mea-
sure which enables robust recognition against various viewpoint changes.
We regard feature selection as a maximum coverage problem. That is, we
find a finite set of features maximizing an objective function under certain
constraints. As this problem is NP-hard and thus computationally infeasi-
ble, we explore approximate solutions based on a greedy algorithm. For
this purpose, we propose novel constraint functions which are designed to
be consistent with the match conditions in the visual search method. Ex-
periments show that the proposed method improves retrieval accuracy by
12.7 percentage points without increasing the database size or changing the
search procedure. In other words, the proposed method enables more ac-
curate search without adversely affecting the database size, computational
cost, and memory requirement.
key words: mobile visual search, binary feature, feature selection, maxi-
mum coverage problem

1. Introduction

With the advancement of mobile devices equipped with
high-resolution cameras, mobile visual search (MVS) has
become one of the major applications of image retrieval and
recognition technology. These applications can be used for
recognizing specific objects captured by the mobile device’s
camera from a pre-constructed database, e.g., retail catalog,
real consumer products, and so forth. While there are some
studies on MVS as a server-client system, this paper focuses
on a stand-alone MVS system [1], [2] which will even work
without a network connection. We assume that the stand-
alone MVS system is implemented as a mobile application
containing the database and installed in mobile devices. In
such an application, smaller application size is preferred be-
cause users are disinclined to install large-data applications.
The most straightforward way to achieve a compact applica-
tion is to limit the database size because it is usually difficult
to reduce significantly the data size of other components of
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the application (e.g., search function). In this paper, we aim
to maximize the retrieval accuracy under the limitation of
database size. However, it is challenging to achieve both
high accuracy and small database size.

Local features have been successfully employed in
many computer vision tasks such as image retrieval and
recognition [3], [35], object detection [5], and image-based
localization [6]. In a typical MVS framework, local features
are also employed as the first step in both search and in-
dexing. The most widely known local features are SIFT [7]
and SURF [8]. Their keypoint detector and feature descrip-
tor are invariant to scaling, rotation, illumination variation,
and noise. However, they incur a high computational cost
for real-time applications running on mobile devices with
low computing power and memory capacity. Apart from
real-valued features like SIFT, binary local features such
as BRISK [9], ORB [10], and FREAK [11] have attracted
much attention due to their efficiency. The performance of
these binary features is comparable to SIFT and SURF while
being one or two orders of magnitude faster. Therefore, bi-
nary features are better suited to facilitating the incorpora-
tion of visual search applications into mobile devices.

In many image retrieval and recognition frameworks,
local features are encoded into an image representation,
such as bag-of-visual words (BoVW) [3], vector of lo-
cally aggregated descriptors (VLAD) [4], and Fisher vector
(FV) [12], [13]. Similarity scores between a query image
captured by a mobile device and reference images in the
database are calculated by comparing their representations.
Finally, geometric verification is performed using reference
images with top similarities. VLAD and FV achieve both
small database size and high accuracy by aggregating lo-
cal descriptors into a compact image representation. How-
ever, they cannot achieve feature-level matching although
they realize image-level matching since they aggregate all
local features from an image. Therefore, they require addi-
tional data for feature-level matching if we are to apply them
to a visual search framework including geometric verifica-
tion. On the other hand, BoVW needs less data as a result
since it can perform feature-level matching based on visual
word matching.

Therefore, we focus on an MVS system based on bi-
nary local features and a BoVW framework. BoVW quan-
tizes feature descriptors into representative vectors called vi-
sual words (VWs) with a visual codebook and represents an
image as a histogram of VWs. Then, image similarity is
calculated as a cosine similarity between histograms of the
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reference image and the query image. Consequently, only
local features which satisfy the following match conditions
between the reference image and the query image contribute
to the search: 1) corresponding keypoints are detected from
the same location of an object, and 2) corresponding feature
descriptors are quantized into the same VW. These condi-
tions are not satisfied if the following two errors correspond-
ing to them occur due to viewpoint changes: 1) detection er-
ror, and 2) quantization error. Local features with either of
these errors decrease the cosine similarity between correct
image pairs, and adversely affect retrieval accuracy.

Another property of the BoVW framework is that
database size depends on the number of features per im-
age. Therefore, feature selection according to certain relia-
bility measure is an effective strategy for reducing database
size. In this strategy, features that have a high probability of
contributing to a search should be selected. In other words,
the feature should not be registered in the database if either
its detection repeatability or its quantization repeatability is
low.

In this paper, we propose a feature design method for
image indexing which improves the probability of satisfying
the match conditions. We use synthetic images that simulate
viewpoint changes like Affine-SIFT (ASIFT) [14] instead of
actual image collection. We target the recognition of pla-
nar objects since this approach is able to generate synthetic
images by warping a single reference image. That is, the
proposed method has a limitation in that it can only be ap-
plied to images of planar objects. However, the proposed
method can be applied to 3D objects using computer graph-
ics rendering techniques provided 3D models of target ob-
jects exist.

