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Hierarchical Community Detection in Social Networks Based on
Micro-Community and Minimum Spanning Tree

Zhixiao WANG†, Mengnan HOU†, Guan YUAN†a), Jing HE†, Jingjing CUI††, Nonmembers,
and Mingjun ZHU†, Member

SUMMARY Social networks often demonstrate hierarchical commu-
nity structure with communities embedded in other ones. Most existing
hierarchical community detection methods need one or more tunable pa-
rameters to control the resolution levels, and the obtained dendrograms, a
tree describing the hierarchical community structure, are extremely com-
plex to understand and analyze. In the paper, we propose a parameter-
free hierarchical community detection method based on micro-community
and minimum spanning tree. The proposed method first identifies micro-
communities based on link strength between adjacent vertices, and then,
it constructs minimum spanning tree by successively linking these micro-
communities one by one. The hierarchical community structure of social
networks can be intuitively revealed from the merging order of these micro-
communities. Experimental results on synthetic and real-world networks
show that our proposed method exhibits good accuracy and efficiency per-
formance and outperforms other state-of-the-art methods. In addition, our
proposed method does not require any pre-defined parameters, and the out-
put dendrogram is simple and meaningful for understanding and analyzing
the hierarchical community structure of social networks.
key words: social network analysis, hierarchical community detection,
micro-community, minimum spanning tree

1. Introduction

Many social networks exhibit a natural community struc-
ture, i.e., groups of vertices that have denser connections
within each group and fewer connections between them [1].
Community detection is a hot issue in social network analy-
sis, which is beneficial for us to analyze the topology struc-
ture of social networks, understand the evolution of social
networks, and even forecast their behaviors [2].

The community structure of social networks often
demonstrates hierarchy with small communities embedded
in big ones [3]. Many hierarchical community detection
methods were proposed [4]–[7]. These methods can be
classified into two categories: agglomerative [8]–[10] and
divisive [11], [12]. The former is a bottom up approach
that successively joins the initial vertices while the latter
divides the network into sub-groups. Because of its ex-
cellent performance, agglomerative method has attracted
many attentions. Typical agglomerative algorithms include:
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modularity optimization [13]–[16], density-based meth-
ods [17]–[21], game theory-based methods [22], [23], ran-
dom walk-based methods [24]–[26], and NMF (Nonnega-
tive Matrix Factorization)-based methods [27], [28]. These
methods have achieved good performance in community de-
tection, but there are still some defects among them. For
example, the modularity optimization methods have a prob-
lem of minimum resolution, the game theory-based methods
need some pre-defined parameters to adjust the context of
the coalition.

Although many hierarchical community detection
methods have been proposed based on different technolo-
gies, there still remain some unsolved problems: (1) The
obtained dendrograms of social network communities are
extremely complex with very large depth. From these com-
plicated dendrograms, we cannot efficiently analyze the hi-
erarchical relationship among communities. (2) Most exist-
ing hierarchical community detection methods need one or
more pre-defined tunable parameters to control the resolu-
tion levels. In fact, it is difficult to set appropriate values
for different social networks in advance. Thus, the partition
performance cannot be effectively guaranteed.

The fundamental reason of the first problem is that
most existing methods successively merge the single ver-
tices one by one to get hierarchical structure. The bigger
the social network scale is, the more complex the obtained
dendrogram will be. The bottom level of dendrogram refers
to single vertices. These single vertices are too tiny to be
meaningful for understanding the hierarchical community
structure of social networks. If we can construct the dendro-
gram from local communities, rather than single vertices,
the obtained dendrogram will become simple and intuitive.

In order to solve the second problem, some parameter-
free methods need to be adopted. The Minimum Span-
ning Tree (MST) is a kind of parameter-free agglomera-
tive method used in hierarchical clustering. Although some
methods have utilize MST to identify community structure
of social networks [29]–[31], these method mainly focused
on how to remove some edges from the constructed MST,
based on pre-defined rules, to obtain community structure.
To the best of our knowledge, none of them devoted to min-
ing the hierarchical relationship among communities. If we
construct MST from local communities, these local commu-
nities will be successively linked (i.e. merged) one by one
and the merging order will reveal how these local commu-
nities are nested in different levels. Thus, we can identify
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the hierarchical relationship among communities of social
networks.

