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PAPER

Automatic Speech Recognition System with Output-Gate Projected
Gated Recurrent Unit

Gaofeng CHENG†,††a), Nonmember, Pengyuan ZHANG†,††b), Member, and Ji XU††c), Nonmember

SUMMARY The long short-term memory recurrent neural network
(LSTM) has achieved tremendous success for automatic speech recogni-
tion (ASR). However, the complicated gating mechanism of LSTM intro-
duces a massive computational cost and limits the application of LSTM in
some scenarios. In this paper, we describe our work on accelerating the
decoding speed and improving the decoding accuracy. First, we propose
an architecture, which is called Projected Gated Recurrent Unit (PGRU),
for ASR tasks, and show that the PGRU can consistently outperform the
standard GRU. Second, to improve the PGRU generalization, particularly
on large-scale ASR tasks, we propose the Output-gate PGRU (OPGRU). In
addition, the time delay neural network (TDNN) and normalization meth-
ods are found beneficial for OPGRU. In this paper, we apply the OPGRU
for both the acoustic model and recurrent neural network language model
(RNN-LM). Finally, we evaluate the PGRU on the total Eval2000 / RT03
test sets, and the proposed OPGRU single ASR system achieves 0.9% /
0.9% absolute (8.2% / 8.6% relative) reduction in word error rate (WER)
compared to our previous best LSTM single ASR system. Furthermore, the
OPGRU ASR system achieves significant speed-up on both acoustic model
and language model rescoring.
key words: GRU, LSTM, neural network language model, speech recogni-
tion

1. Introduction

The application of deep neural network (DNN), particularly
recurrent neural network (RNN), has achieved great success
in automatic speech recognition (ASR) [1]–[3]. However,
suffering from the gradient explosion or vanishing prob-
lem [4], vanilla recurrent neural networks gain very limited
success for ASR tasks. To address this problem, the long
short-term memory (LSTM) units [5] were proposed and
achieved tremendous success [6], [7]. The LSTM unit is de-
signed with a sophisticated gating mechanism and ‘constant
error carrousels’ (CEC) [5] to enforce the constant error flow
through the memory cell. Because of its long-term tempo-
ral dependency modeling ability, LSTM is widely used in
many sequence modeling tasks such as the acoustic model
for ASR tasks [7], [8] and the recurrent neural network lan-
guage model [1].
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Although LSTM acoustic models, especially the bidi-
rectional LSTM (BLSTM) [8], [9], have achieved higher
recognition accuracy than vanilla RNN and simple DNN,
decoding efficiency still remains a challenge for their appli-
cation. Decoding speed is a realistic and critical considera-
tion when we deploy an ASR system. To reduce the com-
putational cost, an alternative to LSTM — GRU [10] is pro-
posed. Simpler than LSTM, GRU uses only reset gate and
update gate. In [11], the authors evaluated GRU and LSTM
on polyphonic music data and raw speech signal data, but
they did not make concrete conclusion on whether LSTM
or GRU was better. In [2], the authors applied GRU for
ASR, and showed that GRU based acoustic model outper-
formed the simple recurrent neural network, but they did not
show the recognition results on LSTM. In [12], the authors
employed visualization techniques to study the behavior of
LSTM and GRU when performing speech recognition tasks,
and concluded that both the LSTM and GRU can accumu-
late longer memory at higher-level layers but GRU is more
robust than LSTM in noisy conditions. In [13], the authors
tried LSTM and GRU on language modeling tasks and they
confirmed that the LSTM seems to be a better choice than
the GRU.

In this paper, we focus on the GRU-based recurrent
neural network architectures. The contributions of this pa-
per can be described as follows:

• Proposing PGRU for speech recognition, and compar-
ing it with the standard GRU in the bidirectional vari-
ant.
• Interleaving PGRU with TDNN [3] into one unidirec-

tional hybrid model, which outperforms the bidirec-
tional PGRU (BPGRU).
• Improving the generalization of PGRU on large-scale

data sets by proposing the OPGRU.
• Applying the proposed OPGRU instead of LSTM for

both the acoustic model and neural network language
model.

The paper is organized as follows: Sect. 2 presents the
prior work, Sect. 3 presents the proposed models, Sect. 4
shows the experimental setup, Sect. 5 presents the results for
the acoustic models, Sect. 6 presents results for the neural
network language models, and the conclusions are provided
in Sect. 7.

