1046

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.5 MAY 2019

[PAPER

Feature Subset Selection for Ordered Logit Model via
Tangent-Plane-Based Approximation

Mizuho NAGANUMA, Yuichi TAKANO'™®, Nonmembers, and Ryuhei MIYASHIRO ™", Member

SUMMARY  This paper is concerned with a mixed-integer optimiza-
tion (MIO) approach to selecting a subset of relevant features from among
many candidates. For ordinal classification, a sequential logit model and an
ordered logit model are often employed. For feature subset selection in the
sequential logit model, Sato et al. [22] recently proposed a mixed-integer
linear optimization (MILO) formulation. In their MILO formulation, a
univariate nonlinear function contained in the sequential logit model was
represented by a tangent-line-based approximation. We extend this MILO
formulation toward the ordered logit model, which is more commonly used
for ordinal classification than the sequential logit model is. Making use
of tangent planes to approximate a bivariate nonlinear function involved in
the ordered logit model, we derive an MILO formulation for feature subset
selection in the ordered logit model. Our computational results verify that
the proposed method is superior to the L1-regularized ordered logit model
in terms of solution quality.

key words: optimization, statistics, feature subset selection, ordered logit
model

1. Introduction

Statistical analysis of a large amount of diverse data is in-
creasingly important because of advances in information-
gathering technology. A central task in such analysis is
selecting a subset of relevant features (or explanatory vari-
ables) from among many candidates for model construction.
This feature subset selection aids in understanding causal re-
lations between explanatory and response variables. More-
over, the predictive performance of statistical models can be
improved by elimination of redundant features because ad-
verse effects of overfitting are mitigated.

Various computational algorithms have been proposed
for selecting feature subsets[9], [12], [15], [17]. These
include the stepwise method[11], L1-regularized regres-
sion [27], and metaheuristics [31]. Many methods are cat-
egorized as belonging to a class of heuristic algorithms,
which perform well even on large-scale datasets. However,
these algorithms can sometimes terminate with solutions
of low quality because the optimality of obtained solutions
(e.g., in the least-squares sense) is not an objective.
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In contrast with such heuristic algorithms, mixed-
integer optimization (MIO) approaches have the potential to
find the best subset of features with respect to a given crite-
rion function. One of these approaches was first proposed in
the 1970s [3], and recently they have received renewed at-
tention due to advances in algorithms and hardware [8],
[16]. The MIO approaches have recently been used ef-
fectively for linear regression [14], [19], [20], logistic re-
gression [7], [23], support vector machine [18], classifica-
tion tree [5], and various applications [29], [30].

This paper is focused on the classification of ordinal
categorical data [1]. Typical examples of such data are credit
ratings of financial instruments, Likert-type items on ques-
tionnaires, and academic grading of students. For ordinal
classification, the sequential logit model [2], [28] (or the
continuation-ratio logit model) is sometimes employed, and
the ordered logit model [21] (also called the cumulative logit
model or the proportional odds model) is more commonly
used [1]. In the following, we describe the previous MIO
approaches to feature subset selection for ordinal classifica-
tion (see also Appendix A).

The sequential logit model involves a univariate nonlin-
ear function, which makes it hard to use an MIO approach
to feature subset selection. To resolve this issue, Tanaka
and Nakagawa [26] devised a mixed-integer quadratic opti-
mization (MIQO) formulation based on a quadratic approx-
imation of the nonlinear function. Sato et al.[22] derived
a mixed-integer linear optimization (MILO) formulation by
applying a tangent-line-based approximation to the nonlin-
ear function. They also showed that their MILO formulation
offers better solution quality than the MIQO formulation.

In line with Sato et al. [22], we propose a computation-
ally tractable MILO formulation for feature subset selection
in the ordered logit model. We make use of tangent planes
to approximate a bivariate nonlinear function involved in the
ordered logit model. Using this approximation, we reduce
the feature subset selection for the ordered logit model to an
MILO problem, which can be handled using standard MIO
software. We also develop a heuristic algorithm to select a
limited number of tangent planes that work well for approx-
imation.

