
2744
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

PAPER

Studying the Cost and Effectiveness of OSS Quality Assessment
Models: An Experience Report of Fujitsu QNET

Yasutaka KAMEI†a), Member, Takahiro MATSUMOTO†, Kazuhiro YAMASHITA†, Nonmembers,
Naoyasu UBAYASHI†, Member, Takashi IWASAKI††, and Shuichi TAKAYAMA††, Nonmembers

SUMMARY Nowadays, open source software (OSS) systems are
adopted by proprietary software projects. To reduce the risk of using prob-
lematic OSS systems (e.g., causing system crashes), it is important for pro-
prietary software projects to assess OSS systems in advance. Therefore,
OSS quality assessment models are studied to obtain information regarding
the quality of OSS systems. Although the OSS quality assessment models
are partially validated using a small number of case studies, to the best
of our knowledge, there are few studies that empirically report how in-
dustrial projects actually use OSS quality assessment models in their own
development process. In this study, we empirically evaluate the cost and ef-
fectiveness of OSS quality assessment models at Fujitsu Kyushu Network
Technologies Limited (Fujitsu QNET). To conduct the empirical study, we
collect datasets from (a) 120 OSS projects that Fujitsu QNET’s projects
actually used and (b) 10 problematic OSS projects that caused major prob-
lems in the projects. We find that (1) it takes average and median times of
51 and 49 minutes, respectively, to gather all assessment metrics per OSS
project and (2) there is a possibility that we can filter problematic OSS
systems by using the threshold derived from a pool of assessment metrics.
Fujitsu QNET’s developers agree that our results lead to improvements in
Fujitsu QNET’s OSS assessment process. We believe that our work signif-
icantly contributes to the empirical knowledge about applying OSS assess-
ment techniques to industrial projects.
key words: open source software, OSS quality assessment models, empiri-
cal studies, applied research

1. Introduction

Open source software (OSS) is vital to not only end users
but also software industries. Software industries can re-
duce their cost by applying high-quality OSS to their sys-
tem development. The survey conducted by Hauge et
al. [1] showed that close to 50% of Norwegian software
industries integrate OSS components into their solutions
for customers. According to a survey conducted by Black
Duck [2], 78% of software industries run part or all of their
business operations on OSS systems.

When software industries decide which OSS systems
they integrate into their system development, they are some-
times concerned about the quality of the OSS systems and
the continuity of OSS projects [3], [4]. If the quality of OSS
systems is low, software industries face issues due to bugs
caused by the OSS and incur unexpected costs to modify

Manuscript received May 10, 2018.
Manuscript revised July 6, 2018.
Manuscript publicized August 8, 2018.
†The authors are with Kyushu University, Fukuoka-shi, 819–

0395 Japan.
††The authors are with Fujitsu Kyushu Network Technologies

Limited, Fukuoka-shi, 814–0001 Japan.
a) E-mail: kamei@ait.kyushu-u.ac.jp

DOI: 10.1587/transinf.2018EDP7163

them.
Therefore, prior work has proposed OSS quality as-

sessment models [5], [6], which provide a set of indicators
for the quality of OSS systems such as their functionality
and usability. For example, Petrinja et al. [6] showed that
OSS quality assessment models provide comparable assess-
ments for two OSS projects (i.e., the Chrome project and
Firefox project) through experiments using students in bach-
elor’s and master’s programs. While studies have shown that
OSS quality assessment models have the potential to be used
in industrial settings, to the best of our knowledge, there are
few studies that empirically report how industrial projects
integrate OSS quality assessment models into their own de-
velopment process.

In this paper, we set out to empirically study the cost
and effectiveness of OSS assessment models in the devel-
opment projects of Fujitsu QNET. Fujitsu QNET projects
would like to know the risk of candidate OSS systems before
integrating them into Fujitsu QNET’s development. To do
so, we score OSS systems on the basis of metric thresholds,
similar to previous work [7], and analyze the relationship be-
tween the scores of problematic and non-problematic OSS
systems. We use the internal issue tracking systems (ITSs)
at Fujitsu QNET to identify problematic OSS systems. We
structure our study along the following two research ques-
tions:

(RQ1) How much cost is incurred when gathering as-
sessment metrics?
To use OSS quality assessment models, Fujitsu
QNET projects need to collect assessment metrics
from the OSS system that they plan to use. How-
ever, their development effort is limited. Therefore,
it is important to understand how much cost is in-
curred when collecting assessment metrics. To eval-
uate RQ1, we measure the time to collect 43 assess-
ment metrics that Fujitsu QNET developers select.

(RQ2) How effective are the OSS assessment metrics?
Fujitsu QNET projects would like to know the risk
of candidate OSS systems before integrating them
into Fujitsu QNET’s development. To evaluate
RQ2, we score OSS systems on the basis of met-
ric thresholds, similar to previous work [7], and an-
alyze the relationship between the scores of prob-
lematic and non-problematic OSS systems. We use
the internal issue tracking systems (ITSs) at Fujitsu

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers

KAMEI et al.: STUDYING THE COST AND EFFECTIVENESS OF OSS QUALITY ASSESSMENT MODELS: AN EXPERIENCE REPORT OF FUJITSU QNET
2745

Table 1 Types of OSS Systems used in Fujitsu QNET development
projects

Categories Number Percentage
Development 66 55.0
System Administration 28 23.3
Communications 12 10.0
Audio & Video 5 4.2
Home & Education 5 4.2
Security & Utilities 2 1.7
Graphics 1 0.8
Business & Enterprise 0 0
Games 0 0
Other 1 0.8

Total 120 100

QNET to identify problematic OSS systems.

The main contributions of this paper are as follows:

• An insight into OSS assessment models in industrial
software projects that we derive from our quantitative
and qualitative analysis.
• The thresholds of 9 OSS assessment metrics that are

derived from 120 OSS projects.

This paper is an extended version of our earlier work-
shop paper [8]. We extend our previous work by:

• Summarizing the types of OSS systems used in Fujitsu
QNET development projects for better understanding
the context of our empirical study (Table 1).
• Presenting results of the time that we spend to measure

OSS assessment metrics with respect to each assess-
ment metric (RQ1).
• Conducting interviews with Fujitsu QNET’s senior de-

velopers about our findings in each RQ1 and RQ2.
• Adding a threats to validity section to show limitations

of our work.