2. Prior Work

In this paper, we propose the PGRU-based recurrent neu-
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ral network architectures to build a single ASR system,
which contains the one-pass n-gram-based weighted finite-
state transducer (WFST) decoder and second-pass neural
network language model rescoring; we compare the pro-
posed (O)PGRU with the standard GRU / Projected LSTM
(LSTMP) [7]. Before providing the details of the proposed
PGRU-based models, we first describe the LSTMP and stan-
dard GRU in this section.

2.1 Projected LSTM

LSTM [5] achieves success in sequence modeling tasks,
and several modifications to the original LSTM have been
made [6], [14], [15]. LSTMP is a popular variant of LSTM
and the standard LSTM architecture under Kaldi [16]. Each
LSTMP unit contains an input gate, which controls the flow
of input activations into the memory cell, and an output gate,
which controls the output flow of the LSTMP unit. The for-
get gate [6] is also used to allow the LSTMP unit to adap-
tively forget or reset the memory cell. Unlike the standard
LSTM, every LSTMP unit contains one recurrent projec-
tion layer and one non-recurrent projection layer. Note that
we use one equivalent single projection layer in place of
two separate projection layers. The LSTMP is an impor-
tant component of our baseline system, and its formulations
are as follows:

it = σ(Wixxt +Wisst−1 + Uicct−1 + bi) (1)

ft = σ(W f xxt +W f sst−1 + U f cct−1 + b f ) (2)

ot = σ(Woxxt +Wosst−1 + Uocct + bo) (3)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wcxxt +Wcsst−1 + bc) (4)

mt = ot ⊙ tanh(ct) (5)

pt = Wpmmt (6)

st = Wsmmt (7)

yt = (pt, st) (8)

where ⊙ denotes the element-wise multiplication; σ (the
sigmoid function) and tanh are also applied element-wise.
U is the learnable vector (diagonal matrix); pt is the non-
recurrent projection part, and st is the recurrent projection
part. In all reported experiments, pt and st are one quarter
of the cell dimension: for example, the cell dimension may
be 1024, so pt and st have dimension 256, and the output yt

has dimension 512.

2.2 GRU

GRU was first proposed by Cho et al. [10]. Similar to the
LSTM unit, GRU also has a gating mechanism to modulate
the information flow through the unit.

In our experiments, we implement the GRU as follows:

rt = σ(Wrxxt +Wrhht−1 + br) (9)

zt = σ(Wzxxt +Wzhht−1 + bz) (10)

h̃t = tanh(Wh̃xxt +Wh̃h(rt ⊙ ht−1) + bh̃) (11)

ht = (1 − zt) ⊙ h̃t + zt ⊙ ht−1 (12)

yt = ht (13)

where the memory cell activation ht at time t is a linear inter-
polation of the previous activation ht−1; the activation candi-
date h̃t at time t, rt is the reset gate; and zt is the update gate.
yt is the output of GRU.

For the standard GRU, the candidate activation is com-
puted similarly to the traditional RNN, where zt decides to
what degree the GRU updates its memory cell activation,
and rt is used to forget the previously computed state. Un-
like LSTM, GRU does not have a separate memory cell, and
the memory cell of GRU is directly exposed to the next-step
calculation.

3. Proposed Model

3.1 Projected GRU

Unlike the standard GRU architecture, the PGRU has one
projection layer, whose formulation is:

rt = σ(Wrxxt +Wrsst−1 + br) (14)

zt = σ(Wzxxt +Wzsst−1 + bz) (15)

h̃t = tanh(Wh̃xxt +Wh̃s(rt ⊙ st−1) + bh̃) (16)

ht = (1 − zt) ⊙ h̃t + zt ⊙ ht−1 (17)

yt = Wyhht (18)

st = yt[0 : s − 1] (19)

where Wyh is the projection matrix, which projects ht onto
yt with a lower dimension; st is the recurrent projection; s
is the recurrent projection dimension; and yt is the output
of PGRU. The dimension of rt is identical to the recurrent
projection dimension, and the dimension of zt is identical to
the memory cell dimension. PGRU is illustrated in Fig. 1.

In our setup, the projected memory cell yt of PGRU
contains recurrent and non-recurrent projection parts, the re-
current part will be used as the recurrence of PGRU, and all
projected memory cells will be fed into the next layer as the
output of PGRU. st mismatches the dimension of ht, so we
still use ht−1 for the calculation of ht. With the projection
layer, we can preserve a memory cell with larger dimension
while maintaining a small model size. The presence of the
non-recurrent part in the projected memory cell can main-
tain a larger output dimension without obviously increasing
the model size.

