
550
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

PAPER

Resilient Edge: A Scalable, Robust Network Function Backend

Yutaro HAYAKAWA†a), Kenichi YASUKATA††b), Nonmembers, Jin NAKAZAWA†c), Member,
and Michio HONDA†††d), Nonmember

SUMMARY Increasing hardware resources, such as multi-core and
multi-socket CPUs, memory capacity and high-speed NICs, impose sig-
nificant challenges on Network Function Virtualization (NFV) backends.
They increase the potential numbers of per-server NFs or tenants, which
requires a packet switching architecture that is not only scalable to large
number of virtual ports, but also robust to attacks on the data plane. This
is a real problem; a recent study has reported that Open vSwitch, a widely
used software switch, had a buffer-overflow bug in its data plane that results
the entire SDN domain to be hijacked by worms propagated in the network.
In order to address this problem, we propose REdge. It scales to thousands
of virtual ports or NFs (as opposed to hundreds in the current state-of-the
art), and protect modular, flexible packet switching logic against various
bugs, such as buffer overflow and other unexpected operations using static
program checking. When 2048 NFs are active and packets are distributed
to them based on the MAC or IP addresses, REdge achieves 3.16 Mpps or
higher packet forwarding rates for 60 byte packets and achieves the wire
rate for 1500 byte packets in the 25 Gbps link.
key words: software switch, NFV, security, operating system

1. Introduction

Emerging network infrastructure, including 5G and cloud
networks, is designed to provide high-capacity and low-
delay networks to users, and a fine-grained, rich set of in-
network services, such as filtering, tunneling, mobility man-
agement, and video buffering [16], to each of them. SDN
and NFV are expected to be key technologies in achieving
flexible flow steering and traffic engineering, and network
management at a scale.

Despite the relatively matured SDN and NFV tech-
niques and evolution of programmable hardware including
programmable switches and smart NICs, scalability and ro-
bustness of NFV backends typically implemented as soft-
ware switches, are still challenging problems. First, the
existing NFV backends scale only up to a few hundreds
of ports where virtual network function (NF) instances,
such as routers, firewalls, load balancers and proxies attach.

Manuscript received May 17, 2018.
Manuscript revised October 22, 2018.
Manuscript publicized December 4, 2018.
†The authors are with the Keio University, Fujisawa-shi, 252–

0882 Japan.
††The author is with University of Liege, Belgium.
†††The author is with the NEC Labs Europe, Heidelberg, Ger-

many.
a) E-mail: river@ht.sfc.keio.ac.jp
b) E-mail: kenichi.yasukata@student.uliege.be
c) E-mail: jin@ht.sfc.keio.ac.jp
d) E-mail: micchie.gml@gmail.com

DOI: 10.1587/transinf.2018EDP7176

This significantly limits the opportunity to utilize underlying
hardware. The number of CPU cores per server is increas-
ing; 10 Gbps NICs are ubiquitous and 100 Gbps ones are on
the horizon. This phenomenon potentially accommodates
much larger numbers of NFs. For example, on a 100 Gbps
NIC, the server could run one thousand NFs when each NF
processes packets at 100 Mbps.

Second, recent study demonstrated that even Open
vSwitch, a widely-used production-quality software switch,
contained a major bug in its data plane. It causes buffer
overflow and allows the entire SDN system to be hijacked
by worm propagated [29].

Even worse, these problems are mutually deteriorating;
the more we serve users or tenants, the higher is the effect of
the NFV backend vulnerability. Therefore, preventing NFV
backends from software bug or resulting exploits is more
important for consolidating a larger number of NFs. Further,
since the NF and server backends are relatively low-level
component of the entire software stack, their replacement
or update requires significant effort and disrupts services,
although their configuration is updated relatively frequently
due to dynamic instantiation and migration of NFs.

In this paper we address these challenges by design-
ing, implementing and evaluating Resilient Edge (REdge).
REdge supports 4000 virtual ports to which NFs attach, and
achieves 100 Gbps of throughput, while protecting itself by
containing packet processing logic in the eBPF virtual ma-
chine. Protection, performance and scalability are generally
conflicting goals. Protection degrades performance due to
restricted execution environment and another layer of indi-
rection; achieving high throughput and/or low latency tends
to reduce scalability in the context of packet forwarding, due
to the requirement for dedicating CPU cores to specific I/O
threads.

We adopt the kernel-based data plane architecture,
which is less common today in the context of high-
performance software packet processing. In summary, this
paper makes three contributions:

1. Architecture of safe, scalable NFV backend
2. Practical implementation based on mSwitch and eBPF
3. Evaluation of REdge’s throughput and scalability

The remainder of this paper is organized as follows.
Section 2 covers background to understand status quo in
the literature, and clarifies problems. Section 3 shows the
design and implementation of REdge. Section 4 evaluates

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers



HAYAKAWA et al.: RESILIENT EDGE: A SCALABLE, ROBUST NETWORK FUNCTION BACKEND
551

REdge, and Sect. 5 discusses lessons learned from this work.
Section 6 describes the rest of the related work. The paper
concludes in Sect. 7.