Figure 1 presents an overview of the proposed method.
First, we generate various synthetic images from a reference
image and extract features from them individually. Then we
project keypoints detected from every synthetic image onto
the coordinate system of the reference image. We associate
keypoints lying on the same location of an object. We mea-
sure how frequently features associated with the keypoints
are quantized to the same VW and use it as a guide to feature
reliability. For instance, the reliability scores for green fea-
tures become one since their repeatability is low in regard to
both keypoint detection and feature descriptor quantization.
The reliability scores for blue features become two since
their repeatability in terms of keypoint detection is high but
their repeatability in terms of feature descriptor quantization
is low. The reliability scores for orange features become
three (i.e., the most reliable) since their repeatability is high
in terms of both keypoint detection and feature descriptor
quantization. With this feature reliability measure, we de-
sign features to index the reference image while preventing
any increase in database size by selecting features.

This paper is an extended version of the paper [15] that
appeared in ACPR 2015. Specifically, we formulate feature
selection as a maximum coverage problem and introduce a
solution to find a finite set of local features maximizing an
objective function under certain constraints. For this pur-

Fig. 1 Overview of the proposed method. Circles represent keypoints.
Squares represent quantization results.

pose, the proposed method uses novel constraint functions
designed to be consistent with the match conditions.

The rest of this paper is organized as follows. In Sect. 2,
we describe related work on feature design in the context
of image retrieval and image matching. In Sect. 3, we in-
troduce a visual search method to apply our proposal. In
Sect. 4, we propose a novel feature design method suitable
for MVS. In Sect. 5, we evaluate the effectiveness of our
proposal. In Sect. 6, we conclude this paper.

2. Related Work

There has been research on feature design in the context of
image retrieval and image matching. In this section, we dis-
cuss some general approaches to feature design and their
practical issues for MVS.

Wang et al. [16] selected informative features which
are robust and distinctive against viewpoint changes. This
published work is the closest to ours in terms of consid-
ering both detection error and quantization error. This ap-
proach first connects keypoints across multiview images by
performing geometric verification with random sample con-
sensus (RANSAC) [17]. Isolated keypoints which are not
connected to others are discarded. With only the remain-
ing keypoints, corresponding features are quantized to VWs.
Then, features are ranked according to the score based on an
idea similar to term frequency-inverse document frequency
(tf-idf) scoring. Finally, top-ranked features are selected to
index a reference image for image retrieval. In this way,
this approach can reduce both detection error and quantiza-
tion error. However, this approach is not realistic in practical
terms since it requires several images to be taken of the same
object from different viewpoints.

Multiple assignment (MA) [18] assigns a single feature
to multiple VWs that are the k-nearest neighbor. This is
often used in to reduce the quantization error. Mikulı́k et
al. [19] achieved a more accurate MA than this. Their ap-
proach trained alternative k VWs using features extracted
from different viewpoint images. The alternative k VWs are
based on the probability P(Wb|Wa) of observing a VW Wb
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from a matching reference feature when a VW Wa was ob-
served from the query feature. However, these methods in-
crease the database size k times. Furthermore, the method
of Mikulı́k et al. is not a practical option for actual use for
the same reasons as the method of Wang et al.

Chen et al. [20] projectively warp a reference image to
simulate a view expected in the query image and extract lo-
cal features from the warped image. They generate synthetic
images for five different types of views, namely, front, top,
right, bottom, and left view from a reference image. Then,
they construct five individual sets of data from these images.
Their approach should reduce both detection error and quan-
tization error since local features are extracted from every
warped image. However, it has limited effectiveness against
any views except for the above-mentioned types of views,
while it causes a five-fold increase in the overall database
size.

Affine-SIFT (ASIFT) [14] achieves a robust image
matching result. This approach simulates various viewpoint
changes by warping images. It should reduce both detec-
tion error and quantization error for the same reasons as the
approach of Chen et al. although original ASIFT does not
include the quantization process. However, if we apply this
strategy in the context of image retrieval, we have to reg-
ister all synthetic images to the database, which results in
massive increases in the size of the database.

In this paper, we also focus on VWs observed from
multiview images. We propose a practical method to local
feature reliability measure based on image warping. In this
method, it is not necessary to collect several images taken
from different viewpoints. The proposed approach achieves
more effective MA to improve the probability of satisfying
the match conditions. It makes it possible to adjust database
size by selecting features according to the reliability mea-
sure. In our experiments, it is shown that the proposed
method outperforms regular MA when the database size is
the same.