Fig. 1 The structure of PGRU.
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Fig. 2 Sigmoid activation value distribution of different reset gates of 3-layer BPGRU on Fisher +
Switchboard ASR task.

3.2 Output-Gate Projected GRU

1. Observation: Fig. 2 shows that the reset gates (sigmoid
function) of the 3rd layer of the PGRU tend to become
severely saturated, i.e., approach 1. The update gates
of PGRU do not saturate, so they are not shown here.

2. Motivation: the reset gate rt enables the model to delete
the past memory by forgetting the previously computed
states. The saturated reset gates will tend to remain
most of the previously computed states. So the exper-
iments make us believe the reset gate of PGRU is re-
dundant.

We replace the reset gate with an output gate, which
helps regulate the projected output of PGRU. And Fig. 4
shows that the output gates of OPGRU are not observed to
be saturated. Another modification of PGRU is using ht−1

to replace st−1 in Eq. (16). A trainable vector (diagonal ma-
trix), which can be much smaller than matrix, instead of a
trainable weight matrix is used to scale ht−1. Our experi-
ments show that OPGRU can achieve better recognition ac-
curacy than PGRU on the large-scale ASR task. Identical to
PGRU, the update gates of OPGRU do not exhibit satura-
tion, so they are not shown here.

The equations of the proposed OPGRU are as follows:

ot = σ(Woxxt +Wosst−1 + bo) (20)

zt = σ(Wzxxt +Wzsst−1 + bz) (21)

h̃t = tanh(Wh̃xxt + Uh̃hht−1 + bh̃) (22)

ht = (1 − zt) ⊙ h̃t + zt ⊙ ht−1 (23)

ỹt = ot ⊙ ht (24)

yt = Wyỹỹt (25)

st = yt[0 : s − 1] (26)

where Uh̃h is the learnable vector. The dimension of ot and
zt is identical to the memory cell dimension. The OPGRU is
illustrated in Fig. 3.

Fig. 3 The structure of OPGRU.

4. Experimental Setup

All of our experiments were conducted using the Kaldi
speech recognition toolkit [16]. We focus on the 2000
hr Fisher+Switchboard large vocabulary continuous speech
recognition (LVCSR) task, but we also report a part of
the results on the 80 hr AMI SDM [17], [18], 200 hr
Ted-lium [19], and 300 hr Switchboard (SWBD) LVCSR
tasks. The training criterion is phone-level sequence train-
ing from scratch using the lattice-free MMI objective [8] on
the outputs of frame rate 33 Hz. The 40-dimensional Mel-
frequency cepstral coefficients (MFCCs) without cepstral
truncation are used as the input into the neural network [20].

The experimental setups for AMI SDM, Ted-lium and
Switchboard are the same as those described in [21], the
AMI SDM LVCSR system is trained with numerator lat-
tices generated from the parallel AMI individual headset
microphone (IHM) data [22]. The Fisher + Switchboard
LVCSR system is the same as that in [8]. We use the speed-
perturbation technique [23] for the 3-fold data augmentation
and iVector to perform the instantaneous adaption of the
neural network [24]. The i-Vector is used to provide infor-
mation about the mean offset of the speaker’s data, so the
cepstral mean or varaince normalization is not necessary in
our setup.

4.1 Neural Network Configuration for the Acoustic Model

The bidirectional LSTMP (BLSTMP) and TDNN-LSTMP
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Fig. 4 Sigmoid activation value distribution of different output gates of the 3-layer BOPGRU on
Fisher + Switchboard ASR task.

Table 1 Configuration for BLSTMP, BPGRU, TDNN-LSTMP, TDNN-
PGRU and TDNN-OPGRU. The unit of latency is millisecond (ms).

Acoustic Model Architecture 1 Latency 2

BLSTMP [L f ,Lb],[L f ,Lb],[L f ,Lb] 2020
BPGRU [P f ,Pb],[P f ,Pb],[P f ,Pb] 2020

TDNN-LSTMP T 100 T 100 T 100 L f T T L f T T L f 210
TDNN-PGRU T 100 T 100 T 100 P f T T P f T T P f 210

TDNN-OPGRU T 100 T 100 T 100 O f T T O f T T O f 210
1. Forward LSTMP - L f , backward LSTMP - Lb, forward PGRU - P f ,

backward PGRU - Pb, TDNN - T , forward OPGRU - O f , the default
layer frame-rate is 33 Hz, which is the default output frame rate for the
‘Chain’ model under Kaldi [25]. Other frame rates are specified in the
superscript.