2. Background

NFV backends are typically implemented using software
switches that interconnect physical and virtual NICs, and
forward packets between them by some logic, such as
layer 2 learning, layer 3 routing and flow-based packet
matching as with OpenFlow. Their architectures divide into
the kernel and user-space approaches. This taxonomy may
seem unfamiliar, but it actually exposes the trade-off be-
tween port scalability and packet forwarding throughput.

The kernel-based approaches [23] inherit scalability
and generality offered by the kernel network stack, including
interrupt handler, packet representation and device abstrac-
tion. However, over the last half decade, it has been argued
that the kernel-based approaches cannot process packets at
high rates required by 10 or 40 Gbps NICs. Researchers and
practitioners have started implementing packet forwarding
functionality in user-space using high performance packet
I/O frameworks such as netmap and DPDK. These frame-
works typically exploit zero copy, batching for system calls
or device I/O, and lightweight packet buffer management.

User-space NF approaches appear to be successful,
however, the same does not go for their backend. Individ-
ual NFs are designed to maximize their own performance,
utilizing all the allocated resources. For example, they usu-
ally employ busy-polling for high performance packet I/O
at the expense of high CPU usage. In contrast, NFV back-
ends must minimize their own resource utilization to support
as many NFs as possible. To address this problem, in 2015,
mSwitch [11] has demonstrated to superior performance and
scalability by merging the best aspects of both kernel- and
user-space approaches. However, its design decisions still
have scalability issues due to high memory usage and data
copy, and a security problem described below.

In 2018, Thimmaraju et al. [29] report that existing
software switches used as an NFV backend have vulnera-
bility where attackers can hijack the entire network within
minutes. They demonstrate this by injecting a malicious
packet that causes a buffer overflow in the MPLS parser of
the Open vSwitch data path [23]. They exploit the buffer
overflow with ROP technique and propagate a worm to lo-
cal and central controllers. Although this bug has been fixed,
updating the operational systems requires significant efforts
and affects many components of the system, such as orches-
tration tools, OS kernels, and many applications and VMs in
the cloud. This distinctly implies that we should design the
NFV backends to protect against vulnerability.

The primary challenge here is how to do so with-
out sacrificing performance and scalability. Thimmaraju et
al. [29] measure Open vSwitch performance with compiler-
level protection enabled to quantify overheads of software
switch protection. Unfortunately, their results indicate non-
negligible overheads even for relatively low packet rates

Table 1 Summary of performance characteristics of software switches:
REdge supports all of high throughput, high port density and data plane
security.

Throughput Port Density Security

OVS (kernel) [1] 1 Mpps 1000s ×
OVS (DPDK) [11]
and BESS [10]

> 10 Mpps 10s ×

Linux XDP ([31]) > 10 Mpps × eBPF

mSwitch [11] > 10 Mpps 100s ×
REdge > 10 Mpps 1000s eBPF

which are several hundreds of kilo packets per second.
These rates are one order of magnitude lower than modern
network bandwidth of 10 or 40 Gbps.

Recent advances in the Linux kernel somewhat break
this logjam, implementing a high-performance packet I/O
engine called XDP and safe code execution environment
for packet processing with Extended Berkeley Packet Filter
(eBPF). However, it focuses on packet redirection to other
NICs and filtering prior to moving received packets to the
vast majority of the network stack. XDP cannot act as an
NFV backend that serves hundreds or thousands of virtual
ports, because of lack of parallelism on incast to a physical
NIC transmitted by a large number of NFs and efficiency
regarding delivering a batch of packets to multiple virtual
ports. Further, XDP does not offer high-performance virtual
NICs to which NFs attach.

Safe, dynamic packet filtering is not new and was pro-
posed in 1996 [6]. However, it is important to note that this
is being actively explored nowadays in response to the re-
quirement for flexibility and performance. Table 1 summa-
rizes the features of the existing software switches.

3. Design

In the previous section, we identified the problem with port
scalability and security. We design REdge to solve these
problems by achieving the following properties simultane-
ously:

• Scalability to thousands of NF instances
• Protection of data plane against software bugs and
• High packet rates of tens of millions of packets per sec-

ond for small packets and high bit rates of tens of giga-
bits per second for large packets.

Figure 1 illustrates the REdge architecture. We imple-
ment it by extending mSwitch, a modular software switch
that runs in the kernel. It attaches either physical NICs or
virtual NICs to which VMs, containers or user-processes at-
tach. Packet forwarding from a physical NIC is performed in
the context of receive interrupt or dedicated polling thread,
whereas that from a virtual NIC is performed in a system
call context of the sender. This model is common in other
kernel-based software switches, such as Open vSwitch and
Linux bridge. This means that REdge architecture could be



552
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

Fig. 1 REdge architecture.

applicable to these software switches. However, in this pa-
per we base our solution on mSwitch because of its high
performance and maturity (e.g., having been included in
FreeBSD).