3. Visual Search Methods

Although many methods have been proposed to improve the
BoVW framework for real-valued features [21], [22], [36],
only a few studies have applied binary features to BoVW
framework for the purpose of image retrieval. In [23], bi-
nary features are applied to a BoVW framework, referred
as bag-of-binary words (BoBW). In [24], a variant of the
Hamming embedding method [21] for binarized features is
proposed to improve retrieval accuracy while suppressing
memory cost. This method takes out the first a-bit binary
string of the feature as VW, and the next b-bit binary string
is stored in an inverted index. In [25], a visual search method
based on binary features is proposed, which achieves a real-
time MVS on a smartphone. It is shown that this method
can improve retrieval accuracy compared to conventional
methods without increasing the database size. In contrast to
the conventional stand-alone MVS methods which require
tens of megabytes (MBs) of storage [1], [2], this method

Fig. 2 Framework of the baseline method.

has the advantage of needing only a few MBs of storage
to recognize several hundred objects. Therefore, we re-
gard this method [25] as a baseline method in this study,
i.e., our feature design method for image indexing builds
on the framework. We also add a weak geometric consis-
tency method [21] in order to boost the search performance.
Figure 2 shows the framework of the baseline method. This
framework consists of a search procedure (left side) and an
indexing procedure (right side). We describe this framework
in detail below.

In accordance with the standard BoVW framework, lo-
cal features extracted from an image are quantized to rep-
resentative vectors called visual words. Initial ranking is
obtained according to image similarity, which is calculated
by each visual word of a query image voting scores on ref-
erence images. After the voting process, spatial re-ranking
is performed by geometric verification to improve the initial
ranking [36]. In addition, this framework includes the fol-
lowing extension methods.
Adaptive substring extraction Substring (SS) [25] con-
verts the feature descriptors into compact codes and stores
them in the inverted index, similar to Hamming embedding
(HE) [21]. SS generates a short binary string by extract-
ing bits of specific positions of the binary feature descrip-
tor. These positions are adaptively changed for each visual
word to extract distinctive bits. As with HE, SS measures
the Hamming distance between each short binary string.
Modified local NBNN scoring. Given short binary strings
extracted from a query feature q and a reference feature r as-
signed to the same visual word, the scoring function will be
w(dk) = (dK/dk)2−1, where dx represents the Hamming dis-
tance between short binary strings of the q and the x-th near-
est neighbor r. K is an adjustable parameter that specifies
the number of the nearest neighbors used in the scoring. In
this paper, we use K = 2 as in the original paper [25]. This is
a modified version of the local NBNN scoring scheme [26].
Weak geometric consistency. Weak geometric consistency
(WGC) provides constraints based on angle and scale infor-
mation [21]. It filters feature correspondences that are not
consistent in terms of orientation difference and scale ratio
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in the voting process of Fig. 2. We use only angle informa-
tion because scale information is not effective as shown in
[27].

4. Proposed Method

In this section, we propose a feature design method for im-
age indexing which selects features according to a certain
measure, referred as a feature reliability measure. This mea-
sure is the probability of satisfying the match conditions
when the query image is actually given. However, the ac-
tual query image is unknown when indexing a reference im-
age. We therefore use synthetic images emulating the actual
query images instead. In order to make this practical, we
generate synthetic images by warping a reference image. It
allows us to index a reference image that achieves robust
recognition if the actual query image is similar to one of the
synthetic images. Our goal is to satisfy the match conditions
for as many query features as possible with a small number
of reference features. To accomplish this, we formulate and
solve the feature selection problem as a maximum coverage
problem. In the indexing procedure, we register optimized
features to the database in order to improve SS and WGC
performance. Furthermore, we reduce the burstiness of the
VW directly and database size simultaneously. This method
changes only the indexing procedure of the visual search
framework shown on the right side of Fig. 2.

4.1 Problem Formulation

Let X = {x1, x2, . . . , xN} be N sets of unknown local features
and Q = {q1, q2, . . . , qM} be M(≥ N) sets of local features
extracted from synthetic images. We formulate feature se-
lection as the maximization of an objective function under
certain constraints:

max.
∑

i∈X

∑

j∈Q

z j f (xi, q j), (1)

s.t.
∑

i∈X

f (xi, q j) ≤ N, ∀ j ∈ Q, (2)

f (xi, q j) ∈ {0, 1}, ∀i ∈ X, ∀ j ∈ Q, (3)

z j ∈ {0, 1}, ∀ j ∈ Q, (4)

where f is a constraint function with regard to feature
matching, and z j is a variable which is 1 if q j has not sat-
isfied the constraint for any xi, otherwise 0. We use the vari-
able z to eliminate the redundancy of X. This induces the
finite number of xi to match as many q j as possible. In other
words, X covers the maximum number of features of Q that
are effective for the visual search. This is a maximum cover-
age problem known to be NP-hard [28], thus computation-
ally infeasible. In order to find a solution within a feasible
computational time, we propose an approximate solution.

Specifically, the proposed method is based on a greedy
algorithm which is referred to as the polynomial time
approximation approach to the maximum coverage prob-
lem [29], [30]. Such an approximation approach to the

maximum coverage problem itself is not novel, and it is
widely used in the context of designing wireless sensor net-
works [31], text summarization [32], and so forth. However,
to the best of our knowledge, this is the first attempt to for-
mulate feature selection in the context of image retrieval as
a maximum coverage problem. For this purpose, we pro-
pose novel constraint functions in Sect. 4.2 and describe our
algorithm in detail in Sect. 4.3.