Paper organization. The remainder of the paper is orga-
nized as follows. Section 2 introduces the background of
our study. Section 3 explains the OSS usage and assessment
at Fujitsu QNET. Section 4 presents our discussion with the
stakeholders at Fujitsu QNET. Sections 5 and 6 present the
results. Section 7 discloses the threats to the validity of our
findings. Section 8 draws the conclusions of this study.

2. Background and Related Work

Previous studies have proposed OSS quality assess-
ment models such as the Open Source Maturity Model
(OSMM) [9], the Open Business Readiness Rating (Open-
BRR) [10], Qualification and Selection of Open Source soft-
ware (QSOS) [11], Open BQR [12], OpenSource Maturity
Model (OMM) [13], and RepOSS [5]†. Briefly speaking,
OSS quality assessment models provide (1) a set of indi-
cators for the quality of OSS systems, such as the function-
ality and usability, and (2) a process of scoring OSS systems
based on the indicators.

†The authors show only an abbreviation for BQR and RepOSS.

There are several studies that have evaluated OSS as-
sessment models [6], [14], [15]. For example, Deprez and
Alexandre [14] compared QSOS and OpenBRR on the basis
of description of the methodologies (i.e., no empirical eval-
uation) according to their scoring procedures and evaluation
criteria. Petrinja et al. [6] conducted experiments to empir-
ically evaluate three OSS assessment models (OpenBRR,
QSOS, and OMM). In their experiments, bachelor’s and
master’s students assessed two OSS systems as research par-
ticipants (Firefox and Chrome) using the three OSS assess-
ment models. The results showed that the mean scores de-
rived from the research participants are quite similar among
the three models. Petrinja and Succi [15] also assessed six
OSS systems using the OMM. The study assessment results
by the authors and master’s students demonstrated the appli-
cability of the OMM.

Although previous studies have shown that the OSS
quality assessment models have the potential to be used in
industrial settings, they do not evaluate whether or not the
OSS systems assessed as risky actually caused problems in
industrial projects. Therefore, we report the empirical stud-
ies on OSS quality assessment models at Fujitsu QNET ac-
cording to effectiveness.

3. OSS Usage and Assessment at Fujitsu QNET

Fujitsu QNET generally develops network systems and em-
bedded systems. We target 120 OSS systems that the Fujitsu
QNET’s development projects used for two years (2015–
2016).

Table 1 summarizes the types of OSS systems used
in Fujitsu QNET development projects. We sort OSS cat-
egories based on the percentages of OSS systems used in
Fujitsu QNET development projects in descending order.
We manually classify OSS systems into the categories that
are used in SourceForge††. For example, we classify the
OSS systems about network monitoring tools and logging
tools into “Communications” and “Development.” The top
three categories of OSS systems used at Fujitsu QNET are
“Development,” “System Administration,” and “Communi-
cations,” since network systems and embedded systems are
mainly developed at Fujitsu QNET.
OSS assessment models. Overall, OSS quality assess-
ment models provide (1) a set of indicators for the quality
of OSS systems and (2) a process of scoring OSS systems
based on the indicators [12]. Figure 1 shows the process of
how Fujitsu QNET will make use of OSS assessment mod-
els in their development projects.

Step 1. Developers at Fujitsu QNET collect OSS assess-
ment metrics for the OSS system (a target OSS system)
that they want to assess (Details in Sect. 5).

Step 2. Thresholds for the OSS assessment metrics are de-
rived from the datasets that are collected from a pool of
120 OSS systems (Sect. 6).

Step 3. Developers score the OSS system on the basis of
††https://sourceforge.net/

2746
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

Table 2 Expected Quality of OSS systems for Each Project Team

Purpose Knowledge level Comments about Expected Quality for OSS systems
1

R&D

Black Box “We often use the OSS systems that implement emerging technologies because our team develops
experimental products. In addition, such OSS systems are likely to not be matured yet. Therefore,
we expect that we can easily trace and manage the status of issues for the OSS systems.”

2 Black Box “Since experimental products need to be developed in a short period, it is important to easily use
OSS systems (easy to install and run them).”

3 Black Box “We expect that there are many references online to see how to use OSS systems and how to solve
the problems we may face in future.”

4 Black Box “When we finish developing this experimental product, we shift this project to release the product
for market. Therefore, we need to easily set up an environment for conducting performance testing
for OSS systems.”

5 Black Box “For experimental products, we expect that OSS systems have emerging technologies and can
be executed at least in a default scenario. We do not expect that they can be executed under
expectational or error conditions.”

6 Black Box “Because our development period is short, we want to use the OSS systems of which sample source
code is fully presented.”

7
Products

White Box “We would like to use mature OSS systems. Therefore, a considerable period has elapsed since the
OSS systems were released.”

8 for market Black Box “The quality of OSS systems must be high. We usually check how often the OSS systems are used
for commercial purposes.”

Fig. 1 The approach of OSS quality assessment

the thresholds. (Sect. 6).
Step 4. Developers make a decision about whether or not

they apply it to their project (Sect. 6).

4. Preliminary Survey

4.1 Overview

Each development team at Fujitsu QNET may have different
contexts for using OSS systems. To better understand how
Fujitsu QNET’s developers use OSS systems, we conducted
semi-structured interviews at Fujitsu QNET.

4.2 Approach

Semi-structured interviews begin with a set of prepared
questions, but the structure of the interview is flexible, al-
lowing the interviewer (one of the authors) to further query
unexpected answers from the interviewees by developing
new questions during the session [16], [17]. Many of the
questions are directly connected with our research interests,
such as: “How does your project team use OSS systems?”
or “What does your project team expect for OSS systems?”
All of the conversations were recorded and coded by the in-
terviewer.

In this study, we conducted semi-structured interviews
of eight project teams at Fujitsu QNET. One project man-
ager (more than 10 years experience) and one or two senior
developers (more than 6 years experience) from each project
team participated the interview. We spent about 20–30 min-
utes per project team.

4.3 Results

Table 2 summarizes the results of our interview. Although
six out of eight project teams use OSS systems for R&D†,
the other two teams use them for products for market.