The efficacy of our method is assessed through compu-
tational experiments on several datasets from the UCI Ma-
chine Learning Repository [10]. The computational results
demonstrate that our MILO formulation provides a better
subset of features than does the L1-regularized ordered logit
model in terms of the in-sample log-likelihood and out-of-
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sample predictive performances.
2. Ordered Logit Model

Suppose that we are given n samples, p features, and m or-
dinal classes. A vector x; := (x;1, Xi2, . - -, xi,,)T is composed
of p features for each sample i = 1,2,...,n. Each sample is
also given a class label

S = 1 if the ith sample belongs to the kth class,
* 0 otherwise

for each ordinal class k = 1,2,...,m.
In the ordered logit model, the following linear regres-
sion model is employed for ordinal classification:

wix;+ e = WX+ WaXp o WpXip + €

where w = (wq,wy,.. .,w,,)T is a coeflicient vector to be
estimated and e; is random noise in the ith sample. To cate-
gorize each sample to one of m ordinal classes, we introduce
thresholds as follows:

—00:b0<b1<"'<bm=005 (1)

where b := (by,bs,...,b,_1)" is an (m—1)-dimensional vec-
tor to be estimated. Accordingly, the ith sample is assigned
to the kth class when the following relationship is satisfied:
by <w'x; +e; < by.

We assume that the random noises are mutually inde-
pendent and that each noise e; follows the same logistic dis-
tribution, given by

I
Pre <& = I e’

The probability of the ith sample belonging to the kth class
is expressed as

G =Prby_1 —w'x; <e; < by —w'x;)
B 1 1
T l4exp@Txi—by)  1+expwTx; — b))

Hence, the occurrence probability of the observed data (i.e.,
0;x) 1s written as

n

ﬂﬁmﬂ
k=1

i=1

The log-likelihood function to be maximized quantifies the
plausibility of b and w based on the occurrence probability
as follows:

L.y = tog| | [
i k=1

i=1
= > D ouf@ X = bw xi—bey), ()
i=1 k=1

where f(u,v) is the bivariate nonlinear function
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Fig.1  Graph of f(u,v).
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Figure 1 shows a graph of the bivariate nonlinear func-
tion (3). By straightforward calculation, the Hessian matrix
of f(u,v) is negative definite, so f(u,v) is concave, as seen
in Fig. 1.

3. Mixed-Integer Optimization Approach

This section presents an MILO formulation for feature sub-
set selection in an ordered logit model.

3.1 Mixed-Integer Nonlinear Optimization Formulation

We focus on the problem of selecting a subset of features to
maximize the log-likelihood function (2) subject to a con-
straint on the number of selected features. Before deriv-
ing our MILO formulation for this problem, we introduce a
mixed-integer nonlinear optimization (MINLO) formulation
in this subsection.

Let z := (z1,22,...,2,)" be a vector of binary decision
variables for feature subset selection. That is,

)1 if the jth feature is selected,
4= 0 otherwise.

Using z, the feature subset selection can be formulated as an
MINLO problem,

max Zzéikf(wai — b, w'x; — b)) “)
i=1 k=1
s.t. by +e<b, (k=2,3,...,m—1), 5)
ij()ﬂwjzo (jzl,z,“"p)’ (6)
P
D=9, )
J=1
beR" " weR’, ze{0, 1}, (®)

where ¢ is a sufficiently small positive number and 6 is a
user-defined parameter specifying the number of selected
features through constraint (7). Note that all the decision
variables are listed in constraint (8). Constraint (5) enforces
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monotonicity on the thresholds from Eq. (1). If z; = 0, then
the jth feature is deleted because its coefficient must be zero
by constraint (6). These logical implications can be rep-
resented by using a big-M method or a special-ordered-set
constraint of type 1 (e.g., see [4]).

3.2 Tangent-Plane-Based Approximation

The MINLO formulation (4)—(8) in Sect. 3.1 is correct; how-
ever, the objective function (4) to be maximized is a concave
but nonlinear function, which is difficult to handle directly
by MIO software. For this reason, we approximate the bi-
variate nonlinear function (3) by tangent planes.

Let {(ug, ve, f(ug,vp)) | € =1,2,...,h} be a set of points
of tangency for the function f(u, v); we will explain how to
choose these /1 points in Sect.3.3. The associated tangent
planes are expressed as

ge(u,v) = fuue, vo)(w—ur)+ folue, ve)(0—ve) + f(uag, ve),

where f;, and f, denote the partial derivatives of f(u, v) with
respect to u and v, respectively.