4.2 Constraint Functions

The constraint functions are designed to be consistent with
the match conditions in the baseline method described in
Sect. 3. That is, they follow the constraints based on key-
point detection and feature quantization between a query
feature q and a reference feature r. Furthermore, they in-
clude a constraint based on WGC.

Each local feature l has a spatial coordinate c(l), quan-
tized feature descriptor, namely visual word v(l), and an ori-
entation θ(l). The keypoint-based constraint (KBC) function
is as follows:

fc(r, q) =

⎧⎪⎪⎨⎪⎪⎩
1 if ‖c(r) − Pc(q)‖ ≤ εc
0 otherwise

, (5)

where εc is a threshold value of the re-projection error and
P is a known projection matrix (e.g., homography) to the
coordinate system of the reference image. Then, the visual
word-based constraint (VBC) function (i.e., whether feature
descriptors are assigned to the same visual word or not) is
represented by:

fv(r, q) =

⎧⎪⎪⎨⎪⎪⎩
1 if v(r) = v(q)

0 otherwise
. (6)

The orientation-based constraint (OBC) function for the
WGC is given by:

fθ(r, q) =

⎧⎪⎪⎨⎪⎪⎩
1 if |θ(r) − θ(q)| ≤ εθ
0 otherwise

, (7)

where εθ is a threshold value of the orientation difference
and thus is consistent with the resolution of the quantized
angle [21]. This OBC function mimics the filtering of fea-
ture correspondences by WGC. That is, the OBC function is
a constraint function designed to be consistent with a match
condition based on WGC.

In the baseline method, voting is performed only when
all of the above constraints are satisfied. The constraint
functions are summarized by the following equation:

f (r, q) =

⎧⎪⎪⎨⎪⎪⎩
1 if fc(r, q) ∧ fv(r, q) ∧ fθ(r, q)

0 otherwise
. (8)

In Eq. (6), we assume that a feature descriptor is assigned
to a VW. However, we can also use this constraint function
in the case where a feature descriptor is assigned to multi-
ple VWs by MA, by regarding a local feature to be multiple
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Fig. 3 Synthetic image generation.

local features with different v(l) and the same c(l) and θ(l).
For instance, if a feature descriptor of l is assigned to v1(l)
and v2(l), the l is considered to be two local features with
{c(l), v1(l), θ(l)} and {c(l), v2(l), θ(l)} respectively. Then, we
input these local features into the constraint function indi-
vidually.

4.3 Algorithm of Feature Design for Image Indexing

The proposed feature design method for image indexing
consists of the four steps listed below.
Step 1: Generate synthetic images to emulate the actual
query images captured by mobile devices (Sect. 4.3.1).
Step 2: Measure the feature reliability using local features
extracted from synthetic images (Sect. 4.3.2). This step finds
a finite set of local features maximizing an objective func-
tion under certain constraints.
Step 3: Average feature descriptors and orientations ex-
tracted from the synthetic images to calculate the optimal
feature for SS and WGC (Sect. 4.3.3).
Step 4: Select features according to the reliability while
avoiding selecting the same VW multiple times (Sect. 4.3.4).
The purpose is to reduce the burstiness of the VW directly
and the database size simultaneously.

4.3.1 Synthetic Image Generation

We generate synthetic images from a virtual viewpoint Vi

by warping the reference image in order to simulate vari-
ous query images captured by mobile devices. We perform
a uniform sampling of the virtual viewpoints positions as
done in [33]. In this paper, we empirically use 26 viewpoints
where elevation exceeds 45 degrees in 71 viewpoints [34]
because a finer sampling interval results in more calculation
(see Fig. 3a). For each viewpoint, we also generate multi-
scale images to simulate scale changes using scaling factors

Algorithm 1 Feature design method for image indexing
Input: Q = {q1, q2, ..., qM}
Output: X = {x1, x2, ..., xN }

1: Set X ← ∅,Q′ ← Q
2: for i = 1→ M do
3: Set Ci ← ∅
4: for j = 1→ M do
5: if f (q′i , q j) = 1 then
6: Vote a reliability score to q′i
7: Insert q j to Ci

8: end if
9: end for

10: end for
11: for i = 1→ M do
12: Select q′ with the highest reliability score: q′h
13: Average q′h using Ch

14: if a feature with the same VW as q′h is not included in X then
15: Insert the averaged q′h to X as x
16: else
17: Store Ch as discarded features
18: end if
19: Set each z corresponding q ∈ Ch to 0
20: Re-calculate reliability scores for each q′ ∈ Q′
21: Remove each q ∈ Ch from all Ci

22: if |X|≥N then
23: break
24: end if
25: end for
26: while |X| < N do
27: Repeat processing of lines 11-25 using only the discarded features
28: end while

of 1, 1/
√

2, and 1/2. We calculate the homography projec-
tion matrix Pi corresponding to Vi as done in [33], and gen-
erate synthetic images as shown in Fig. 3b.