Motived by above inspirations, we proposed a novel
hierarchical community detection method based on micro-
community and minimum spanning tree. Firstly, the pro-
posed method identifies dense pairs from social networks. A
dense pair is a pair of vertices with the largest link strength
from each other. Secondly, all dense pairs sharing common
vertices are merged into bigger local communities, each lo-
cal community is called a micro-community. Thirdly, the
proposed method constructs MST by successively linking
these micro-communities one by one. The merging order
of these micro-communities will intuitively reveal the hier-
archical community structure of social networks. Experi-
mental results show that our proposed method exhibits good
performance on synthetic and real-world networks and out-
performs other state-of-the-art methods. The main contribu-
tions of this paper are summarized as follows:

(1) The proposed method constructs the dendro-
gram from identified micro-communities, rather than
single vertices. Thus, the obtained dendrogram can in-
tuitively reveal how the micro-communities are nested
in different levels, which is meaningful for understand-
ing and analyzing the hierarchical community structure
of social networks.

(2) The proposed method directly detects the hier-
archical community structure of social networks in the
process of minimum spanning tree construction, requir-
ing no pre-defined tunable parameters or edge remov-
ing rules. Thus, the partition efficiency can be effectively
guaranteed.

The remainder of this paper is organized as follows.
Section 2 reviews the related works. Section 3 describes the
proposed method in detail. Section 4 discusses the exper-
imental results and Sect. 5 provides the conclusion of this
paper.

2. Related Works

Agglomerative hierarchical community detection methods
can be divided into several categories, including modu-
larity optimization [13]–[16], density-based methods [17]–
[21], game-theory-based methods [22], [23], random-walk-
based methods [24]–[26], and NMF-based methods [27],
[28].

Modularity optimization. FN [8] and CNM [9] are
two representative modularity optimization methods. FN [8]
starts with a state in which each vertex is the sole member
of each community, and then repeatedly merge community
pairs that result in the greatest increasing in Q. The order
of the joining of a pair of communities can be represented
as a dendrogram, a tree describing the hierarchical commu-
nity structure. CNM [9] is another modularity-based method
that obtains the hierarchical community structure by exploit-
ing some shortcuts in the optimization problem and using
more sophisticated data structures. Its running time on a net-
work with n vertices is O(nlog2n). Toujani and Akaichi [13]

propose a hybrid method to uncover the hierarchical com-
munity structure of complex networks. However, the
method assumes the existence of an initial partition, which
has significance influence to the final results. Afterwards,
they improve the method by presenting an objective func-
tion [14] that incorporates the value of structural and se-
mantic similarity based on modularity. Barber et al. [15]
describe a hierarchical clustering algorithm that merges all
pairs of communities connected by locally optimal edges
that will increase the modularity. The worst-case time com-
plexity is O(n3), which isn’t suitable for large scale net-
works. Lin et al. [16] propose an Integer Programming ap-
proach IP, a bottom-up method for detecting hierarchical
community structure. Whereas, this approach needs a pre-
defined hierarchical level.

Density-based methods. Huang et al. [17] propose a
hierarchical network clustering method DenShrink to reveal
the embedded hierarchical community structure by combin-
ing the advantage of density-based clustering and modular-
ity optimization. DenShrink identifies micro-communities
based on structural similarity between adjacent vertices, and
then merge the densely connected local micro-communities
iteratively to reveal the hierarchical community structure.

Game-theory-based methods. Zhou et al. [22] pro-
pose a game-theory-based method to identify hierarchical
communities, which models individual vertices as rational
players. The players cooperate with other players to form
coalitions, and coalitions with fewer players can merge into
a larger coalition as long as the merge operation can improve
the utility value of the merged coalitions. The process of
merging coalitions illustrates the forming of the hierarchical
communities. However, how to select a suitable value for β,
a parameter used to adjust the context of the coalition, is a
challenge task.

Random-walk-based methods. Zhang et al. [24] pro-
pose a hierarchical community detection method based on
random walk, which utilizes the error function of the par-
tial transition matrix convergence to determine the number
of random walk steps. The method clusters the communi-
ties around core vertices based on the approximation conver-
gence transition matrix, and then uses a closeness index to
recursively merge two communities. However, this method
needs a pre-defined closeness threshold ϕ to decide the mer-
gence of two communities, and a threshold τ to select the
initial core vertex set.

NMF-based methods. Du et al. [27] propose a NMF-
based method, they provide a divide-and-conquer strategy
to discover hierarchical community structure based on the
rank-2 symmetric nonnegative matrix factorization. How-
ever, when splitting a community using rank-2 SymNMF,
an appropriate scalar parameter for the tradeoff between the
approximation error and the difference between matrix H
and W is needed.