2. The acoustic model decoding latency is affected by input context,
chunk-width, chunk contexts and output delay. See [25] for the def-
inition of latency. We use the same training and decoding configura-
tion for BLSTMP as that in [25]. TDNN-PGRU and TDNN-OPGRU
have the same configuration as TDNN-LSTM-C in [25] only with the
LSTMP layers replaced, so they should have the same latency. We use
a broader input context for the unidirectional model, so the latency is
210 ms instead of 200 ms, which is reported in [25].

neural networks are identical to the models described in
[21], [25]. Regarding the projection layers in LSTMP,
PGRU and OPGRU in this paper, the dimensions of the
recurrent and non-recurrent projections are always one-
quarter of the cell dimension. The default cell dimension
is 1024 unless specified.

All recurrent models are trained and decoded on the
fixed length context-sensitive chunks (CSCs) [26]. The
acoustic model training cost function is computed using
CSCs of width 1500 ms and a left/right context of 400 ms †.
During decoding, we use the identical chunk-width as train-
ing but increase the chunk-context to 500 ms to reduce the
WER [25]. The model architectures and latency information
are shown in Table 1.

4.2 Language Model

We focused on the large-scale LVCSR task, and the
neural network language model (NN-LM) experiments
were conducted under the 2000 hr Fisher+Switchboard
LVCSR task. Thus, only the language model setup for

†1500 ms is equivalent to 150 frames of features.

Fisher+Switchboard LVCSR task is described in this sec-
tion.

The initial decoding was conducted with a Kaldi WFST
decoder using 3-gram LM for the first pass decoding and 4-
gram LM for the second pass LM rescoring. The n-gram
LMs were trained from the Switchboard and Fisher training
audio transcripts with the first 10000 sentences of the train-
ing sets as the validation and tuning sets. The perplexity
(PPL) of the 3-gram LM and 4-gram LM over the validation
set (8.8M words) is 70.4 and 66.9, respectively.

For NN-LM rescoring, we followed the setup described
in [27], which directly rescored on the lattice; the word
embedding dimension used in our setup is 1024. For the
training data sets, in addition to Switchboard and Fisher
transcripts, the out-domain Washington conversational Web
corpus (191M words) was used. To balance the in-domain
and out-domain transcripts, we duplicated the Switchboard
/ Fisher transcripts 6 / 2 times. The validation set for the
NN-LM training was selected every one hundred lines of
the Switchboard and Fisher transcripts (24M words). The
lattices generated by the 4-gram LM were used for the NN-
LM rescoring. The neural network language model and n-
gram language model use different validation and training
data sets, so the reported PPLs are not comparable across
these two systems.

5. Results of the Acoustic Model

5.1 BPGRU vs BGRU

We began by comparing the standard GRU-based recur-
rent neural network architectures with the proposed PGRU-
based recurrent neural network architectures in the bidirec-
tional variant. For fair comparison, we tuned the parameter
size of both BPGRU and BGRU to maintain them with iden-
tical model sizes. Extensive experiments from Table 2 show
that BPGRU can gain consistent improvement over BGRU.
In the AMI SDM LVCSR task, BPGRU achieves a relative
WER reduction of approximately 7.5% ∼ 8.0% over BGRU,
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Table 2 WER for BGRU and BPGRU

Model
AMI SDM 300 Hr Switchboard

Parameter Cell Layer WER(%) Parameter Cell Layer WER(%) on Eval2000
Size1 Dimension Number Dev Eval Size Dimension Number SWBD Callhome Total

BGRU 11.3M 360 3 40.8 44.1 14.9M 360 3 10.3 20.0 15.2
BPGRU 12.5M 1024-128-128 3 37.8 41.1 15.3M 1024-128-128 3 9.5 18.6 14.2
BGRU 24.9M 600 3 41.6 44.5 30.8M 600 3 10.3 19.9 15.1

BPGRU 24.8M 1024-256-256 3 37.8 41.1 30.0M 1024-256-256 3 9.4 18.4 14.0

Model
Ted-lium 2000 Hr Fisher+Switchboard

Parameter Cell Layer WER(%) Parameter Cell Layer WER(%) on Eval2000
Size Dimension Number Dev Eval Size Dimension Number SWBD Callhome Total