If Fujitsu QNET’s teams only make an effort to learn
how to use OSS systems, especially their inputs and out-
puts without knowledge of their internal operation, we use
“Black box” in the column “Knowledge level.” If they make
an effort to analyze source code files and obtain knowledge
of their internal operation, we use “White box” in the col-
umn. We find that OSS systems are likely to be used as
“Black box,” since one of the major purposes of using OSS
systems is to reduce development cost. However, one of the
two teams that develop their products for market uses OSS
systems as “White box” because it needs to modify source
code when it faces problems caused by OSS systems.

We find that there are several common expected qual-
ities for OSS systems in Table 2. For example, we can see
that one common expected quality is easy-to-use for team
#2, #3, and #6. We also find that they want to apply OSS
systems to their team (#1 and #5) for emerging technolo-
gies. On the other hand, for the teams that develop products
for market, they value mature OSS systems, as evidenced by
“a considerable period has elapsed since OSS systems were
released” and “we check how many times the OSS systems
are used for commercial purposes” (#7 and #8).

†We use R&D as the context of developing trial and/
experimental products and not products for market.

KAMEI et al.: STUDYING THE COST AND EFFECTIVENESS OF OSS QUALITY ASSESSMENT MODELS: AN EXPERIENCE REPORT OF FUJITSU QNET
2747

At Fujitsu QNET, when OSS systems are used for R&D,
developers are likely to use OSS systems that have emerg-
ing technologies and are easy-to-use. On the other hand,
when OSS systems are used for products for market, de-
velopers are likely to value the maturity of the OSS sys-
tems.

5. (RQ1) How Much Cost is incurred when Gathering
Assessment Metrics?

5.1 Overview

To conduct the OSS assessment, Fujitsu QNET needs to col-
lect assessment metrics in two cases. First, when develop-
ers assess the OSS system that they want to integrate into
their project, they collect assessment metrics from the OSS
system. Second, when OSS systems are continuously devel-
oped and the metric values in the OSS assessment reposi-
tories become obsolete, maintainers need to re-collect met-
rics for the OSS systems to update the metric values. The
frequency would depend on each OSS system because the
speed of software development varies among OSS systems.

It is important to understand the cost (i.e., how long it
takes to collect assessment metrics), since the development
effort is limited in industrial projects. If the cost is not neg-
ligible, it is difficult to apply OSS assessment techniques to
industrial projects. Therefore, for this RQ, we investigate
the costs of collecting assessment metrics per OSS system.
This RQ is related to step 1 in Fig. 1.

5.2 Approach

To answer this RQ, we conduct an experiment with three
graduate students in computer science as research partic-
ipants. Each participant searches and collects assessment
metrics online and records the time that he/she spends for
each assessment metric. Although this experiment requires
a large amount of effort (255 hours in total), we need to con-
duct additional experiments with more participants to miti-
gate the impact of individual differences on our results. We
elaborate on the weakness of our current experimental de-
sign in Sect. 7.

We asked research participants to follow the documents
we composed in order to prevent differences in the collec-
tion of assessment metrics among the participants. In the
case where they could not find any information about an
arbitrary metric until 15 minutes, we asked them to stop
searching the metric and record the metric value as null. We
do not include time for creating scripts in the time for spend-
ing to measure OSS assessment metrics, because we would
like to evaluate cost in the situation where industrial projects
have such scripts and re-collect metrics values (OSS sys-
tems are often continuously developed). Note that, to create
scripts, we spent about 90 minutes for analyzing log mes-
sages that are collected from version control systems and 90
minutes for analyzing issue tracking systems.
Target OSS projects. In this survey, we selected 120 OSS

projects based on the OSS usage at Fujitsu QNET.
Target assessment metrics. In this study, we list the
assessment metrics that are defined in OSMM [9], Open-
BRR [10], and RepOSS [5]. Then, we had a discussion with
Fujitsu QNET’s developers to select 43 assessment metrics†
in five dimensions when considering the results of Sect. 4.
We selected the 43 assessment metrics because our resource
is limited and not enough to target all assessment metrics
for our experiments. The left four columns in Table 3 sum-
marizes a few of metrics in each dimension as an example.
Unfortunately, we cannot disclose the list of all 43 metrics
we selected for confidentiality reasons.

We now describe each dimension and its assessment
metrics in more detail.
Activeness dimension: Not all OSS projects are always ac-
tive [29]–[31]. Khondhu et al. [31] showed that only 6% of
OSS projects maintain their activity. The use of OSS pro-
vided by inactive projects is risky, since the provided OSS
may not be updated and become obsolete in future.

To calculate the average number of commits per month
(i.e., ANC) and the percentage of commits from the devel-
oper who has the largest number of commits in the project
(i.e., PCD), we use scripts to analyze log messages that are
collected from version control systems (VCSs) of the target
OSS project.

We collect issue reports from issue tracking systems
(ITSs) such as Bugzilla and Jira and use scripts to analyze
them to calculate the average number of days for bug fixes
(i.e., NDAY). We find the year of the first release (i.e., to
measure REL) from the release notes of the OSS’s website
and Wikipedia or the release tags of GitHub repositories.
Community dimension: OSS development is often sup-
ported by volunteer developers [32], [33]. The community
of users and developers submits various types of contribu-
tions (e.g., modifications, bug fixes, and bug reports) to the
OSS project. Using OSS provided by projects that are less
mature is risky, since the provided OSS may have less dis-
cussion for development and be lower quality.

Similar to ANC and PCD, we use scripts to analyze
the log messages of VCSs to calculate the number of core
developers (i.e., NC). Inspired by previous studies [22]–
[24], [34], we use heuristics that define the core developers
as those who produce roughly 80% of the total contribu-
tions. To obtain ND and NT, we find the developer and user
mailing lists from the menus (e.g., mailing lists and discus-
sion) of OSS websites.
Documentation dimension: Software documentation is im-
portant for users. It explains how OSS operates and/or how
to be used. Using OSS provided by projects that have less
documentation is risky, since Fujitsu QNET’s developers
cannot find the solution for problems that are caused by OSS
systems during their development phase.

We search for the name of the OSS in the category

†Our earlier workshop paper [8] showed 44 assessment metrics
because we double-counted one of the assessment metrics to show
the number of assessment metrics.

2748
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

Table 3 Summary of OSS assessment metrics

Dim. Name Definition Rationale Pre-Condition Time (minutes)
C1 C2 C3 Ave. Med.

A
ct

iv
en

es
s

ANC Average number of commits
per month

OSS systems that have many commits are maintained well
and less likely to be defect-prone.