3.1 Scalable Packet Forwarding

NFV backends should be lightweight in terms of all of CPU
utilization, memory usage and memory bus utilization, be-
cause NFs, including various middlebox implementations,
also stress these system resources [9], depending on type of
NFs. For example, header parsing are CPU intensive, and
data copy (e.g., packet encapsulation) and tree traversal op-
erations (e.g., IP prefix lookup) stress memory bandwidth
and CPU caches. Therefore, in designing scalable NFV
backends, it is important to minimize utilization of these
resources within the backend and to allocate maximum of
these resources to NFs. It should also be noted that certain
resources, such as memory bandwidth and CPU caches are
difficult to manage for isolation.

To allow NFs to achieve high performance and low re-
source utilization, it is useful to provide zero copy API to
applications, but we should do so safely. Crash of an indi-
vidual NF should not affect the rest of the system to mini-
mize service disruption.
Monolithic shared memory: To avoid data copy end-to-
end, REdge configures a memory pool shared by all the
physical and virtual ports. This organization does not only
enable zero copy across the input NIC, NF(s) and the output
NIC, but also achieves better memory utilization, because
we do not have to pre-allocate a portion of the memory to
individual NFs. As a result, in the kernel, REdge always
forwards packets between ports without data copy; NFs that
run in user space or as VMs can also move packets between
input and output ports without data copy, using the netmap
API [26].

It should be noted that zero copy is not always fast;
costs of data copy largely depends on NF type and hard-
ware setup, such as the number of memory channels, mem-
ory clock speed and NUMA node locality. It also depends
on CPU cache locality determined by the behavior of the in-
dividual NFs. For example, copying data to new location is
expensive. Therefore, we design and implement REdge to
be able to switch between data copy and zero copy forward-
ing on the fly.
Scalable zero copy forwarding table: REdge implements

Fig. 2 REdge’s packet forwarding data structures: REdge points buffer
slots while mSwitch points packet buffers directly. In this figure packets at
slots 2, 4 and 7 go to the destination port 10, those at slots 0 and 3 go to the
port 12 and those at slots 1 and 6 go to the port 13.

a new internal forwarding table in mSwitch. mSwitch sorts
packets within a batch by output ports. This is because
(virtual) device access involves locking of output port data
structure and “trigger” action to notify the hardware or re-
ceiver NF of new packets, and grouping packets going to the
same destination enables us to move multiple packets with
a single locking and trigger action.

REdge’s new table maintains pointers to ring slots
whereas mSwitch maintains pointers to buffers. This en-
ables zero copy packet forwarding by swapping buffers be-
tween source and destination slots. Figure 2 illustrates data
structures leveraged in packet forwarding. This design adds
a single step of conversion from slot to buffer on every
packet, but avoiding data copy is essential to move large
data efficiently.

In addition, since mSwitch only supports 255 switch
ports, we should increase this limit. This increases the size
of the data structure (Scratchpad in Fig. 2), which would ex-
acerbate data locality. In Sect. 4, we demonstrate that this
overhead is negligible.

3.2 Packet Processing Protection

We have observed that even production quality software data
plane often contains a serious bug. It is unlikely that packet
I/O engine contains serious bugs that result in exploits, be-
cause its input patterns are limited unless it concerns packet
contents. However, packet processing code literally pro-
cesses packet headers (and often payloads), which means
we should assume almost infinite sets of inputs. It is clear
that such code tend to contain buffer overflow or other bugs.

Generally, it is difficult to realize such safety without
sacrificing performance, because it often requires runtime
program checking which usually has unacceptable overhead
for fast packet processing. To achieve better performance,
packet processing code require to be checked statically.

REdge leverages eBPF implementation included in re-
cent versions of the Linux kernel. eBPF itself is an in-
dependent 64bit register machine with a small subset of
common CPU instruction architecture which can be Just-In-
Time (JIT) compiled into native machine code. Linux ker-



HAYAKAWA et al.: RESILIENT EDGE: A SCALABLE, ROBUST NETWORK FUNCTION BACKEND
553

nel forbids eBPF programs to contain loop to ensure that the
program halts. Together with certain other restrictions such
as limited numbers of instructions and small stacks, eBPF
programs can be verified statically before execution. eBPF
checks against instruction number limit, memory boundary
violation, pointer leaking, invalid jump. eBPF thus protects
the users against unexpected memory error or stack buffer
overflow bugs. The bug reported in [29] can be avoided
using this mechanism. Despite of these restrictions, eBPF
has been proven to be sufficiently expressive to write packet
processing code, together with extensions described below.

Since memory access from an eBPF program should
be statically verifiable, persistent in-memory data structures
such as routing table or filter rules also should be verifiable.
Linux kernel provides in-memory key-value store which is
called map. Map can be manipulated from userspace via
file descriptor provided from bpf(2) system call, or from
eBPF program via call instruction which can call restricted
sets of external kernel functions. Such function calls are
tracked using the verifier, and access to the map is always
safe. Note that data structures implemented for map (e.g.,
hash table, trie) is considered to be safe.