BGRU 14.4M 360 3 9.3 9.3 11.9M 360 2 11.0 19.7 15.5
BPGRU 14.9M 1024-128-128 3 7.9 8.4 12.0M 1024-128-128 2 10.6 19.0 14.8
BGRU 30.1M 600 3 9.0 9.2 31.0M 600 3 10.2 17.8 14.2

BPGRU 29.4M 1024-256-256 3 8.1 8.4 30.1M 1024-256-256 3 9.9 17.6 13.9
1. Different LVCSR tasks have different context-dependent state decision trees. This means even with the same cell dimension, the acoustic model of same

architecture will vary in model parameter size.

Table 3 WER after interleaving PGRU with TDNN.

Model on AMI SDM
Parameter WER(%)

Size Dev Eval
BLSTMP 36.4M 39.0 42.3
BPGRU 24.8M 37.8 41.1

TDNN-PGRU 36.5M 35.9 39.0

Model on TED-LIUM
Parameter WER(%)

Size Dev Eval
BLSTMP 40.6M 8.2 8.6
BPGRU 29.4M 8.1 8.4

TDNN-PGRU 30.2M 8.0 7.7

Model on SWBD
Parameter WER(%) on Eval2000

Size SWBD Total
BLSTMP 41.2M 9.3 14.3
BPGRU 30.0M 9.4 14.0

TDNN-PGRU 32.7M 9.0 13.3

Model on Fisher+SWBD
Parameter WER(%) on Eval2000

Size SWBD Total
BLSTMP 41.3M 8.5 12.0
BPGRU 30.1M 9.9 13.9

TDNN-PGRU 32.8M 9.1 12.9

and the figure is 8.7% ∼ 15% on Ted-lium, 6.6% ∼ 8.8% on
Switchboard, and 2.1% ∼ 4.5% on Fisher + Switchboard.
For the Eval2000 test set, we care more about the WER
on the total test set, but for convenience, we also show the
Switchboard and Callhome subset results in the table. We
believe that PGRU outperforms standard GRU because the
PGRU can preserve a larger memory cell dimension than the
standard GRU with the same model size.

5.2 Interleaving TDNN with PGRU

It is challenging to deploy bidirectional recurrent neural net-
works in a low-latency setting because they must process the
entire sample before giving results. We built unidirectional
models by combining the forward-only PGRU with TDNN
(TDNN-PGRU), which was proven to outperform the BP-
GRU. Similar to [25], the authors also found that interleav-
ing the unidirectional LSTM with TDNN could perform the
same or better than the BLSTM.

Although TDNN is a feed-forward architecture, com-
puting all previous hidden activations at all time steps will
be computationally expensive, particularly when one builds
a deep and wide-context TDNN. Thus, in our work, we use
the sub-sampling TDNN [3] to model the long-term depen-
dency while maintaining a lower computational cost. With
the presence of TDNN, at time step t, the input context into

Table 4 WER of various unidirectional acoustic models.

Model on AMI SDM
Parameter WER(%)

Size Dev Eval
TDNN-LSTMP 43.4M 37.2 40.6
TDNN-PGRU 36.5M 35.9 39.0

TDNN-OPGRU 38.7M 36.3 39.6

Model on Ted-lium
Parameter WER(%)

Size Dev Test
TDNN-LSTMP 37.1M 8.1 8.4
TDNN-PGRU 30.2M 8.0 7.7

TDNN-OPGRU 32.4M 7.9 8.0

Model on SWBD
Parameter WER(%) on Eval2000

Size SWBD Total
TDNN-LSTMP 39.6M 9.2 14.1
TDNN-PGRU 32.7M 9.0 13.3

TDNN-OPGRU 34.9M 9.1 13.3

Model on Fisher+SWBD
Parameter WER(%) on Eval2000

Size SWBD Total
TDNN-LSTMP 39.7M 8.2 12.0
TDNN-PGRU 32.8M 9.1 12.9

TDNN-OPGRU 34.9M 8.6 12.0

one PGRU at layer l will change from the current frame to
the time context window.