� � 0.5 0.5

PCD Percentage of commits from
the developer who has the
largest number of commits

If OSS systems are more likely to depend on one developer,
they are likely to be terminated, since the developer is a bus
factor of the project [18]–[20].

� � 0.5 0.5

NDAY Average number of days for
bug fixes

OSS systems that have a lower average number of days for
bug fixes are likely to fix a new reported bug.

� � 0.5 0.5

REL The year of the first release An OSS system with a longer history is the more likely to
have defects that are solved [21].

� � 2.4 2.0

C
om

m
un

ity

NC Number of core developers A higher number of core developers means that it is more
likely that defects are solved, since the core developers have
many contributions to OSS systems [22]–[24].

� � 0.5 0.5

ND Number of threads in devel-
oper mailing lists

More discussion results in a higher chance of high-quality
OSS systems [25], [26].

� 2.9 2.0

NT Number of threads in user
mailing lists

More discussion with users means that it is more likely that
an OSS community might be supportive of users and be good
to use [25].

� 2.1 2.0

D
oc

um
en

ta
tio

n NB Number of books More books mean that there is a higher chance of available
information when Fujitsu QNET developers face the problem
in use [27].

1.1 1.0

NTA Number of technical articles More online technical articles mean that Fujitsu QNET devel-
opers are more likely to solve the problem that they will face
in use [25], [27].

1.1 1.0

NP Number of technical presen-
tations

More technical presentations mean that it is more likely that
OSS systems might provide useful information to solve the
problem that Fujitsu QNET developers face in use [27].

1.2 1.0

R
el

ia
bi

lit
y NBUG Number of reported bugs OSS systems that have more reported bugs are less likely to

have unknown bugs [25].
� � 0.5 0.5

PFIX Percentage of fixed bugs in
all reported bugs

OSS systems that have more fixed bugs are less likely to have
unknown bugs.

� � 0.5 0.5

Po
rt

ab
ili

ty

MUL Multilingualization The OSS that supports multilingualization is likely to be
easy when Fujitsu QNET developers support non-English lan-
guage in their use.

� 1.2 1.0

OS Supported OS There may be some specific OS that introduces more defects
for the support [28].

� 1.6 1.0

INS Exist of a installer package A installer package helps Fujitsu QNET developers to install
the OSS.

� 1.4 1.0

C1: OSS systems’ websites are found in advance C2: OSS systems’ VCSs are found in advance C3: OSS systems’ ITSs are found in advance

“Books” of Amazon and use the number of results as the
number of books (i.e., NB). Similarly, we search for the
name of the OSS on technical websites that Fujitsu QNET’s
developers choose† as the number of online articles (i.e.,
NA) and in the category “Technology” of SlideShare as the
number of technical presentations (i.e., NP).
Reliability dimension: OSS continuously evolves to fix a
bug or add a new feature [35], [36]. Using OSS provided
by projects that are less positive for fixing bugs is risky,
since Fujitsu QNET’s developers may face problems that are
caused by bugs that are not fixed nor reported yet [25].

Similar to NDAY, we collect issue reports from ITSs
and use scripts to analyze them to calculate the number of
reported bugs (i.e., NBUG) and the percentage of fixed bugs
of all reported bugs (i.e., PFIX).
Portability dimension: Fujitsu QNET’s products may be
released to multiple countries and on multiple platforms.
Therefore, using OSS that is less portable is risky, since Fu-
jitsu QNET’s developers may spend a large amount of effort

†e.g., https://www.infoq.com/

to address customers’ requirements such as multiple plat-
forms in the future.

We find the information about whether or not an OSS
system supports multilingualization (i.e., MUL), which OSs
are supported (i.e., OS), and whether or not it provides an in-
staller package from the release notes of the OSS’s website
and Wikipedia or the readme page of GitHub repositories.

5.3 Results

The right part of Table 3 shows the results of the time that we
spent to measure OSS assessment metrics. C1 in the Precon-
dition column shows that, in advance, we find the websites
that are managed by the OSS community. Therefore, we do
not include the time to find the websites when we collect the
metrics that has C1 as a precondition. C2 and C3 show that,
in advance, we find the VCSs and ITSs of OSS projects. The
time is also not included to find VCSs and ITSs. The time
that we spend for C1, C2, and C3 are 1, 2, and 2 minutes,
respectively, for each precondition.

Table 3 indicates that “the number of threads in de-

KAMEI et al.: STUDYING THE COST AND EFFECTIVENESS OF OSS QUALITY ASSESSMENT MODELS: AN EXPERIENCE REPORT OF FUJITSU QNET
2749

veloper mailing lists” is the most costly evaluation metric
according to the time spent and is 3 minutes on average.
Compared with the VCSs and ITSs, OSS projects are likely
to put their mailing lists in a number of different forms for
each OSS. Therefore, it takes more time to determine the
structure of the data of mailing lists.

To assess three preconditions and collect 43 evaluation
metrics, it takes 27 minutes at minimum, 51 minutes on av-
erage, a median of 49 minutes, and 86 minutes at maximum.
There is almost 1 hour difference between the minimum and
maximum values (86 - 27 minutes). The main reason is
the structure of the websites of each OSS project. If OSS
projects provide information related to assessment metrics
across multiple pages, it takes much more time to find all of
the information.
Feedback from Fujitsu QNET developers. We conducted
interviews with Fujitsu QNET’s three senior developers.
The purpose of the interview is to understand whether or
not it is acceptable to spend a median time of 49 minutes in
practical settings. Our questions are: (1) Can you accept a
time of less than 1 hour per OSS?, (2) Are there any com-
ments that we should improve? The interview time is about
30 minutes.

According to Fujitsu QNET, all three senior develop-
ers can accept a time of less than 1 hour per OSS project.
Therefore, it is reasonable for Fujitsu QNET to apply an
OSS assessment technique from the viewpoint of cost.

However, three senior developers also point out that it
is desirable for industries to reduce costs as much as possi-
ble. Furthermore, there are several OSS projects that require
more than 1 hour to assess three preconditions and collect
43 evaluation metrics. In the future, we will study an ap-
proach that semi-automatically collects assessment metrics
using natural language processing techniques.

It takes average and median times of 51 and 49 minutes,
respectively, to collect all assessment metrics per OSS
system.