4.3.2 Feature Reliability Measure

In order to solve the problem described in Sect. 4.1 within
a feasible computational time, we explore approximate so-
lutions based on a greedy algorithm. That is, we explore
N sets of features from Q by iteratively selecting a feature
that matches the most features in each iteration round. Let
Q′ = {q′1, q′2, . . . , q′M} be the copy of Q. We vote a score
from Q to Q′ and then i-th q′ obtains the following value,
referred as the feature reliability:

si =
∑

j∈Q

z j f (q′i , q j), (9)

where f is the constraint function of Eq. (8). We set all z
to 1 initially and then sequentially select q′ with the high-
est score. This is a combinatorial optimization problem and
thus it can be solved in polynomial time. The details of this
approach are described in Algorithm 1.

If a q j votes a reliability score for q′ (i.e., f (q′, q j) =
1), the q j is associated with the q′. Let Ci be the set of q
associated with i-th q′ and C = {C1,C2, . . . ,CM} be a set
of Ci. The Ci means a set of q covered by i-th q′ in the
feature space. After measuring the reliability scores for all
features, we select a q′ with the highest score. Let it be h-th
q′, namely q′h. At this time, we average q′h using Ch. The
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details of this process are explained later in Sect. 4.3.3. We
insert the averaged q′h to X as x instead to the original q′h.
We then set each z corresponding to q of Ch to 0. We re-
calculate scores for qi according to Eq. (9) and remove the
q of Ch from all Ci (i = 1, 2, . . . ,M). We repeat the above
process until N sets of x are obtained.

The following effects are expected when we select a
specified number of features according to the reliability:
Useful feature selection. In the proposed method, features
with a high probability of satisfying the match conditions
among the synthetic images emulating actual query images
are selected. It is expected that these features tend to be
matched with the correct query features in an actual search
and significantly improve the final result.
Adaptive multiple assignment. As a result of the proposed
method, multiple (non-fixed n) VWs could be assigned to
the single keypoint since we associate features that simulta-
neously satisfy multiple constraints. Figure 1 illustrates this
MA. In the middle right part of this figure, we can regard
blue keypoints lying on the same location as a single key-
point according to the KBC. Then, we associate two VWs,
“�” and “�” with this keypoint based on VBC. It resembles
the result of MA, but the number of VWs associated with a
keypoint n is adaptively determined. The n becomes large
for a feature with high probability of satisfying the KBC and
low probability of satisfying other constraints. In contrast,
the n becomes small for a feature with high probability of
satisfying all constraints. Therefore, we can realize a more
efficient MA with respect to memory capacity.

4.3.3 Feature Averaging

In order to improve the performance of SS and WGC de-
scribed in Sect. 3, we output the average of features associ-
ated with the feature q′h in Algorithm 1. Usually, the features
extracted from a front-view reference image are used in SS
and WGC. However, in the proposed method, multiple fea-
tures extracted from various synthetic images are associated
with the feature q′h, namely Ch. Therefore, we average the
feature quantities (i.e., feature descriptors and orientations)
of Ch, and then replace the feature quantities of q′h with the
averaged values. It is expected to increase the robustness of
search because this is the maximum likelihood estimation of
feature quantities among various views. That is, we improve
the SS and WGC by using the maximum likelihood feature
descriptors and orientations under the constraints described
in Sect. 4.2. Regarding the feature descriptor, we average
each dimension, and binarize the average value. Regarding
the orientation, we average unit vectors with the angles of
features and use the angle of the averaged vector in WGC.

4.3.4 Non-Bursty Selection

Jégou et al. argued that burstiness of the visual element cor-
rupts the visual similarity measure [35]. They proposed that
this burstiness phenomenon could be reduced by scoring,
but it is impossible to reduce the database size using their

Fig. 4 Overview of non-bursty selection.

approach. Therefore, we propose a feature selection method
to reduce the burstiness of the VW directly and database size
simultaneously. In our selection method, if multiple fea-
tures are quantized to the same VW, only the feature with
the highest reliability score is registered and the others are
discarded.

Figure 4 shows an overview of our non-bursty selec-
tion method. In Fig. 4b, s and VW represent the reliability
score and the visual word of a feature, respectively. Fig-
ures 4a and 4b correspond to the feature selection without
and with our non-bursty selection method, respectively. In
Fig. 4a, features are simply selected in descending order of
their reliability scores. In Fig. 4b, the feature with reliabil-
ity score s = 3 and VW = � is selected first. According to
the score s, the feature with s = 2 and VW = � should be
selected second. However, unlike Fig. 4a, the feature where
s = 2 and VW = � is discarded because the feature with the
same VW “�” is already registered. By selecting a specified
number of features using this method, we can suppress the
burstiness of the VW directly and reduce the database size
simultaneously. If the number of registered features did not
reach the specified number, we repeat the same process to
select new features from the discarded features in the previ-
ous process. This method is described in Algorithm 1, lines
14-18 and lines 26-28.