The graph of a concave function lies below any tangent
plane of the function (except at the point of tangency, see
also Fig.2). Accordingly, f(u,v) can be approximated by
the pointwise minimum of a family of the 4 tangent planes
as follows:

S, v) = Gp(u,v) := min{g,(u,v) | £ =1,2,...,h}.
For each (u, v), we have

min{g,(u,v) | € =1,2,...,h}
=max{r |t < g(u,v) (€=1,2,...,h)},

where ¢ is an auxiliary decision variable. Therefore, the
tangent-plane-based approximation G (u, v) is rewritten as

G;,(u, l))
=max{t | t < fi(ue, v))(u —ur) + foue, ve)(V — ve)
+ f(ug,ve) (€=1,2,...,h)}. )

LetT := (tp | i = 1,2,...,mk = 1,2,...,m) be a
matrix of auxiliary decision variables for making a tangent-
plane-based approximation

Giw'x;—b,w' x; —by_1) = f(w' x; — by, w" x; — by_)

in Eq. (4). By substituting («,v) = (w'x; — by, w"x; — bi_1)
into Eq. (9), the MINLO problem (4)—(8) can be reduced to
the following MILO problem:

max Zn: zm] Oirtik (10)

im1 k=1
s.t fix < fule, vo) W' x; — by — ug)
+ folue, v0) W' x; = by — ve) + f(ue, ve)
(i=12,....mk=1,2,....m¢=1,2,...,h),
(11)
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(c) Third tangent plane

Fig.2  Process of adding tangent planes.

bt +e<by (k=2.3,....m—1), (12)
=02 w=0 (=12...p, (I3

p
Dz=06, (14)
=1

beR"LTeR™ weRF, ze{0,1}", (15)
where all the decision variables are listed in constraint (15).
3.3 Heuristic Algorithm for Selecting Tangent Planes

The accuracy of the approximation proposed in Sect. 3.2 is
greatly affected by which points of tangency are selected and
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the number / of points. If appropriate points of tangency are
selected, then the MILO problem (10)—(15) approaches the
original MINLO problem (4)—(8) as h — oo. However, as h
increases, the size of the MILO problem also grows larger,
which increases the computational burden. Thus, limiting
the necessary number of points of tangency is crucial to
practical approximation. We develop a simple heuristic al-
gorithm for determining a set of points of tangency that pro-
vide a good approximation.

Our algorithm starts with the initial tangent plane(s).
Figure 2 (a) shows the graph of the nonlinear function f(u, v)
and its initial tangent plane g;(u,v) on the bounded do-
main ¥ := [-15,+15] x [-15,+15] as an example. Note
that the graph of f(u,v) meets the plane at the point of
tangency (up,vy, f(uy,v1)) with (uy,v;) = (=15,15). We
next add tangent planes one at a time at the point of tan-
gency (u, v, f(u,v)) such that the gap between f(u,v) and its
tangent-plane-based approximation G(u, v) is largest. That
is,

(ugs1,ve41) € argmax{G,(u,v) — f(u,v) | (u,v) € F}.

Specifically, we examine a finite number of lattice points
(u,v) € F and select (ugy1,0e41) such that the gap (i.e.,
G¢(u,v) — f(u,v)) is largest. In this manner, the second tan-
gent plane is added as shown in Fig. 2 (b), and then the third
tangent plane is added as shown in Fig. 2 (c). We repeat this
procedure until the number of tangent planes is equal to A.

4. Computational Results

This section evaluates the computational performance of our
method for selecting a subset of features in the ordered logit
model.

4.1 Experimental Design

We downloaded eight datasets for ordinal classification from
the UCI Machine Learning Repository [10]. Table 1 lists
these instances. In the table, # is the number of samples, p
is the number of candidate features, and m is the number of
ordinal classes.

For all instances, each integer and real variable was
standardized to have mean zero and standard deviation one.

Table1 List of instances.
Abbreviation n 14 m  Original dataset[10]
Wine-R 1599 11 6  Wine Quality (red wine)
Wine-Ww 4898 11 7  Wine Quality (white wine)
Skill 3338 18 7  SkillCraft] Master Table Dataset
Choice 1474 21 3 Contraceptive Method Choice
Tnns-W 118 31 7  Tennis Major Tournament
(Wimbledon-women)
Tnns-M 113 33 7  Tennis Major Tournament
(Wimbledon-men)
Stdnt-M 395 40 18  Student Performance
(mathematics)
Stdnt-P 649 40 17  Student Performance

(Portuguese language)
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Each categorical variable was transformed into a set of
the appropriate number of dummy variables. Variables for
which more than 10% of values are missing were elimi-
nated; after that, samples that still have missing values were
eliminated. In the Tnns-W and Tnns-M instances, the vari-
ables “Player 1” and “Player 2” were removed because they
are not suitable for prediction purposes.