6. (RQ2) How Effective are OSS Assessment Metrics?

6.1 Overview

To elevate the use of OSS assessment metrics from measure-
ment to decision-making, it is essential to derive meaningful
threshold values. Similar to previous work [7], [37], we use
an approach that empirically derive the metric threshold val-
ues from the measurement data of a benchmark in Sect. 5.

To evaluate the effectiveness of the OSS assessment
techniques, we classify OSS systems on basis of threshold
values into one of five risk groups. Then, we see how the
OSS systems in each risk group are included in two groups:
(1) OSS systems that cause major problems† during Fujitsu

†The examples of major problems are: (a) An OSS system has
bugs that do not release memory back to an operating system and
(b) Fujitsu QNET’s projects notice that an OSS system actually
does not provide the APIs that are described on its website.

QNET’s development and (2) OSS systems that do not cause
problems. Fujitsu QNET records reported problems in their
internal ITSs. Although the part in which the threshold val-
ues are derived is related to step 2 in Fig. 1, the part in which
OSS systems are compared is related to step 3.
Target OSS projects. We use the same 120 OSS projects
mentioned in Sect. 5. We assume that they are non-
problematic OSS systems, since any problems are not re-
ported in Fujitsu QNET’s internal ITSs. We also use 10 OSS
projects that are reported as OSS systems that cause major
problems in the ITSs. In summary, we use 120 OSS projects
to derive threshold values and score 130 OSS projects to val-
idate the effectiveness of the threshold values.
Target assessment metrics. In this study, we use 16 out
of the 43 assessment metrics that have an interval or ratio
scale, since the categorical variables (e.g., MUL and OS in
Table 3) cannot provide threshold values.

6.2 Approach

Deriving threshold values. We determine threshold values
on the basis of the distribution of the assessment metrics
from the 120 OSS projects in Sect. 5, similar to Alves et
al. [7].

For each assessment metric, we sort the metric val-
ues of the OSS projects in descending (or ascending) or-
der. Then, we use the thresholds derived by choosing 10%,
20%, 30%, and 40% of the overall OSS projects. Further-
more, these percentiles are used to characterize the OSS ac-
cording to five categories: very low risk (≤ 10%), low risk
(10–20%), moderate risk (20–30%), high risk (30–40%) and
very high risk (≥ 40%).

We use an example to illustrate how we derived thresh-
old values. For example, the values of NC for 10 OSS
projects are 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19. We obtain
19, 17, 15, 11, 9, 7, 5, 3, 1 by sorting the metrics values in
descending order. The 1st threshold is ≥ 19, the 2nd thresh-
old is ≥ 17, the 3rd threshold is ≥ 15, and the 4th threshold
is ≥ 13. Therefore, given two new projects A and B that
Fujitsu QNET’s developers evaluate, if the values of NC are
16 and 12, project A is classified in the moderate risk group
because it is between 15 (3rd threshold) and 17 (2nd thresh-
old). On the other hand, project B is classified in the very
high risk group because it is less than 13 (4th threshold).
Scoring OSS systems. When we use the technique for de-
riving the threshold values, we can estimate the risk of OSS
systems according to one assessment metric. To comprehen-
sively assess OSS systems using a set of assessment metrics,
we combine the results of the assessment metrics into a sin-
gle output.

We decided to use a simple approach to score OSS sys-
tems on the basis of Table 4, since it would help us to com-
municate our results with Fujitsu QNET’s developers. We
give a rating of 5 to an OSS system in each assessment met-
ric if the OSS system is classified in the very low risk group
(the risk group A). Similarly, we give ratings 1, 2, 3, or 4 to
an OSS system if it is classified in the very high (E), high

2750
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

Table 4 Thresholds of OSS Assessment Metrics

Threshold between two risk groups
Dim. Metrics Order E - D D - C C - B B - A

Act.

ANC Desc 43 74 120 158
PCD Asc 0.27 0.22 0.14 0.08
NDAY Asc 137 68 49 11
REL Asc 2005 2002 2000 1996
NC Desc 125 176 313 688

Com. ND Desc 1,719 4,593 12,236 29,519
NT Desc 705 1,112 1,439 13,700
NB Desc 0 2 3 6

Doc. NTA Desc 749 1,380 3,080 13,700
NP Desc 695 1,069 6,099 124,256

Rel.
NBUG Desc 2,224 3,236 5,436 11,578
PFIX Desc 0.87 0.92 0.94 0.96

E: very high risk group A: very low risk group

(D), moderate (C), or low risk group (B), respectively. We
calculate the average value of the scores to obtain a single
output.

To understand how well the OSS assessment met-
rics work, we compare the outputs of two groups of OSS
with/without problems. Although this study evaluates the
research topic that accelerates academic–industrial collabo-
ration, it also has the weakness of our current approach. We
discuss the weakness of our current approach in Sect. 7.

6.3 Results

Deriving threshold values. Table 4 shows the thresh-
old values of each assessment metric. For example, if the
project has 1994 as the year of the first release (REL), the
project is classified in the very low risk group from the as-
pect of REL.

We found one problem in our derived threshold val-
ues. In NP, there is a difference of two orders of magnitude
(124,256 vs. 6,099) between the threshold values of the very
low and low risk groups.

To understand whether or not 124,256 is reasonable
number, we search “apache,” which is one of the most well-
known OSS systems, in the field of SlideShare. Even if we
search the well-known OSS system, there are only 23,976
slides (= 12 slides per page × 1,998 pages)†. One possible
reason is that 124,256 includes slides that are not related to
OSS systems because the names of OSS systems sometimes
have general terms. We also find a similar problem with
the other metrics (NB: number of books and NTA: number
of technical articles) in the Documentation dimension. We
decided to remove NB, NTA, and NP from our assessment
metrics. We need to improve the steps to obtain those three
metrics in future.
Scoring OSS systems. Table 5 shows the percentages
of problematic and non-problematic OSS systems for each
score. We find that all OSS systems over 4.0 are non-
problematic. Furthermore, the score of only one problem-
atic OSS system is more than 3.0. Therefore, the scoring

†http://www.slideshare.net/search/slideshow?searchfrom=
header&q=apache

Table 5 Distribution of the scores for non-problematic and problematic
OSS systems

Score % of non-problematic % of problematic
OSS systems OSS systems

≤ 2 22.7 30.0
≤ 3 47.3 60.0
≤ 4 24.5 10.0
> 4 5.5 0.0
A higher score indicates that the OSS systems are
higher quality

Table 6 Scoring results of problematic OSS systems in each metric

Statistic # systems having
each score

Dim. Metrics Ave. Var. Med. 5 4 3 2 1

Act.