Table 3 shows that compared with BPGRU, TDNN-
PGRU gains a 5.0% relative reduction in WER on the AMI
SDM LVCSR task, and the figure is 4.7% on the Switch-
board LVCSR task, 5.4% on the Ted-lium LVCSR task, and
7.7% on the Fisher + Switchboard LVCSR task. Overall,
the improvement is consistent. By interleaving PGRU and
TDNN, we achieved a 5.1% relative reduction in WER over
the BPGRU averaged on all LVCSR tasks in Table 3. The
improvement indicates that the temporal model is beneficial
for the proposed PGRU.

5.3 TDNN-PGRU vs TDNN-OPGRU

Table 3 shows that TDNN-PGRU outperforms BLSTMP
on 3 of 4 tested LVCSR tasks but is obviously worse than
BLSTMP on the 2000 hr Fisher+Switchboard task. To im-
prove the generalization of the projected-based GRU, par-
ticularly on large-scale LVCSR tasks, we proposed OPGRU
and tested it in the TDNN hybrid style.

The configuration of TDNN-OPGRU is shown in Ta-
ble 1. Table 4 shows that for the three small-scale LVCSR
tasks (AMI, Ted-lium and Switchboard), TDNN-OPGRU
performs almost the same as the TDNN-PGRU, but for the
2000 hr Fisher+Switchboard LVCSR task, TDNN-OPGRU
gains an obvious improvement over TDNN-PGRU. From
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Table 4, we can conclude that OPGRU generalizes better
than PGRU across different datasets.

5.4 Normalization in OPGRU and PGRU

Previous works have applied batch normalization [28] on re-
current neural networks [29]. In general, people avoid di-
rectly involving batch normalization in the recurrence. In
[29], the author used a rectified linear unit (ReLU) for the
GRU and used the batch normalization after the ReLU.

For PGRU and OPGRU, we tested two methods to nor-
malize the (O)PGRU. In the first method, after the projection
layer, we applied batch normalization in the feed-forward
direction of the projected output, which is denoted as norm1.
In the second method, we applied batch normalization in
the feed-forward direction of the projected output. For the
recurrent projection part, we normalized them as Hinton’s
layer normalization [30], except there is no mean subtrac-
tion; there is only variance normalization, which is denoted
as norm2. Similarly, we also tried the norm1 and norm2 on
the LSTMP.

Table 5 shows that both norm1 and norm2 can improve
the performance of BPGRU/BOPGRU and that norm2 is
more effective than norm1. Thus, norm2 is used, and we call
PGRU / OPGRU with norm2 NormPGRU / NormOPGRU.
Table 5 also shows that the TDNN-NormPGRU gains 7.0%
and 8.8% relative reduction in WER compared with TDNN-
PGRU on the total Eval2000 set and total RT03 set, re-
spectively. Similar to TDNN-PGRU, the figures for TDNN-
NormOPGRU over TDNN-OPGRU are 1.7% and 6.0% on

Table 5 Comparison between two normalization methods.

Model on 2000 Hr Fisher+SWBD
Eval2000 RT03

SWBD Total Fsh Total
BPGRU 9.9 13.9 10.7 13.4

BPGRU-norm1 9.7 13.6 10.5 12.8
BPGRU-norm2 (BNormPGRU) 8.9 12.6 9.7 11.9

BOPGRU 9.3 13.2 9.9 12.3
BOPGRU-norm1 9.0 13.1 10.0 12.4

BOPGRU-norm2 (BNormOPGRU) 8.7 12.7 9.7 11.8
BLSTMP 8.5 12.0 9.7 11.6

BLSTMP-norm1 8.2 12.1 9.8 11.8
BLSTMP-norm2 (BNormLSTMP) 8.0 12.0 9.4 11.5

TDNN-PGRU 9.1 12.9 9.9 12.4
TDNN-NormPGRU 8.5 12.0 9.1 11.3

TDNN-OPGRU 8.6 12.0 9.3 11.7
TDNN-NormOPGRU 8.1 11.8 8.9 11.0

TDNN-LSTMP 8.2 12.0 9.4 11.4
TDNN-NormLSTMP 8.1 12.3 9.6 11.6

Table 6 WER comparison between LSTMP and OPGRU.