The performances of the following methods were com-
pared by computational experiment:

MILO(%): our MILO formulation (10)—(15), where £ is the
number of tangent planes;
L1-Reg: L1-regularized ordered logit model.

All computations were performed on a Windows com-
puter with an Intel Core i7-4790 CPU (3.60 GHz) and
16 GB memory. The MILO problems were solved using
IBM ILOG CPLEX 12.8.0.0[13], where the indicator func-
tion implemented in CPLEX was used to impose the con-
straint (13). The L1-regularized ordered logit model was
estimated using the ordinalNet package [32] in R 3.4.2,
and a set of features with nonzero coefficients was selected.
Since this package produced results for a sequence of reg-
ularization parameter values, so the computation time for
6 = 5 was equal to that for § = 10.

4.2  Selection of Tangent Planes

We begin by reporting the tangent planes selected by our
heuristic algorithm, where (1, v;) = (=10, 10) and (u2, v2) =
(—0.01,0.01) were used for the initial tangent planes, and
subsequent points (u¢, v¢) (£ = 3,4,. .., h) were chosen from
a set of 0.01-spaced lattice points in the domain ¥ :=
[—15,+15] x [-15,+15].

Figure 3 shows the largest gap between f(u,v) and its
tangent-plane-based approximation

max{G(u,v) — f(u,v) | (u,v) € ¥}

as a function of the number 4 of tangent planes on a semilog-
arithmic graph. In the figure, we see that the largest gap
narrows with the number of tangent planes used. In partic-
ular, the gap decreases sharply until the ninth tangent plane
is added; after that, it decreases slowly as the number of
tangent planes is increased.

Figure 4 shows the (u,v) coordinates of the points of

100

10

Largest gap

0.1
0 10 20 30 40 50 60 70 80 90 100

Number of tangent planes

Fig.3  Largest gap between f(u,v) and its approximation.
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Fig.4  Points of tangency on uv plane.

tangency selected by our heuristic algorithm, where the
number of tangent planes is 2 € {10,30, 100}. Note that
Fig. 1 shows that f(u,v) decreases indefinitely as (u,v) ap-
proaches the diagonal line u = v and that f(u,v) has a
relatively large curvature around the origin (u,v) = (0,0).
Consequently, many points were generated around the ori-
gin along the diagonal line on the uv coordinate plane in
Fig.4 (c).

4.3 Results of Feature Subset Selection
Tables 2 and 3 show the computational results of feature

subset selection for the ordered logit model, where the num-
ber of selected features is & = 5 in Table 2 and 6 = 10 in Ta-
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ble 3. The column labeled “LogLike” shows the value of the
log-likelihood (2), which was maximized using a selected
subset of features; the largest log-likelihood values for each
instance are indicated in bold. The column labeled “ObjVal”
shows the optimal value of the objective function (10) (i.e.,
an approximate value of the maximum log-likelihood). The
column labeled “Time (s)” shows the computation time in
seconds.

Table 2 reveals that MILO(100) attained the largest
log-likelihood values for all instances except Wine-W. We
can also see that ObjVal approached LogLike as the number
of tangent planes used in the MILO formulations increased.
For example, in Choice, the LogLike value was —1460.81
and the ObjVal value was —876.86 for 1 = 10, while for
h = 100 the values of LogLike and ObjVal were —1456.87
and —1432.43, respectively. In this case, the maximum log-
likelihood was approximated to within about 2% by using
100 tangent planes.

The computation time of the MILO formulations in-
creased greatly with the number of tangent planes. For in-
stance, in Choice in Table 2, the MILO computation time
was 15.76s for h = 10 and 1021.32s for & = 100. In
contrast, the L1-Reg computations finished very quickly
for all the instances; however, these yielded the worst log-
likelihood value for most of the instances.