5. Experimental Evaluation

We conduct experiments to evaluate the effectiveness of the
proposed feature design method. In the experiments, we use
the Stanford mobile visual search dataset†. The dataset con-
sists of eight classes, namely book covers, business cards,

†https://purl.stanford.edu/rb470rw0983/
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Fig. 5 Examples of images in Stanford mobile visual search dataset. The
top row shows reference images of a front view. The bottom row shows
query images of various views taken on mobile devices.

CD covers, DVD covers, landmarks, museum paintings,
print documents, and video frames. In the dataset, there
are in total 1,200 clean reference images and 3,300 query
images which are taken from mobile devices. Because the
dataset contains images of different sizes, we reconfigure
both the query images and the reference images in the VGA
format. Figure 5 shows examples of images in this dataset.

As an indicator of retrieval performance, we use the
mean average precision (MAP) as in [36]. We adopt the
ORB feature [10] since it is the most robust for several gen-
eral deformations among well-known binary features [37],
where 900 features are extracted from four scales on aver-
age. The number of VWs and the length of SS are fixed to
1,024 and 64 bits, respectively. We set εc = 3 in Eq. (5) in
imitation of a typical value used as reprojection error thresh-
old for the RANSAC algorithm (e.g., OpenCV library†).

Let “KBC” (keypoint-based constraint), “VBC” (visual
word-based constraint), and “OBC” (orientation-based con-
straint) denote a constraint in Eqs. (5), (6), and (7), respec-
tively. Let “FA” (feature averaging) and “NBS” (non-bursty
selection) denote the processing described in Sect. 4.3.3 and
Sect. 4.3.4, respectively.

5.1 Effect of the Orientation-Based Constraint

We evaluate the effectiveness of the proposed OBC in
Eq. (7). In order to focus on the evaluation of the OBC, we
exclude FA and NBS processing from the proposed method.
We compare the proposed method (Prop) where the OBC
(Prop w/o OBC) is excluded. We measure the MAP scores
of eight classes while varying the threshold εθ in Eq. (7).

Figure 6 shows the experimental results. We can see
that by comparing the Prop and the Prop w/o OBC, the OBC
improves retrieval accuracy. This is because the proposed
method gives a high reliability to features with high repeata-
bility of orientation. That is, the stable features whose ori-
entation hardly varies due to viewpoint changes tend to be
included in the database. In contrast, unstable features are
not included in the database. The accuracy is improved since
the WGC filters features that are inconsistent with the ori-
entation difference. The peak value is found in the case of
εθ = 15◦. A threshold that is too small excludes features that

†https://opencv.org/

Fig. 6 Average MAP scores of eight classes as a function of the threshold
εθ.

Fig. 7 Evaluation of feature averaging and non-bursty selection. Prop
with vs. without FA represents the effect of the feature averaging. Prop
with vs. without NBS represents the effect of the non-bursty selection. For
reference, the retrieval accuracy in the case of registering all local features
is also shown.

may satisfy the match conditions in the actual search. On
the other hand, an overly large threshold reduces the effect
of the OBC. Therefore, we use the parameter εθ = 15◦ in
subsequent experiments.

5.2 Evaluation of the Feature Averaging and Non-Bursty
Selection in Relation to Increasing Database Size

We evaluate FA and NBS when database size increases. We
compare the proposed method (Prop) with the cases where
FA (Prop w/o FA), NBS (Prop w/o NBS), and both FA and
NBS (Prop w/o FA and NBS) are excluded. For reference,
we also measure retrieval accuracy in the case of register-
ing all local features extracted from synthetic images in the
database (All features).

Figure 7 shows the average MAP of the eight classes of
each method as a function of the number of data per image.
We can see that feature averaging makes a steady contri-
bution regardless of database size when comparing with or
without FA. This is because the averaged features boost the
performance of the SS, namely, improve the scores voted
from the query features among various views according to
the scoring method described in Sect. 3. The averaged ori-
entation also boosts the performance of the WGC by reduc-
ing the difference from orientations of query features among
various views. Thus the average of features extracted from
synthetic images is more reliable than the one of them. By
comparing with or without NBS, it is clear that NBS makes
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Table 1 Comparison of the proposed method with conventional methods and evaluation of each el-
ement of the proposed method in terms of mean average precision. KBC = keypoint-based constraint,
VBC = visual word-based constraint, OBC = orientation-based constraint: see Sect. 4.2. FA = feature
averaging: see Sect. 4.3.3. NBS = non-bursty selection: see Sect. 4.3.4. In all the methods, 900 features
per image are registered in the database.