Model on 2300 Hr Fisher+SWBD
Eval2000 RT03

SWBD CH Total Fsh SWBD Total
Xiong et al. [1] BLSTM, spatial smoothing 8.6 15.4 - - - -

Xiong et al. [1] BLSTM, spatial smoothing, 27k senones 8.3 15.3 - - - -
BLSTMP 8.5 15.3 12.0 9.7 13.3 11.6

BLSTMP+dropout 8.4 15.4 12.0 9.2 13.0 11.2
TDNN-LSTMP 8.2 15.4 12.0 9.4 13.3 11.4

BatchnormTDNN-LSTMP 8.3 16.4 12.4 9.8 13.9 11.9
BatchnormTDNN-LSTMP+dropout 8.2 15.5 12.0 9.2 13.0 11.2

TDNN-NormOPGRU 8.1 15.3 11.8 8.9 12.9 11.0
BatchnormTDNN-NormOPGRU 8.2 15.5 11.9 8.4 12.6 10.6

BatchnormTDNN-NormOPGRU+dropout 8.2 14.6 11.6 8.5 12.6 10.7

total Eval2000 and total RT03, respectively.
In our setup, as Table 5 shows, the proposed nor-

malization methods did not benefit the TDNN-LSTMP or
BLSTMP obviously. So the vanilla LSTMP is used as the
baseline in the remainder of the paper.

5.5 Comparing NormOPGRU with LSTMP

For comparison, we show the BLSTM results from Xiong
et al.[1] in Table 6. For the n-gram LM decoding setup,
we only use fisher and switchboard training transcripts to
build the 4-gram language model, but Xiong et al. [1] used
the extra Washington conversational Web corpus (191M) for
the language model. Our BLSTMP baseline is comparable
to those of [1].

Table 6 shows that by applying both batch normaliza-
tion in the TDNN layers and per-frame dropout [21] in the
LSTMP / NormOPGRU, we can slightly improve the de-
coding results. The WERs in bold in Table 6 show that
compared with the BLSTMP / TDNN-LSTMP, the proposed
TDNN-NormOPGRU can achieve 3.3% / 4.5% relative re-
duction in WER on the total Eval2000 / RT03 test sets.

5.6 Accelerating Decoding with State Saving

For the standard Kaldi decode setup, we decode the recur-
rent neural network in the matched way [25], we train the
acoustic model on fixed-length CSCs in random order and
use the same chunk-width as training for decoding. How-
ever, the extra left/right context will introduce a decoding
redundancy during the recurrent network decoding. For the
unidirectional acoustic model, we decode with the state sav-
ing [25] across the chunks to reduce the redundant compu-
tation.

As Table 7 shows, in the state-saving scenario, TDNN-

Table 7 Real time factor (RTF) for various acoustic models.

Model on Fisher+SWBD1 Eval2000 RT03
RTF

SWBD Total Fsh Total
BLSTMP+dropout 8.4 12.0 9.2 11.2 1.78

TDNN-LSTMP+dropout 8.2 12.0 9.2 11.2 1.31
+state saving decode [25] 8.1 12.1 9.4 11.4 0.99

TDNN-NormOPGRU+dropout 8.2 11.6 8.5 10.7 0.89
+state saving decode [25] 8.2 11.6 8.6 10.7 0.66

1. All TDNN layers are equipped with batch normalization, TDNN-LSTMP is the
same model as BatchnormTDNN-LSTMP in Table 5.
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NormOPGRU † can speed up the decoding by 2.6 times
compared with BLSTMP. The state-saving decoding LSTM
acoustic models always slightly degrade the performance
compared with their non-state-saving counterparts [25].
Thus, in the state-saving decoding setup, the proposed
TDNN-NormOPGRU is 4.1% / 6.1% better than TDNN-
LSTMP in WER and speeds up the decoding by 1.5 times.

6. Results with Neural Language Model Rescoring

6.1 LSTMP-LM vs OPGRU-LM

Table 8 shows the PPL and WER for various RNN-
LM setups. The acoustic model to generate the lattice
was BLSTMP. We tested the unidirectional LSTMP-LM /
OPGRU-LM of various layers. In Table 8, the multi-layer
RNN-LM is always better than the single-layer RNN-LM.
In addition, the TDNN-{OPGRU,LSTMP} hybrids, which
are similar to the hybrid models used for acoustic models,
can further improve the RNN-LM rescoring performance.
In terms of PPL, LSTMP-LM outperforms OPGRU-LM on
the train set, but OPGRU-LM obtains better generalization
on the validation subset. From the WER perspective, the
OPGRU-LM always outperforms their LSTMP-LM coun-

Table 8 PPL and WER of LSTMP-LM and OPGRU-LM. PPL is com-
puted on the held-out subset of Switchboard and Fisher training transcripts;
WERs are shown on total Eval2000 test set and Switchboard subset of total
Eval2000. The held-out validation subset of 4-gram baseline LM is differ-
ent from the one used for NN-LM training, so we do not show the PPL for
4-gram baseline here.