Programming Interface

REdge’s packet processing logic protected by eBPF can
be written in familiar C syntax, implementing a lookup
function that is invoked on every packet (Fig. 3) and re-
turns an index of the destination switch port, or one of
the two special values that indicate broadcast or drop
(REDGE BPF BROADCAST and REDGE BPF DROP in
Fig. 3, respectively). Further, eBPF programs written for
Linux XDP can be easily modified for REdge.

Figure 3 shows the pseudo code of a lookup function
that forwards packets based on the destination MAC address

Fig. 3 Pseudo code of REdge eBPF.

of input packet. Core logic implementation is similar to that
of XDP eBPF. In the pseudo code, the BPF TABLE func-
tion is used for describing a hash table. This function is not
provided by REdge but the bcc [3] toolchain. Since REdge
reuses those standard functionalities and utilities of bcc, the
developers essentially only require modifying the XDP pro-
gram to adapt the destination port specification.

3.3 Implementation

REdge is implemented by extending mSwitch. We modified
64 Lines-of-Code for scalability improvement and wrote
200 Lines-of-Code of mSwitch module for eBPF integra-
tion. Our implementation is potable. REdge runs in both
Linux and FreeBSD. In Linux, REdge uses Linux native
eBPF and XDP facility included in Linux with a thin glue.
For FreeBSD, we ported uBPF to the kernel and integrated
it with mSwitch.

4. Evaluation

We evaluate REdge to confirm the following hypothesis:

• REdge offers data plane protection with low overheads.
• REdge offers higher scalability than existing systems

4.1 Methodology

In addition to the complete REdge implementation, we use
two variants of it to highlight effects of the different tech-
niques: REdge-no-eBPF that does not use eBPF, REdge-
copy that uses eBPF but copies data. In addition, we
compare REdge and its variants against existing systems:
mSwitch and XDP.

4.2 Experiment Setup

Hardware and OS: Unless otherwise stated, we conduct
the experiment using a server equipped with a single Intel
Xeon E5-2690v4 CPU clocked at 2.6 GHz, 64GB quad-
channel memory and Intel XXV-710-DA2 25 Gbps dual-
port NIC. This server installs the Linux kernel version 4.16.
We disable all the offloading features, Turbo-boost and CPU
C-states. We use another machine to generate and terminate
the traffic that goes through these NIC ports.
Implementation of Packet Processing Logics: We use
three packet processing logics that have different complexity
and implement each of them in the normal C and eBPF. First
one is “dummy” which statically forwards packets to an in-
tended destination port, without parsing any packet header.
Second one is “MAC”, which forwards packets based on the
destination MAC address. The third one is “5-tuple”, which
forwards packets based on a tuple of transport protocol, IP
addresses and ports.

Both MAC and 5-tuple logics maintain entries in a hash
table. In the logics written in eBPF, we use the map mech-
anism described in Sect. 3.2 to access the hash table. In the



554
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

Table 2 Baseline performance.

Dummy MAC 5-tuple

Topology 60B 768B 60B 768B 60B 768B [Mpps]

REdge NIC-NF-NIC 15.34 3.94 12.36 3.94 9.78 3.94

NIC-NIC 15.50 3.94 12.20 3.94 9.60 3.94

REdge-copy NIC-NF-NIC 9.27 3.94 9.07 3.94 7.19 3.94

NIC-NIC 16.90 3.94 10.80 3.94 8.83 3.94

REdge-no-eBPF NIC-NF-NIC 16.54 3.94 12.43 3.90 10.17 3.94

NIC-NIC 17.07 3.94 12.42 3.90 10.26 3.94

mSwitch NIC-NF-NIC 10.77 3.94 11.26 3.89 7.67 3.94

NIC-NIC 18.07 3.94 12.63 3.94 9.55 3.94

XDP NIC-NF-NIC 2.19 1.57 2.46 1.57 2.42 1.57

NIC-NIC 14.73 1.57 7.40 1.57 6.49 1.57

logics written in C, we reuse the eBPF map data structure
for fair comparison. The 5-tuple logic has slightly higher
complexity than the MAC logic, because the larger number
of packet headers has to be parsed.

Note that any of our logics does not touch packet pay-
load, so packet processing overhead is a function of not a
bit rate but a packet rate. For REdge, 60B of packet size is
always the worst case where packet rate becomes high and
benefit of zero copy to move packets is diminished.

4.3 Data Plane Overheads

REdge is designed to achieve high port scalability and pro-
tection of packet processing code. We expect these two fea-
tures to be achieved at the expense of certain performance
penalty in comparison to not doing so. Therefore, we begin
with measuring REdge’s overheads by comparing REdge
against existing systems and its partial building blocks.