ANC 3.3 1.81 3.0 2 2 3 2 1
PCD 1.8 1.96 1.0 1 1 0 1 7
NDAY 1.0 0 1.0 0 0 0 0 10
REL 2.5 2.65 2.0 2 1 2 0 5
NC 2.6 3.24 1.5 3 1 0 1 5

Com. ND 2.3 2.61 1.5 3 0 0 2 5
NT 2.9 2.89 3.0 3 1 2 0 4

Rel.
NBUG 2.7 2.41 2.0 2 2 0 3 3
PFIX 2.3 2.21 2.0 2 0 0 4 4

Score 5 is given to OSS systems that are categorized as the very-low
risk group. Ave.: Average, Var.: Variance, Med.: Median

approach has the potential to assess OSS systems by filter-
ing OSS systems that have a score less than 3.

To better understand which metrics are likely to pro-
vide a lower score for problematic OSS systems, Table 6
shows the average and median values of each metric for
problematic OSS systems and the number of them for each
score. We find that NDAY provides a score of 1 for all prob-
lematic OSS systems. On the other hand, for ANC, there is
at least one OSS system having each score.
Feedback from Fujitsu QNET developers. We have con-
sulted with Fujitsu QNET’s senior developers for about two
hours. The purpose of the interview is to arrive at a deeper
understanding of our results (e.g., how well does our ap-
proach work for Fujitsu QNET’s development? and how
can we improve our current approach?).

We find that OSS systems with a score greater than 4
are not problematic. Fujitsu QNET’s developers agree that
our results lead to improvements in Fujitsu QNET’s OSS as-
sessment process because of high precision. Fujitsu QNET’s
project teams expect that they would save the effort that they
usually spend to assess OSS systems while keeping assess-
ment quality††. Therefore, they decided to integrate the ap-
proach into their actual development process. One way to
integrate the approach is that they would allocate only a cer-
tain percentage of the effort to OSS systems with a score
greater than 4 and 3, respectively (e.g., 50% and 80%).

Our scoring approach is derived using only 120 OSS
systems. Therefore, to improve the validity of the experi-
mental results, Fujitsu QNET developers want us to continu-

††The examples of assessing OSS systems are: how an OSS
system performs on a specific hardware and whether or not the
OSS system provides the APIs that the projects would like to use.

KAMEI et al.: STUDYING THE COST AND EFFECTIVENESS OF OSS QUALITY ASSESSMENT MODELS: AN EXPERIENCE REPORT OF FUJITSU QNET
2751

ously evaluate the approach using the OSS projects obtained
during actual integration.

Fujitsu QNET’s developers also would like to improve
the performance of our scoring approach, since Table 4 indi-
cates that the score of one problematic OSS system is more
than 3. Their feedback for improving the performance is
that we weight the assessment metrics to score OSS systems
on the basis of the Fujitsu QNET’s developers’ knowledge.
For example, project teams with “emerging technologies”
may have different context of “the year of the first release”
(REL) from project teams implementing infrastructure. We
will conduct a developer survey of their knowledge in the
future.

By using OSS systems with a score greater than 4.0 based
on a threshold approach, there is a possibility that we can
avoid using problematic OSS systems.

7. Threats to Validity

Construct Validity: considers the relationship between the-
ory and observation, in case the measured variables do not
measure the actual factors. We score OSS systems by cal-
culating the average of the values derived from threshold
approaches [7]. Although it is simple and intuitive to score
them, in certain cases, this score may fully measure the risk
of OSS systems. As we discuss in Sect. 6, we may need to
consider weighting the assessment metrics based on the de-
velopers’ knowledge. That said, our initial results in Sect. 6
show that the simple approach highlights non-problematic
OSS systems by eliminating candidate OSS systems that
have a score less than 4.
External Validity: considers the generalization of our find-
ings. Our study focuses on the usage of OSS systems in
one software industry. Therefore, this project may not be
representative of the usage of OSS systems in all software
industries. However, since we show the impact of research
methodologies on industrial settings, we believe that our
work significantly contributes to empirical knowledge of
the application of OSS assessment techniques to industrial
projects.

Although we choose 43 OSS assessment metrics, there
may be other features that we did not measure for the OSS
assessment metrics. Although we can collect all 43 metrics
within 1 hour (i.e., RQ1 shows that it takes a median time
of 49 minutes per OSS system), further studies using other
metrics may improve the performance of detecting problem-
atic OSS systems.
Internal Validity: refers to whether the experimental con-
ditions make a difference or not, and whether there is suf-
ficient evidence to support the claim being made. We used
Fujitsu QNET’ ITSs to identify which OSS systems cause
major problems. Although Fujitsu QNET has long develop-
ment history using OSS systems, there may be other major
problems that have not occurred yet at Fujitsu QNET and
are not archived in the ITSs.

To conduct RQ1, we used three graduate students in

computer science. Although they are in the last year of their
program, developers for industrial projects can more quickly
collect OSS assessment metrics than students.

8. Conclusion

In this paper, we empirically evaluated the cost and effec-
tiveness of OSS quality assessment models. To conduct the
empirical study, we collected the datasets from 120 OSS
projects used in Fujitsu QNET’s projects and 10 problematic
OSS projects that caused major problems in the projects. We
find that (1) average and median times of 51 and 49 minutes,
respectively, are required to collect all assessment metrics
per OSS project and (2) there is a possibility that we can
avoid using problematic OSS systems by filtering the OSS
systems with a score less than 4.0 based on a threshold ap-
proach.

We also conducted interviews with Fujitsu QNET’s de-
velopers to qualitatively evaluate our findings and obtain
their feedback to improve our approach. Overall, their feed-
back is positive; (1) it is acceptable to spend a median time
of 49 minutes and (2) our approach has the potential to de-
tect problematic OSS systems in Fujitsu QNET’s context.
Currently, OSS quality assessment models have been inte-
grated into Fujitsu QNET’s development projects (i.e., they
collect metrics, score OSS systems, and make a decision).