In Table 3, the largest log-likelihood value was pro-
vided by one of the MILO formulations for all instances
except Stdnt-P. However, the differences in the log-
likelihood between MILOs and L1-Reg in Table 3 were
smaller than those in Table 2. Indeed, the log-likelihood
values of MILO(10) were worse than those of L1-Reg for
five out of eight instances. The main reason for this is that
when many features need to be selected, more careful com-
parison is required. In fact, MILO(10) failed to find a subset
of features of good quality due to the low accuracy of ap-
proximation based on a small number of tangent planes.

4.4 Out-of-Sample Predictive Performance

This subsection evaluates out-of-sample predictive perfor-
mance of our method through two-fold cross-validation. A
class label of each sample was predicted from the estimated
probability of belonging to each ordinal class, and its ac-
curacy (i.e., probability of correct answer) and root-mean-
squared error (RMSE, based on difference between true and
predicted labels) were calculated. We examined five in-
stances: Wine-R, Wine-W, Skill, Choice, and Stdnt-P in
the cross-validation. These instances were chosen because
they contain enough samples to yield reliable results.
Tables 4 and 5 show the results of the cross-validation,
where the number of tangent planes is # = 100, and the num-
ber of selected features is § = 5 (Table 4) or 6§ = 10 (Table 5).
The better accuracy/RMSE values between MILO(100) and
L1-Reg are bold-faced in these tables. For 8 = 5 (Table 4),
MILO(100) was better than L1-Reg in terms of accuracy
and RMSE values for Wine-R and Stdnt-P; for § = 10
(Table 5), MILO(100) obtained better accuracy and RMSE



NAGANUMA et al.: FEATURE SUBSET SELECTION FOR ORDERED LOGIT MODEL VIA TANGENT-PLANE-BASED APPROXIMATION

Table 2  Results of feature subset selection (6 = 5).
Instance n P m  Method LogLike ObjVal  Time (s)
Wine-R 1599 11 6  MILO(10) —-1548.74 —-493.81 3.92
MILO(30) -1548.74 -1027.42 18.02
MILO(100) —-1548.74 —1499.89 68.19
L1-Reg —1548.74 — 4.74
Wine-W 4898 11 7  MILO(10) —5497.53  —1488.79 28.77
MILO(30) -5497.41  -3981.81 136.00
MILO(100) -5497.53  -5350.39  2214.23
L1-Reg -5502.91 — 16.85
Skill 3338 18 7  MILO(10) —4548.52  -2104.42 52.60
MILO(30) —4550.57  -3908.59 262.77
MILO(100) —4544.43 —-4430.16  2856.46
L1-Reg -4572.19 — 11.59
Choice 1474 21 3 MILO(10) —1460.81 -876.86 15.76
MILO(30) -1457.78  -1330.67 119.23
MILO(100) -1456.87 —1432.43 1021.32
L1-Reg —1473.71 — 0.28
Tnns-W 118 31 7 MILO(10) -144.91 -96.03 17.72
MILO(30) —146.04 -129.21 104.18
MILO(100) —144.69 —143.18 505.41
L1-Reg —149.84 — 1.68
Tnns-M 113 33 7 MILO(10) -131.42 -90.72 11.40
MILO(30) -131.42 —-117.11 71.46
MILO(100) -131.42 —130.25 201.80
L1-Reg -136.63 — 1.44
Stdnt-M 395 40 18 MILO(10) —522.55 —246.09 18.50
MILO(30) -522.55 -424.19 118.79
MILO(100) -522.43 —-509.82 387.37
L1-Reg -523.28 — 7.16
Stdnt-P 649 40 17 MILO(10) -791.84 -319.72 43.23
MILO(30) -791.65 -602.21 151.12
MILO(100) —789.83 —768.88 795.01
L1-Reg -791.38 — 8.28
Table 3  Results of feature subset selection (6 = 10).
Instance n p m  Method LogLike ObjVal Time (s)
Wine-R 1599 11 6  MILO(10) —-1538.38 —486.94 2.79
MILO(30) —1538.38 —-1012.38 18.02
MILO(100) —-1538.01 —1489.75 41.50
L1-Reg —-1538.01 — 4.74
Wine-W 4898 11 7  MILO(10) —5450.54 -1478.68 14.20
MILO(30) -5450.58  —3928.87 55.22
MILO(100)  —-5450.58  —5305.49 1455.11
L1-Reg —5450.58 — 16.85
Skill 3338 18 7  MILO(10) —-4493.28  -2066.50 46.99
MILO(30) —-4491.03  —3845.88 125.05
MILO(100) —4490.59 —4373.80 947.80
L1-Reg —4492.93 — 11.59
Choice 1474 21 3 MILO(10) —1443.31 -867.96 56.30
MILO(30) —1440.88 —-1311.46 345.56
MILO(100) —1440.88 —1416.80 4215.52
L1-Reg —1441.66 — 0.28
Tnns-W 118 31 7 MILO(10) -137.34 —-86.61 84.02
MILO(30) —-138.67 -121.53 336.76
MILO(100) —-139.04 —135.48 2984.95
L1-Reg -141.75 — 1.68
Tnns-M 113 33 7 MILO(10) -127.65 -85.72 30.47
MILO(30) -127.79 -111.90 150.32
MILO(100) -127.27 —125.64 683.52
L1-Reg -130.41 — 1.44
Stdnt-M 395 40 18 MILO(10) -518.95 —241.22 116.86
MILO(30) -518.09 -417.01 1840.31
MILO(100) -517.66 -504.87 5103.93
L1-Reg -518.48 — 7.16
Stdnt-P 649 40 17 MILO(10) —782.16 -312.97 1497.83
MILO(30) —781.98 -594.53 4263.90
MILO(100) —-782.45 -760.45  48464.35
L1-Reg -781.94 — 8.28
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Table 4  Results of cross-validation (6 = 5).
Accuracy (%) RMSE
Instance n )4 m  MILO(100) L1-Reg MILO(100) L1-Reg
Wine-R 1599 11 6 59.0 58.6 0.711 0.718
Wine-W 4898 11 7 51.9 514 0.817 0.812
Skill 3338 18 7 39.3 38.8 1.048 1.042
Choice 1474 21 3 44.9 44.8 0.819 0.813
Stdnt-P 649 40 17 48.5 45.2 1.152 1.161
Table 5  Results of cross-validation (6 = 10).
Accuracy (%) RMSE
Instance n p m  MILO(100) LI1-Reg MILO(100) L1-Reg
Wine-R 1599 11 6 59.3 59.4 0.708 0.706
Wine-W 4898 11 7 52.2 52.2 0.815 0.815
Skill 3338 18 7 40.0 39.8 1.032 1.034
Choice 1474 21 3 46.7 45.7 0.805 0.805
Stdnt-P 649 40 17 46.9 46.5 1.156 1.157
values in a majority of cases.
References