Table 2 shows the packet forwarding throughput of var-
ious systems between the two NICs. We use two topologies:
one runs NF (Fig. 4 (b)), and one does not (Fig. 4 (a)). The
first topology is useful to observe end-to-end throughput,
whereas the second one is useful to measure pure switching
logic overheads. The machine activates a single CPU core
and NIC ring in REdge, mSwitch or XDP. The NF runs on a
separate CPU core. We allocate 2048 packet buffers for each
of the NIC rings, and use a single CPU core to process the
incoming packets. In the second topology, we use another
dedicated CPU core for NF.
Overhead of scalability enhancement: Difference of
throughput between mSwitch and REdge-no-eBPF demon-
strates overhead caused by scalability improvement with
REdge which includes the new forwarding table and zero
copy packet forwarding (Sect. 3.1). For a simple packet
forwarding scenario (Dummy, NIC-NIC, 60B), mSwitch
achieves slightly higher rate, exhibiting 3 ns of additional
per packet cost in REdge (1/17.07 − 1/18.07). How-
ever, when we employ more realistic, complex forwarding
logic, this overhead becomes smaller, and REdge-no-eBPF
even outperforms mSwitch on the 5-tuple-based forwarding
logic.

Fig. 4 Experiment topology: Virtual switch represents either mSwitch,
REdge (or its variants) or XDP. vNIC represents a virtual port.

Moreover, in the presence of NF (NIC-NF-NIC),
REdge-no-eBPF always performs better than mSwitch.
REdge-no-eBPF saves three data copies in total, which in-
clude one from the input NIC to NF, one from input virtual
port to output virtual port in NF and one from NF to the out-
put NIC. These results imply that scalability enhancement
made by REdge improves the performance at even small-
scale NF deployment.

Comparison between REdge-copy and REdge indi-
cates the effect of zero copy packet forwarding in the pres-
ence of eBPF and the new forwarding table. We observe
similar performance characteristics to previous comparison
between mSwitch and REdge-no-eBPF. In the dummy
logic, the copy method is slightly faster, but when we use
more complex MAC and 5-tuple logic, the zero copy method



HAYAKAWA et al.: RESILIENT EDGE: A SCALABLE, ROBUST NETWORK FUNCTION BACKEND
555

demonstrates always higher performance. In the presence
of NF, the zero copy method is always faster than the copy
one. These results confirm that the positive effect of zero
copy with REdge stays in the presence of packet processing
protection and new forwarding table.
Overhead of packet processing protection: Performance
difference between REdge-no-eBPF and REdge demon-
strates overheads of protected packet processing logic. For
60B packets, depending on forwarding logic REdge exhibits
2–7 ns of additional per packet cost in the NIC-NIC case,
and a similar number in the NIC-NF-NIC case. We believe
these overheads are low, because per-packet time budget
to forward minimum-sized packets at 25 Gbps line rate is
27 ns.
Overhead of both: Finally, performance difference be-
tween REdge and mSwitch indicates REdge’s overheads
that include both port scalability enhancement and packet
processing protection. Observing the dummy, 60B, NIC-
NIC case, we observe 9 ns of additional per-packet cost.
However, we do not observe significant overhead in the
MAC and 5-tuple cases. In the NIC-NF-NIC case, REdge
always outperforms mSwitch. Based on these observations,
we conclude that REdge offers high port scalability and
packet processing protection practically at no cost.
Comparison to other systems: We are also interested in

Fig. 5 REdge scalability.

relative performance to Linux XDP which also shares the
same objective with REdge in terms of protected packet
processing. Unfortunately, owing to a device driver prob-
lem, XDP does not perform as expected. To elucidate its
potential performance, we run the equivalent test but us-
ing Intel X540 10 Gbps NIC whose driver is more ma-
tured. We observed 14.73 Mpps with 60B packets, confirm-
ing that REdge achieves comparable performance even to
non-scalable architecture. Note that very low performance
of XDP’s NIC-NF-NIC case is caused by tap interface used
as the virtual port.

4.4 Scalability

We evaluate REdge’s scalability by increasing the number of
active virtual ports or NFs. We use the topology in Fig. 4 (c),
and the MAC and 5-tuple forwarding logic. Each virtual
port has a pair of TX and RX rings, and each ring has 512
packet buffers or slots except for the case of 60 B packets
with 5-tuple logic which uses 1024 buffers to buffer the suf-
ficient number of packets. Batch size is always 512 packets.
All the NFs share the four CPU cores that are not utilized by
the backend.

Figure 5 plots the throughput with increasing numbers
of NFs for 60B, 768B and 1514B packets. We observe ap-



556
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

Fig. 6 Packet forwarding throughput with and without copying data.

proximately 18 Mpps with 60 B packets even with 4096 NFs
being active, and almost the 25 Gbps line rate for 768 B and
1514 B packets.

Low throughput with 60 B packets and small numbers
of virtual ports is owing to packet drop caused by short-
age of buffers of virtual ports. We separately confirmed that
this can be avoided when we use small batch sizes or more
buffers at each NF to prevent packet drop.

We conclude that REdge can scale to a large number
of virtual ports or NFs while achieving high throughput and
protecting packet processing logic.