The plans for future work are as follows:

• We will improve the collection of OSS assessment met-
rics and introduce automation to reduce costs.
• We will improve our scoring approach by weighting

the assessment metrics based on the Fujitsu QNET’s
developers’ knowledge.

References

[1] Ø. Hauge, C.F. Sørensen, and R. Conradi, “Adoption of open source
in the software industry,” Proc. Int’l Conf. on Open Source Systems
(OSS), pp.211–221, 2008.

[2] B. Duck, “The tenth annual future of open source survey,” 2016.
https://www.blackducksoftware.com/future-of-open-source

[3] R. Ferenc, I. Siket, and T. Gyimothy, “Extracting facts from open
source software,” Proc. Int’l Conf. Software Maintenance (ICSM),
pp.60–69, Sept. 2004.

[4] U. Raja and M. Tretter, “Defining and evaluating a measure of open
source project survivability,” IEEE Trans. Software Engineering,
vol.38, no.1, pp.163–174, 2012.

[5] O. Northeast Asia, “RepOSS: A flexible OSS assessment reposi-
tory,” 2012.

[6] E. Petrinja, A. Sillitti, and G. Succi, “Comparing OpenBRR, QSOS,
and OMM assessment models,” Proc. Int’l Conf. Open Source Sys-
tems (OSS), vol.319, pp.224–238, 2010.

[7] T.L. Alves, C. Ypma, and J. Visser, “Deriving metric thresholds
from benchmark data,” Proc. Int’l Conf. Software Maintenance
(ICSM), pp.1–10, 2010.

[8] T. Matsumoto, K. Yamashita, Y. Kamei, N. Ubayashi, T. Iwasaki,
and S. Takayama, “A survey for establishing preliminary eval-
uation technique for open source software (in japanese),” Proc.
Japanese Domestic Workshop on Foundation of Software Engineer-
ing (FOSE), pp.3–12, 2016.

[9] F.W. Duijnhouwer and C. Widdows, “Open source maturity model,”

http://dx.doi.org/10.1007/978-0-387-09684-1_17
http://dx.doi.org/10.1109/icsm.2004.1357790
http://dx.doi.org/10.1109/tse.2011.39
http://dx.doi.org/10.1007/978-3-642-13244-5_18
http://dx.doi.org/10.1109/icsm.2010.5609747

2752
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

in Capgemini Expert Letter, 2003. https://jose-manuel.me/thesis/
references/GB Expert Letter Open Source Maturity Model
1.5.3.pdf

[10] T. Wasserman and A. Das, “Using flossmole data in determining
business readiness ratings,” Proc. Workshop on Public Data about
Software Development (WoPDaSD), pp.1–6, 2007.

[11] Atos, “Qualification and selection of open source software (QSOS),
version 2.0,” 2013. http://backend.qsos.org/download/qsos-2.0
en.pdf

[12] D. Taibi, L. Lavazza, and S. Morasca, “OpenBQR: a framework
for the assessment of OSS,” Proc. Int’l Conf. Open Source Systems
(OSS), pp.173–186, 2007.

[13] E. Petrinja, R. Nambakam, and A. Sillitti, “Introducing the open-
source maturity model,” Proc. Int’l Workshop on Emerging Trends
in Free/Libre/Open Source Software Research and Development,
pp.37–41, 2009.

[14] J.C. Deprez and S. Alexandre, “Comparing assessment method-
ologies for free/open source software: OpenBRR and QSOS,”
Proc. Int’l Conf. Product-Focused Software Process Improvement
(PROFES), pp.189–203, 2008.

[15] E. Petrinja and G. Succi, “Assessing the open source develop-
ment processes using OMM,” Advances in Software Engineering,
vol.2012, pp.1–17, 2012.

[16] J. Shimagaki, Y. Kamei, S. McIntosh, A.E. Hassan, and N.
Ubayashi, “A study of the quality-impacting practices of modern
code review at sony mobile,” Proc. Int’l Conf. Software Engineering,
SEIP Track, ICSE ’16, New York, NY, USA, pp.212–221, ACM,
2016.

[17] C.B. Seaman, “Qualitative methods,” Guide to Advanced Empirical
Software Engineering, pp.35–62, 2008.

[18] F. Ricca, A. Marchetto, and M. Torchiano, “On the difficulty of com-
puting the truck factor,” Proc. Int’l Conf. Product-Focused Software
Process Improvement (PROFES), vol.6759, pp.337–351, 2011.

[19] M. Torchiano, F. Ricca, and A. Marchetto, “Is my project’s truck fac-
tor low?: Theoretical and empirical considerations about the truck
factor threshold,” Proc. Int’l Workshop on Emerging Trends in Soft-
ware Metrics (WETSoM), pp.12–18, 2011.

[20] G. Avelino, M.T. Valente, and A. Hora, “What is the truck factor of
popular github applications? a first assessment,” 2015.
https://doi.org/10.7287/peerj.preprints.1233v2

[21] J.W. Paulson, G. Succi, and A. Eberlein, “An empirical study of
open-source and closed-source software products,” IEEE Trans.
Software Engineering, vol.30, no.4, pp.246–256, 2004.

[22] M. Goeminne and T. Mens, “Evidence for the pareto principle in
open source software activity,” Joint Proc. 1st Int’l Workshop on
Model Driven Software Maintenance and 5th Int’l Workshop on
Software Quality and Maintainability, pp.74–82, 2011.

[23] A. Mockus, R.T. Fielding, and J.D. Herbsleb, “Two case stud-
ies of open source software development: Apache and mozilla,”
ACM Trans. Software Engineering and Methodology, vol.11, no.3,
pp.309–346, 2002.

[24] K. Yamashita, S. McIntosh, Y. Kamei, A.E. Hassan, and N.
Ubayashi, “Revisiting the applicability of the pareto principle to core
development teams in open source software projects,” Proc. Int’l
Workshop on Principles of Software Evolution (IWPSE), pp.46–55,
2015.

[25] D. Spinellis, G. Gousios, V. Karakoidas, P. Louridas, P.J. Adams,
I. Samoladas, and I. Stamelos, “Evaluating the quality of open
source software,” Electronic Notes in Theoretical Computer Sci-
ence, vol.233, pp.5–28, 2009.