5. Conclusion

This paper dealt with the feature subset selection problem
for the ordered logit model. We formulated it as an MILO
problem by applying tangent-plane-based approximation to
the bivariate nonlinear function. We also developed a heuris-
tic algorithm to select a limited number of tangent planes
suitable for approximation. The computational results con-
firmed that our method was effective in finding a subset of
features of good quality, comparing with the L1-regularized
ordered logit model.

Our MILO formulation has the potential to provide
the best subset of features when sufficiently many tangent
planes are used for approximation. However, proving the
optimality (or approximation accuracy) of the obtained so-
lutions can be computationally intensive in this approach.
In contrast, heuristic approaches, represented here by L1-
regularized regression, can complete the search process
quickly at the cost of giving up potential optimality of the
obtained solutions. For practical purposes, it is necessary
to choose between the two approaches according to the in-
tended use of feature subset selection.

A future direction of study is to extend our approxi-
mation framework to other logit models. We will also con-
sider modifying our heuristic algorithm to improve the ac-
curacy of the tangent-plane-based approximation. Addition-
ally, MIO approaches to eliminating multicollinearity have
been studied in recent years [6], [24], [25], so such meth-
ods could be incorporated in our MILO formulation to re-
duce adverse effects of multicollinearity on the ordered logit
model.
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Appendix A: List of Abbreviations for Mixed-Integer

MIO
MILO

MIQO

MINLO

Optimization

Mixed-Integer Optimization

Mixed-Integer Linear Optimization
Formulation for sequential logit model [22]
Formulation for ordered logit model (10)—(15)

Mixed-Integer Quadratic Optimization
Formulation for sequential logit model [26]

Mixed-Integer Nonlinear Optimization
Formulation for ordered logit model (4)—(8)
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