4.5 Effect of Zero Copy Forwarding

Despite of the high throughput and scalability with REdge,
so far we have not observed a significant effect of avoiding
data copy. This is because of our input packet rates that are
at most 25 Gbps, and we expect zero copy becomes effec-
tive for higher input packet rates offered by higher speed
NICs. We set out to test what happens in such a case using a
pair of virtual ports instead of that of physical ports to inject
packets to the switch at higher rates. Figure 6 plots through-
puts with REdge and a version of REdge that does not em-
ploy eBPF in the presence of 1 or 4096 NFs. We observe a
clear advantage of zero copy feature offered by REdge. For
768 and 1514 byte packets, the zero copy method improves
throughput by 27–327%. For the minimum-sized packets, it
degrades throughput by at most 28% due to the manipula-
tion cost of packet buffer pointers. However, given the large
gain, we consider this negative impact as acceptable.

5. Limitation

Restriction imposed by eBPF results in certain inconve-
nience in implementing packet processing logic used by

NFV backend. Prohibition of recursion and loop, limited
number of instruction (4096) and limited stack size (512
B) would prevent developers from implementing processing
of nested or stacked protocol headers in a natural manner.
However, NFV backends typically just route (and/or encap-
sulate/decapsulate) packets based on a small set of protocol
headers. Therefore, we believe this limitation is acceptable
for NFV backends.

Firewalls, such as Linux iptables, FreeBSD ipfw
and OpenBSD pf, apply multiple filtering rules within a sin-
gle function scope. Thus, the stack tends to grow. However,
long rule chain would not be used inside NFV backends but
atop them, forming service function chaining.

6. Related Work

There exist a large body of frameworks to deploy NFs. Soft-
Flow [13], OKO [5] and NetBricks [22] supports running
function-based, stateful NFs within software switch data
plane. These frameworks have the security problem that
REdge addresses, and restrict NF implementation to func-
tion based, which significantly differs from the existing NFs
and appears to have a deployment problem. BPFabric [14]
protects its data plane, but has a problem with port scalabil-
ity.

Approaches to run NFs in programmable hardware
such as SmartNIC [4], [7], [15] are orthogonal to REdge.

Flurries [33] pools a large number of NFs and activates
on-demand. However, the number of concurrent NFs is
limited by the underlying NetVM [12], which is a software
switch based on DPDK.

Click [20] is a framework to implement user- or kernel-
space router data plane. FastClick [2] extends Click for fast
user-space networking. Unikernels [17], [18] enables pro-
tected, lightweight applications including NFs, but it also
has the port scalability at the backend. These systems are
complementary to our work, and can run on top of REdge.

Cuckoo-Switch, Hyper-Switch [25], BESS [28] and
VALE [27] are software switches, but they do not scale to
a large number of ports or protect packet processing logic.
HyperNF [32] is based on mSwitch but does not protect the
packet processing logic. Ptnetmap [8], [19] is a fast VM-
host interface, which REdge can use to offer fast packet I/O
to NFs.

Programmable buffers (PBs) [16] temporarily buffer
client traffic in a 5G core network. It extends mSwitch in
a similar manner to us. However, it does not protect data
plane, and measures port scalability to only up to 2000 ports.

In contrast to backend protection offered by REdge,
Shieldbox [30], FastPaaS [35] and SafeBricks [24] are
mechanisms to protect NFs. E2 [21] is a resource alloca-
tion framework for NFV, taking care of scale out and NF
placement SDNFV [34] provisions NFV instances intelli-
gently across multiple hosts. They are complementary to
REdge.

Intel DPDK and netmap are the two major fast user-
space packet I/O frameworks. However, they differ signif-



HAYAKAWA et al.: RESILIENT EDGE: A SCALABLE, ROBUST NETWORK FUNCTION BACKEND
557

icantly. netmap runs in the kernel and exposes only packet
buffers to user-space, and it provides safety and both block-
ing and non-blocking (busy-polling) packet I/O. Therefore,
REdge provides the netmap API on top of it. Intel DPDK
entirely runs in user-space, including device drivers. Since
it is difficult to process interrupts in user-space, applications
are required to perform busy polling.

7. Conclusion

In this paper we designed, implemented and evaluated
REdge, a scalable, protected NFV backend architecture.
This work has been motivated by ever increasing per-server
hardware resources that potentially enable accommodating
more NFs at a single server, and by the recent important ob-
servations in the literature that vulnerability in the software
switch allows attackers to hijack the entire SDN domain. We
optimize the trade-off between protection and performance,
using a new architecture that protects high performance in-
kernel software switch and minimizes resource utilization
of it to allocate maximum resources to NFs as possible. We
then achieved the single-server NFV system that forwards
packets at 25 Gbps line rate in the presence of 4000 NFs.

As future work, we plan to apply REdge to a thin hyper-
visor of Xen. Owing to security concern, software switches
have not been run within Xen hypervisor. However, strong
protection achieved by REdge could enable it and provide
opportunity for networking acceleration and flexibility.

Acknowledgments

This work was supported by National Institute of Informa-
tion and Communications Technology.

References

[1] D. Ahern, N. Aleksandrov, and R. Prabhu, “Scaling the number of
network interfaces on Linux,” https://youtu.be/ t41 dlBO7Q, 2016.

[2] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet pro-
cessing,” Proc. ACM/IEEE ANCS, 2015.