The dendrograms obtained by most above methods are
extremely complex with very large depth. Efficiently an-
alyzing the hierarchical relationship of communities from
these complicated dendrograms is difficult. Furthermore,
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most existing hierarchical community detection methods
need one or more pre-defined tunable parameters. Setting
appropriate values for different social networks in advance
is also difficult.

3. Method

The paper proposes a parameter-free hierarchical commu-
nity detection method based on micro-community and min-
imum spanning tree. The method includes three steps. The
first step is dense pair identification. A dense pair is a
pair of adjacent vertices with the largest link strength from
each other. The second step is micro-community genera-
tion. All identified dense pairs sharing common vertices are
merged into bigger local communities, each local commu-
nity is called a micro-community. The third step is MST
construction. Prim algorithm is used to generate minimum
spanning tree, and the generated micro-communities are re-
garded as initial vertices. The hierarchical community struc-
ture of social networks can be intuitively revealed by suc-
cessively linking these micro-communities one by one. The
root (highest level) represents a single community, corre-
sponding to the entire network and the leaves (lowest level)
corresponds to the micro-communities.

Definition 1 (Link Strength). For a given network
G = (V, E), V denotes the vertices set, E represents the edges
set. For ∀u ∈ V and v ∈ Γ(u)−{u} where Γ(u) represents the
neighbor set of vertex u including u itself, the Link Strength
between vertex u and v is defined as follows:

LS (u, v) =
∣∣∣∣∣Γ(u) ∩ Γ(v)
Γ(u) ∪ Γ(v)

∣∣∣∣∣ +

∣∣∣∣∣∣ D(u)∑
l∈Γ(v)

D(l) − D(v)∑
l∈Γ(u)

D(l)

∣∣∣∣∣∣
1
2 ×

(
D(u)∑

l∈Γ(v)
D(l) +

D(v)∑
l∈Γ(u)

D(l)

) (1)

where, LS (u, v) represents the Link Strength between vertex
u and v. D(u) denotes the degree of vertex u. The tradi-
tional network similarity (such as Jaccard similarity) calcu-
lates the similarity of two vertices based on the link rela-
tionship of their neighbourhood (i.e. one hop). However,
the proposed Eq. (1) not only takes the information of one
hop neighbourhood into account, but also considers the in-
formation of neighbour’s neighbour (i.e. two hops), result-
ing in a more holistic and accurate result. That is to say, the
front part of Eq. (1) calculates the Link Strength from the
perspective of one hop, and the latter evaluates it from the
perspective of two hops.

Definition 2 (Dense Pair). Given a network G =

(V, E). For ∀u ∈ V and v ∈ Γ(u) − {u} where Γ(u) refers
to the neighbor set of vertex u including u itself, (u, v) is a
dense pair if it satisfies: LS (u, v) = max{LS (x, y)|x = u, y =
Γ(u) − {u}} where LS (u, v) denotes the Link Strength of ver-
tex u and v.

Definition 3 (Micro-community). Given a network
G = (V, E). microCom = (V ′, E′) is a connected sub-graph
of G, which is a micro-community iff: (1) for ∀u ∈ V ′,
∃v ∈ V ′ satisfies that (u, v) is a dense pair; (2) � u ∈ V that

Fig. 1 A small network with three communities.

meets (u, v) is a dense pair while u ∈ V ′ ∧ v � V ′.
Definition 4 (Micro-community Closeness). Given

a network G = (V, E). Ci,C j are two micro-communities
of G. Micro-community closeness between two micro-
communities Ci,C j is defined as follows:

MC(Ci,C j) =
e(Ci,C j)

e(Ci,Ci) + e(C j,C j) + e(Ci,C j)

+

{
1
2
×

(
e(Ci,C j)

e(C j)
+

e(Ci,C j)

e(Ci)

)}
(2)

where, MC(Ci,C j) represents the micro-community close-
ness between Ci and C j, e(Ci,C j) refers to the number of
edges connecting Ci and C j, e(Ci,Ci) denotes the number of
internal edges connecting between vertices in Ci, and e(Ci)
represents the number of edges connecting Ci and the other
micro-communities. The former part of Eq. (2) evaluates
the micro-community closeness from the perspective of the
internal links, and the latter indicates it from the perspec-
tive of the external links. Thus, we can evaluate the micro-
community closeness holistically and accurately.

Figure 1 shows a small network with three micro-
communities, we use this small example to show the effec-
tiveness of Eq. (1) and Eq. (2).