Language Model: Architecture
PPL Eval2000

Train Dev SWBD Total
4-gram baseline - - 8.4 12.0

1-layer LSTMP : L f 75.9 67.4 7.9 11.4
2-layer LSTMP : L f , L f 71.6 65.4 7.8 11.2

TDNN-LSTMP : T , L f , T , L f 67.3 62.9 7.7 11.1
1-layer OPGRU : O f 76.9 48.2 7.4 11.1

2-layer OPGRU : O f , O f 72.9 49.1 7.4 11.0
TDNN-OPGRU : T , O f , T , O f 69.1 47.6 7.3 10.9

Table 9 Neural network language model rescoring speed comparison
between LSTMP and OPGRU. The acoustic model (AM) to generate the
lattice is 3-layer BLSTMP, the notation Time indicates the amount of time
that the NN-LM requires to finish rescoring on the lattice; the unit is minute
(min).

Time 1-layer model 2-layer model TDNN-hybrid model
LSTMP 35 min 63 min 93 min
OPGRU 22 min 41 min 70 min

Table 10 WER (%) for LSTM-based single system and OPGRU-based
single system, acoustic models are trained on 2000 hr Switchboard+Fisher
data.

Model on Fisher+SWBD
Eval2000

RT03
SWBD Total

BLSTMP 8.4 12.0 11.2
+TDNN-LSTMP-LM 7.7 11.1 10.6

TDNN-LSTMP 8.1 12.1 11.4
+TDNN-LSTMP-LM 7.5 11.0 10.5
TDNN-NormOPGRU 8.2 11.6 10.7
+TDNN-OPGRU-LM 6.7 10.1 9.6

†Scripts to reproduce the experiments [31].

terparts in speech recognition. OPGRU-LM gains 0.2% ∼
0.3% absolute (1.8% ∼ 2.6% relative) WER reduction com-
pared with LSTMP-LM.

The rescoring time is another critical consideration in
some scenes, particularly online ASR deployment. Table 9
lists the rescoring time of various RNN-LMs. Compared
with LSTMP-LM, OPGRU-LM rescoring is consistently
faster: it achieves at most 1.75 times rescoring speed-up.

6.2 LSTMP Single System vs OPGRU Single System

Unlike [1], our work aims to build a fast and deployable
single system with higher accuracy. Hence, we did not try
various acoustic model combinations or neural network lan-
guage model combinations. The final proposed OPGRU-
based single system just contains one single TDNN-OPGRU
acoustic / language model.

The comparison between the OPGRU-based system
and the LSTMP-based system is presented in Table 10.
The best LSTMP system is the TDNN-LSTMP hybrid one,
which was applied for both acoustic model and language
model. It achieves 11.0% / 10.5% on the total Eval2000 /
RT03 test sets, which is 1.0% / 0.7% absolute (8.3% / 6.3%
relative) better than the 4-gram BLSTMP baseline. The best
OPGRU system is the one with the TDNN-NormOPGRU
acoustic model and TDNN-OPGRU language model: it
reaches 10.1% / 9.6% on total Eval2000 and RT03, which
gain 0.9% / 0.9% absolute (8.2% / 8.6% relative) reduction
in WER compared with the best LSTMP single system.

Considering the RTF and neural network LM rescor-
ing time, we can conclude that the proposed OPGRU-based
single system is faster and more accurate than the LSTMP-
based system.

7. Conclusions

In this paper, we described our work on building a more ef-
ficient and accurate single ASR system. Instead of attempt-
ing various model combination techniques, we focused on
a deployable single ASR system. To reduce the complex-
ity of LSTMP, which is the standard recurrent unit under
Kaldi, the OPGRU was proposed as an alternative. Com-
pared with LSTMP, the simple OPGRU has only two gates
and a smaller model size. On the acoustic model side, to fur-
ther improve the performance of projected-based GRU, we
combined them with TDNN and applied batch normaliza-
tion and a variant of layer normalization to them. The pro-
posed TDNN-NormOPGRU acoustic model achieves faster
decoding speed and higher decoding accuracy than our old
LSTMP system. On the neural network language model
side, TDNN-OPGRU outperforms the TDNN-LSTMP with
higher rescoring efficiency and better recognition accuracy.
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