[3] bcc, https://github.com/iovisor/bcc
[4] G. Bianchi, M. Bonola, S. Pontarelli, D. Sanvito, A. Capone, and

C. Cascone, “Open packet processor: A programmable architec-
ture for wire speed platform-independent stateful in-network pro-
cessing,” arXiv preprint arXiv:1605.01977, 2016.

[5] P. Chaignon, K. Lazri, J. François, T. Delmas, and O. Festor, “Oko:
Extending Open vSwitch with stateful filters,” Proc. ACM SOSR,
ACM, 2018.

[6] D.R. Engler and M.F. Kaashoek, “DPF: Fast, flexible message de-
multiplexing using dynamic code generation,” Proc. ACM SIG-
COMM, 1996.

[7] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M.
Andrewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung, H.K.
Chandrappa, S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam, F.
Liu, K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre, M.
Shaw, G. Silva, M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair,
D. Bansal, D. Burger, K. Vaid, D.A. Maltz, and A. Greenberg,
“Azure accelerated networking: SmartNICs in the public cloud,”
15th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 18), pp.51–66, Renton, WA, USENIX Associ-
ation, 2018.

[8] S. Garzarella, G. Lettieri, and L. Rizzo, “Virtual device passthrough
for high speed VM networking,” Proc. ACM/IEEE ANCS, 2015.

[9] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica, “Multi-resource fair
queueing for packet processing,” ACM SIGCOMM CCR, vol.42,
no.4, pp.1–12, 2012.

[10] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“SoftNIC: A software NIC to augment hardware,” Tech. Rep.,
UCB/EECS-2015-155, EECS Department, University of California,
Berkeley, 2015.

[11] M. Honda, F. Huici, G. Lettieri, and L. Rizzo, “mSwitch: A high-
ly-scalable, modular software switch,” Proc. ACM SOSR, 2015.

[12] J. Hwang, K.K. Ramakrishnan, and T. Wood, “NetVM: High per-
formance and flexible networking using virtualization on commod-
ity platforms,” 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pp.445–458, Seattle, WA,
USENIX Association, 2014.

[13] E.J. Jackson, M. Walls, A. Panda, J. Pettit, B. Pfaff, J. Rajahalme,
T. Koponen, and S. Shenker, “Softflow: A middlebox architecture
for open vswitch,” 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pp.15–28, Denver, CO, USENIX Association,
2016.

[14] S. Jouet and D.P. Pezaros, “BPFabric: Data plane programmability
for software defined networks,” Proc. ACM/IEEE ANCS, 2017.

[15] Y. Le, H. Chang, S. Mukherjee, L. Wang, A. Akella, M.M. Swift,
and T. Lakshman, “UNO: Uuniflying host and smart NIC offload for
flexible packet processing,” Proc. ACM SoCC, 2017.

[16] Y. Lin, U.C. Kozat, J. Kaippallimalil, M. Moradi, A.C.K. Soong,
and Z.M. Mao, “Pausing and resuming network flows using pro-
grammable buffers,” Proc. ACM SOSR, 2018.

[17] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T.
Gazagnaire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels: Li-
brary operating systems for the cloud, ACM SIGPLAN Notices,
vol.48, no.4, pp.461–472, 2013.

[18] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire, D.
Sheets, D. Scott, R. Mortier, A. Chaudhry, B. Singh, J. Ludlam, J.
Crowcroft, and I. Leslie, “Jitsu: Just-in-time sum-moning of uniker-
nels,” 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), pp.559–573, Oakland, CA, USENIX
Association, 2015.

[19] V. Maffione, L. Rizzo, and G. Lettieri, “Flexible virtual machine net-
working using netmap passthrough,” Proc. IEEE LANMAN, 2016.

[20] R. Morris, E. Kohler, J. Jannotti, and M.F. Kaashoek, “The click
modular router,” Proc. ACM SOSP, pp.217–231, 1999.

[21] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L.
Rizzo, and S. Shenker, “E2: A framework for NFV applications,”
Proc. ACM SOSP, pp.121–136, 2015.

[22] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“NetBricks: Taking the V out of NFV,” OSDI, 2016

[23] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J.
Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of open vswitch,” 12th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 15), pp.117–130, Oakland, CA, USENIX Association, 2015.

[24] R. Poddar, C. Lan, R.A. Popa, and S. Ratnasamy, “Safebricks:
Shielding network functions in the cloud,” 15th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 18),
pp.201–216, Renton, WA, USENIX Association, 2018.

[25] K.K. Ram, A.L. Cox, M. Chadha, and S. Rixner, “Hyper-switch: A
scalable software virtual switching architecture,” Presented as part
of the 2013 USENIX Annual Technical Conference (USENIX ATC
13), pp.13–24, San Jose, CA, USENIX, 2013.

[26] L. Rizzo, “netmap: A novel framework for fast packet i/o,”
2012 USENIX Annual Technical Conference (USENIX ATC 12),
pp.101–112, Boston, MA, USENIX Association, 2012.