KBC VBC OBC FA NBS book cards cd dvd landmarks paintings print video average

BoBW [23] 0.610 0.173 0.427 0.465 0.080 0.486 0.125 0.584 0.369

[24] 0.874 0.463 0.752 0.811 0.197 0.671 0.423 0.824 0.627

Baseline 0.935 0.616 0.882 0.945 0.292 0.743 0.609 0.923 0.742

Prop x x 0.944 0.839 0.949 0.977 0.362 0.861 0.780 0.987 0.838

Prop x x x 0.949 0.848 0.946 0.976 0.382 0.877 0.785 0.981 0.843

Prop x x x 0.956 0.867 0.965 0.980 0.407 0.890 0.801 0.983 0.856

Prop x x x x 0.951 0.871 0.959 0.982 0.419 0.895 0.811 0.986 0.859

Prop x x x 0.960 0.854 0.951 0.975 0.379 0.849 0.805 0.992 0.846

Prop x x x x 0.957 0.882 0.953 0.973 0.380 0.866 0.825 0.999 0.855

Prop x x x x 0.961 0.900 0.961 0.983 0.417 0.874 0.850 0.989 0.867

Prop x x x x x 0.964 0.901 0.961 0.984 0.419 0.876 0.855 0.989 0.869

a significant contribution, especially when the database size
is small. The result suggests that it is better to impose a
non-burstiness constraint rather than registering features in
order of reliability without that constraint. The effect be-
comes negligible as the database size becomes larger since
the database includes more unreliable features as the number
of registered features increases. Therefore, NBS is suitable
for constructing a compact database.

In the case of All features, the number of data per im-
age is 78 × 900 = 70,200. Although it uses all features, it is
inferior to the proposed method using fewer features. This
is because increasing database size causes retrieval accuracy
to deteriorate. In other words, this is because increased ref-
erence features behave as distractor features for a certain
query feature in the search procedure. For a similar rea-
son, the retrieval accuracy of the proposed method saturated
to its upper bound level in Fig. 7. However, the proposed
method provides a good trade-off between retrieval accuracy
and database size.

5.3 Comparison of the Proposed Method with Conven-
tional Visual Search Methods

We compare the proposed method with conventional visual
search methods: BoBW [23], the method [24], and the base-
line method [25]. The conventional methods use local fea-
tures extracted from a front-view reference image, while the
proposed method indexes an image using local features ex-
tracted from synthetic multiview images. In this experiment,
we further investigate the impact of each element of the pro-
posed method. For this purpose, we measure the accuracy
when excluding each element from the proposed method.
The elements to consider are the constraints of KBC, VBC,
and OBC, and the feature design processing of FA and NBS.
However, the KBC and the VBC are always used since they
are the minimum configuration of the proposed method. For
all methods, we registered 900 features per image in the
database.

Table 1 summarizes all the results. The baseline
method outperforms the other conventional methods due to
the extension methods described in Sect. 3. The proposed
method raises the accuracy by 9.6 percentage points com-
pared to the baseline method, even in the case of the mini-
mum configuration (i.e., KBC and VBC only). This is be-
cause the reference images are indexed using selected re-
liable features which have a high probability of satisfying
the match conditions on various query features. The differ-
ence between the baseline method and the proposed method
is only the indexing procedure, and the search procedure is
common to both methods. Therefore, the proposed method
enables more accurate search without adversely affecting the
database size, computational cost, and memory requirement
as compared with the baseline method. Furthermore, the
proposed method does not require additional data such as
images taken from different viewpoints of reference objects
since it exploits the synthetic images. These facts emphasize
the practicality of the proposed method.

In the proposed method, we can see that each element
improves accuracy compared to the minimum configura-
tion. This is because OBC selects features with high re-
peatability of orientation, FA provides the optimal feature
descriptors and orientations for SS and WGC respectively,
and NBS reduces the burstiness of the visual elements on
the database. The effect can be enhanced by combining each
element since they complement to each other. When all el-
ements are included, the proposed method can improve the
accuracy by 12.7 percentage points compared to the baseline
method. However, the NBS was not useful for the painting
class. This is because this class includes fewer textured im-
ages, so the repeatability of keypoint detection is especially
low. The NBS adversely affected this class since it may dis-
card features with high repeatability of keypoint detection.
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Fig. 8 Comparison of the proposed method with the conventional feature design methods, namely
informative feature selection (IFS) and multiple assignment (MA). For MA, 900 features are extracted
per image and each feature assigned to k-nearest neighbor VWs (k = 1,. . . ,10). IFS and the proposed
method select features so that database size is equal to that of MA.