[26] S. McIntosh, Y. Kamei, B. Adams, and A.E. Hassan, “An em-
pirical study of the impact of modern code review practices on
software quality,” Empirical Software Engineering, vol.21, no.5,
pp.2146–2189, 2016.

[27] M. Sarrab and O.M.H. Rehman, “Empirical study of open source
software selection for adoption, based on software quality character-
istics,” Advances in Engineering Software, vol.69, pp.1–11, 2014.

[28] M. Michlmayr, “Software process maturity and the success of free
software projects,” Proc. Conf. Software Engineering: Evolution
and Emerging Technologies, pp.3–14, 2005.

[29] S. Krishnamurthy, “Cave or community? an empirical examina-
tion of 100 mature open source projects,” First Monday, vol.7, no.6,
2002.

[30] R. English and C.M. Schweik, “Identifying success and tragedy
of floss commons: A preliminary classification of sourceforge.net
projects,” Proc. Int’l Workshop on Emerging Trends in FLOSS Re-
search and Development (FLOSS), pp.54–59, 2007.

[31] J. Khondhu, A. Capiluppi, and K.-J. Stol, “Is it all lost? a study of in-
active open source projects,” Proc. Int’l Conf. Open Source Systems
(OSS), vol.404, pp.61–79, 2013.

[32] E.S. Raymond, The Cathedral and the Bazaar: Musings on Linux
and Open Source by an Accidental Revolutionary, 1999.

[33] A. Senyard and M. Michlmayr, “How to have a successful free soft-
ware project,” Proc. Asia-Pacific Software Engineering Conference
(APSEC), pp.84–91, 2004.

[34] G. Robles, S. Koch, J.M. González-Barahona, and J. Carlos, “Re-
mote analysis and measurement of libre software systems by means
of the cvsanaly tool,” Proc. Int’l Workshop on Remote Analysis and
Measurement of Software Systems (RAMSS), pp.51–55, 2004.

[35] M.W. Godfrey and Q. Tu, “Evolution in open source software:
A case study,” Proc. Int’l Conf. Software Maintenance (ICSM),
pp.131–142, 2000.

[36] G. Robles, J.M. Gonzalez-barahona, G.D.S.Y. Comunicaciones, and
M. Michlmayr, “Evolution of volunteer participation in libre soft-
ware projects: evidence from debian,” Proc. Int’l Conf. Open Source
Systems (OSS), pp.100–107, 2005.

[37] K. Yamashita, C. Huang, M. Nagappan, Y. Kamei, A. Mockus,
A.E. Hassan, and N. Ubayashi, “Thresholds for size and complex-
ity metrics: A case study from the perspective of defect density,”
Proc. Int’l Conf. Software Quality, Reliability and Security (QRS),
pp.191–201, 2016.

Yasutaka Kamei is an associate profes-
sor at Kyushu University in Japan. He has been
a research fellow of the JSPS (PD) from July
2009 to March 2010. From April 2010 to March
2011, he was a postdoctoral fellow at Queen’s
University in Canada. He received his B.E. de-
gree in Informatics from Kansai University, and
the M.E. degree and Ph.D. degree in Informa-
tion Science from Nara Institute of Science and
Technology. His research interests include em-
pirical software engineering and Mining Soft-

ware Repositories (MSR).

Takahiro Matsumoto received his Bach-
elor’s degree and Master’s degree from Kyushu
University. His research interests include soft-
ware engineering, data mining, mining software
repositories (MSR).

http://dx.doi.org/10.1007/978-0-387-72486-7_14
http://dx.doi.org/10.1109/floss.2009.5071358
http://dx.doi.org/10.1007/978-3-540-69566-0_17
http://dx.doi.org/10.1155/2012/235392
http://dx.doi.org/10.1145/2889160.2889243
http://dx.doi.org/10.1007/978-1-84800-044-5_2
http://dx.doi.org/10.1007/978-3-642-21843-9_26
http://dx.doi.org/10.1145/1985374.1985379
http://dx.doi.org/10.1109/tse.2004.1274044
http://dx.doi.org/10.1145/567793.567795
http://dx.doi.org/10.1145/2804360.2804366
http://dx.doi.org/10.1016/j.entcs.2009.02.058
http://dx.doi.org/10.1007/s10664-015-9381-9
http://dx.doi.org/10.1016/j.advengsoft.2013.12.001
http://dx.doi.org/10.5210/fm.v7i6.960
http://dx.doi.org/10.1109/floss.2007.9
http://dx.doi.org/10.1007/978-3-642-38928-3_5
http://dx.doi.org/10.1109/apsec.2004.58
http://dx.doi.org/10.1049/ic:20040351
http://dx.doi.org/10.1109/icsm.2000.883030
http://dx.doi.org/10.1109/qrs.2016.31

KAMEI et al.: STUDYING THE COST AND EFFECTIVENESS OF OSS QUALITY ASSESSMENT MODELS: AN EXPERIENCE REPORT OF FUJITSU QNET
2753

Kazuhiro Yamashita received his Bache-
lor’s degree, Master’s degree, and Ph.D. degree
from Kyushu University. His research interests
include software engineering, data mining, min-
ing software repositories (MSR).

Naoyasu Ubayashi is a professor at Kyushu
University since 2010. He is leading the POSL
(Principles of Software Languages) research
group at Kyushu University. Before joining
Kyushu University, he worked for Toshiba Cor-
poration and Kyushu Institute of Technology.
He received his Ph.D. from the University of
Tokyo. He is a member of ACM SIGPLAN,
IEEE Computer Society, and Information Pro-
cessing Society of Japan (IPSJ). He received
IPSJ SIG Research Award 2003.

Takashi Iwasaki graduated Kagoshima
University in 1985. In the same year, he joined
Fujitsu Kyushu Communicatin Systems Limited
(Fujitsu Kyushu Network Technologies Lim-
ited) and engaged in research of communica-
tion systems. He is the vice chief director of
Kyushu Embedded Software Technology Con-
sortium and executive secretary of ES-Kyushu.
He is also the executive secretary of Kyushu
branch of the Society of Project Management
and program committee of Software Engineers

Association.

Shuichi Takayama received his Bachelor’s
degree and Master’s degree from Kyushu Insti-
tute of Technology in 1994 and 1996. In the
same year, he joined Fujitsu Limited. He is as-
signed to Fujitsu Kyushu Network Technologies
Limited and engages in development of hard-
ware and software for image processing.