[27] L. Rizzo and G. Lettieri, “VALE, A switched ethernet for virtual
machines,” Proc. ACM CoNEXT, pp.61–72, 2012.

[28] S. Han, “BESS,” https://github.com/NetSys/bess/wiki, 2015.

http://dx.doi.org/10.1109/ANCS.2015.7110116
http://dx.doi.org/10.1145/3185467.3185496
http://dx.doi.org/10.1145/248157.248162
http://dx.doi.org/10.1109/ancs.2015.7110124
http://dx.doi.org/10.1145/2377677.2377679
http://dx.doi.org/10.1145/2774993.2775065
http://dx.doi.org/10.1109/ancs.2017.14
http://dx.doi.org/10.1145/3127479.3132252
http://dx.doi.org/10.1145/3185467.3185473
http://dx.doi.org/10.1145/2499368.2451167
http://dx.doi.org/10.1109/lanman.2016.7548852
http://dx.doi.org/10.1145/319151.319166
http://dx.doi.org/10.1145/2815400.2815423
http://dx.doi.org/10.1145/2413176.2413185


558
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

[29] K. Thimmaraju, B. Shastry, T. Fiebig, F. Hetzelt, J.-P. Seifert, A.
Feldmann, and S. Schmid, “Taking control of SDN-based cloud sys-
tems via the data plane,” Proc. ACM SOSR, 2018.

[30] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and C.
Fetzer, “ShieldBox: Secure middleboxes using shielded execution,”
Proc. ACM SOSR, 2018.

[31] XDP, “The IO visor project,” https://www.iovisor.org/
[32] K. Yasukata, F. Huici, V. Maffione, G. Lettieri, and M. Honda, “Hy-

perNF: Building a high performance, high utilization and fair NFV
platform,” Proc. ACM SoCC, pp.157–169, 2017.

[33] W. Zhang, J. Hwang, S. Rajagopalan, K.K. Ramakrishnan, and T.
Wood, “Flurries: Countless fine-grained NFs for flexible per-flow
customization,” Proc. ACM CoNEXT, pp.3–17, 2016.

[34] W. Zhang, G. Liu, A. Mohammadkhan, J. Hwang, K.K.
Ramakrishnan, and T. Wood, “SDNFV: Flexible and dynamic soft-
ware defined control of an application- and flow-aware data plane,”
ACM Middleware, 2016.

[35] W. Zhang, A. Sharma, K. Joshi, and T. Wood, “Hardware-assisted
isolation in a multi-tenant function-based dataplane,” Proc. ACM
SOSR, 2018.

Yutaro Hayakawa is a graduate student
at Graduate School of Media and Governance,
Keio University. His research interests include
operating systems and networks, especially for
SDN (Software Defined Networks) and NFV
(Network Function Virtualization) systems that
include programmable data plane. He received
his bachelor degree in 2016 at Keio University.
In 2015 summer, he was an intern at NetApp
in Munich, and published the resulting paper at
ACM SoCC 2017. In 2016 summer, he was an

intern at NEC Laboratories Europe in Heidelberg, Germany.

Kenichi Yasukata is a Ph.D. student
at Department of Electrical Engineering and
Computer Science at University of Liege, Bel-
gium. He received his Bachelor’s degree (Fac-
ulty of Environment and Information Studies)
and Master’s degree (Graduate School of Media
and Governance) from Keio University, Japan.
His research interests include operating systems,
networking and virtualization. He has been
working on high-performance networked sys-
tems.

Jin Nakazawa is an associate professor at
Faculty of Environment and Information Stud-
ies at Keio University, Japan. He has received
his Bachelor’s degree (1998) in Faculty of Pol-
icy Management, Master’s degree (2000) and
Doctor of Philosophy’s degree (2003) in Me-
dia and Governence from Keio University. His
research interest includes middleware systems,
distributed systems, ubiquitous computing sys-
tems, and life logging. He is a member of IEEE,
IEICE, and IPSJ.

Michio Honda is a senior researcher at
NEC Laboratories Europe in Heidelberg. Be-
fore that, he was a software engineer at NetApp
in Munich. He received his Ph.D. degree in 2012
at Keio University in Japan. He has worked
on transport protocols, middleboxes, network
stacks, software switch. He has published in
top-tier venues including ACM IMC, HotNets,
CCR, SOSR and SoCC, and USENIX NSDI and
ATC. He received IRTF/ISOC Applied Net-
working Research Prize in 2011 for his IMC pa-

per, and best paper award at ACM SOSR ’15. He has also been a contrib-
utor to the netmap framework. He has also served on technical program
committee at ACM/IEEE SC 2019, USENIX ATC 2017 and 2018, ACM
SOSR 2018 and many other conferences.

http://dx.doi.org/10.1145/3185467.3185468
http://dx.doi.org/10.1145/3185467.3185469
http://dx.doi.org/10.1145/3127479.3127489
http://dx.doi.org/10.1145/2999572.2999602
http://dx.doi.org/10.1145/2988336.2988338
http://dx.doi.org/10.1145/3185467.3185493