5.4 Comparison of the Proposed Method with Conven-
tional Feature Design Methods

We compare the proposed method with conventional feature
design methods: informative feature selection (IFS) [16]
and reference side MA [18]. We apply these feature de-
sign methods to the conventional visual search methods.
In [16], IFS requires real multiview images and uses the
RANSAC algorithm to estimate the geometric relationships
among them. In this experiment, we apply the strategy of
our synthetic images and ground-truth geometric relation-
ships to IFS for fair comparison with the proposed method.
MA that assigns a feature descriptor to k-nearest neighbor
VWs cannot be applied to [24] because this method directly
uses a subset of the feature as a VW. Therefore, we do not
include [24] with MA in the comparison. MA assigns a fea-
ture descriptor to k VWs, which increases the database size
k times (k = 1,. . . ,10). IFS and the proposed method select
features so that database size is equal to that of MA. Al-
though the Hessian affine covariant detector [38] and SIFT
descriptor, which are robust to viewpoint changes but com-
putationally expensive, are used in the original papers of
IFS [16] and MA [18], we adopt ORB features in this ex-
periment.

Figure 8 shows all the experimental results. As shown,
the proposed method achieves the highest accuracy regard-
less of the database size. Although IFS gradually improves
accuracy as database size increases, its accuracy is always
inferior to that of the proposed method. This is because the
IFS does not always select features with high repeatability of
keypoint detection and feature descriptor quantization. That
is, although IFS discards non-repeatable keypoints, it does
not preferentially select features with high repeatability of
keypoint detection. Furthermore, IFS selects features based
on the idea of tf-idf but does not consider the repeatability of
feature descriptor quantization associated with keypoints ly-
ing on the same location. The MA improves the accuracy of
conventional visual search methods by alleviating quantiza-
tion error. However, it does not exceed the accuracy of the

Table 2 Computation times [milliseconds] of the proposed method.

M (# features extracted from synthetic images)

9,000 18,000 27,000 36,000 45,000

Synthetic 38.53 78.40 117.6 152.4 186.1

Extract 100.9 202.4 300.8 396.8 483.7

Quantize 24.20 48.07 72.43 95.81 120.3

Design 162.6 569.7 1,249 2,296 3,671

FA 22.81 42.07 61.67 79.97 108.9

NBS 0.391 0.598 0.822 1.043 1.270

Total 349.5 941.2 1,803 3,022 4,571

proposed method for the smallest database size, even with
sufficiently large k. This is because the proposed method al-
leviates keypoint detection error and orientation description
error as well as quantization error. Therefore, the proposed
method can achieve more effective feature design than MA
for image indexing.

In comparing IFS and MA, IFS is inferior to MA when
the database size is small, but superior to MA when the
database size is large. This is because IFS does not regis-
ter many of the features with high repeatability of keypoint
detection when the database size is small. However, IFS
gradually registers many of such features as the database
size increases, resulting in improved accuracy. In the orig-
inal paper, although IFS improves accuracy even when the
database size is small, this seems to be because the Hessian
affine covariant detector can detect keypoints robustly with
respect to viewpoint changes. On the other hand, MA has
a relatively low dependency on database size since it uses
common keypoints.

5.5 Computation Times for Various Input Sizes

We measure the computation times of the proposed method
in different M, namely number of features extracted from
synthetic images. We generate 10, 20, 30, 40, and 50 syn-
thetic images and then extract 900 features from each im-
age. As a result, the Ms become 9,000, 18,000, 27,000,
36,000, and 45,000, respectively. Table 2 shows computa-
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tion times for synthetic image generation (Synthetic), local
feature extraction from synthetic images (Extract), feature
descriptor quantization (Quantize), feature design described
in Algorithm 1 (Design), feature averaging (FA), and non-
bursty selection (NBS). Note that we independently mea-
sured the FA and NBS so that the Design does not include
them. These computation times are measured on a desktop
PC with 3.4 gigahertz Intel Core i7-6800K CPU and 32 gi-
gabytes of RAM.

Synthetic and Extract increased linearly with respect
to the number of synthetic images. Quantize also increased
linearly with respect to M. These tendencies are obvious
considering their algorithms. On the other hand, Design in-
creased quadratically with respect to M. As shown in Algo-
rithm 1, the computational complexity of Design is O(M2)
since the procedure includes double iterations with respect
to M. In our implementation, the processing of line 12 in
Algorithm 1 is based on linear search and its computational
complexity is O(M). The computational cost of lines 19-21
in Algorithm 1 is negligible. FA increased linearly with re-
spect to M because the size of Ch described in Sect. 4.3.2
tended to increase linearly. NBS increased slightly as M in-
creased. This is because burstiness of VW is more likely to
occur as M is larger. Therefore, the proposed method can be
processed in polynomial time, namely O(M2).

6. Conclusion

In this paper, we proposed a feature design method for mo-
bile visual search based on binary features. We formulated
feature selection as a maximum coverage problem and pro-
vided an approximate solution to solve the problem in feasi-
ble time. The objective function is designed to be consistent
with the match conditions in the search method. Experi-
mental results on a public dataset with viewpoint changes
showed the effectiveness of the proposed method. The pro-
posed method improved retrieval accuracy without increas-
ing the database size and changing the search procedure.
The next task is to extend our procedure to non-planar ob-
jects in order to improve the accuracy of 3D object search.
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