In Fig. 1, the vertex sets {8, 9, 10, 14}, {7, 11, 12, 13}
and {1, 2, 3, 4, 5, 6} correspond to three different micro-
communities. The Link Strength between vertices 13 and
8 (they come from different micro-communities) should be
smaller than that of vertices 13 and 7 (they are in the same
micro-community). After calculation with Eq. (1), we get
LS(13, 8) = 0.2900, LS(13, 7) = 0.6429, LS(13, 11) =
1.1484 and LS(13, 12) = 1.0800. Obviously, this result is
in accordance with the intuitive judgment, indicating the
effectiveness of Eq. (1). We use m1, m2, m3 to denote
the micro-community {1, 2, 3, 4, 5, 6}, {7, 11, 12, 13} and
{8, 9, 10, 14}, respectively. After calculation with Eq. (2),
we get MC(m1,m2) = 1.9950, MC(m1,m3) = 1 and
MC(m2,m3) = 2.0054. This result also matches the real-
ity, i.e. the micro-community closeness between m1 and m3
should be the smallest one.

Algorithm 1. Micro-community generation
Input: G = (V, E), |V | = n, |E| = m
Output: the number of micro-communities K,

generated micro-community C1, C2, . . .Ck.
1) For each e(i, j) ∈ E
2) calculate LS (i, j) with Eq. (1);
3) End for
4) For i = 1 : n
5) For j = 1 : |Γ(i) − {i}|;
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Table 1 The characteristic and time complexity of different methods

Methods Characteristic Time complexity References

Our method Mining spanning tree O(m) −
Zhang et al Random walk O(n2 + nklogk) Zhang [24]
INFOMAP Random walk O(m) Fiscarelli [10]
Gillis et al NMF-based O(mnk) Gillis [28]
COFOGA Game theory O(nlogn) Zhou [22]
Barber et al Modularity optimization O(n3) Barber [15]
GN Betweenness centrality O(m2n) Girvan and Newman [32]
FN Modularity optimization O(n(m + n)) Newman [8]
CNM Modularity optimization o(nlog2n) Clauset [9]
ANA Mining spanning tree O(nlogn) Asmi [31]

6) If LS (i, j) = max{LS (x, y)|x = i, y = Γ(i) − {i}}
7) i, j is a dense pair, denoted as (i, j)
8) End if
9) End for
10) End for
11) G′ = (V ′, E′), V ′ ← V , E′ ← DP //DP is the set of

dense pairs.
12) Traversal G′ to get K connected components with

DFS algorithm. // DFS is the Depth-First-Search algorithm.
13) K micro-communities← K connected components

Algorithm 2. Hierarchical community detection
Input: Identified micro-community set C,

Micro-community number K.
Output: Dendrogram, including level1, level2, . . . ,

levelK .
1) For i = 1:K
2) For j = i + 1:K
3) calculate MC(Ci,C j) with Eq. (2)
4) End for
5) End for
6) level1 ← K micro-communities
7) For i=2:K
8) (Cp,Cq) ← agrmin(1/MC). // (Cp,Cq) is micro-

community pair with largest MC value.
9) leveli ← merge Cp and Cq of leveli−1

10) MC(Cp,Cq) = 0
11) End for
Algorithm 1 identifies micro-communities of social

networks, and Algorithm 2 detects hierarchical community
structure based on micro-communities identified by Algo-
rithm 1. Now, we analyze the complexity of the two algo-
rithms.

Complexity Analysis
In Algorithm 1, steps 1−3 calculate the Link Strength

between adjacent vertices, the time complexity is O(m)
where m represents the number of edges. Steps 4−10 iden-
tify dense pairs among vertices, the time complexity is also
O(m). Steps 11−13 generate micro-communities from iden-
tified dense pairs. Specifically, step 11 constructs the adja-
cency list of the graph G′ = (V ′, E′) of dense pairs. The
time complexity is O(n) where n denotes the number of ver-
tices. Steps 12−13 traverse the adjacency list of graph with
the DFS (Depth First Search) algorithm to get K connected

components, i.e. K micro-communities. The time complex-
ity is O(2n). In summary, the time complexity of Algorithm
1 is O(m) + O(m) + O(n) + O(2n). For most real-world net-
works, m > n. Therefore, the final time complexity of Algo-
rithm 1 is O(m).

In Algorithm 2, steps 1−5 calculate the micro-
community closeness, the time complexity is O(K2). Steps
6−11 detect the hierarchical community structure with Prim
algorithm, a typical MST construction method. In step 6,
the K micro-communities form the first level of the den-
drogram. Steps 7−11 merge two micro-communities with
largest micro-community closeness to form the higher level
community structure at each iteration. The time complex-
ity of steps 6−11 is O(K log M), where M is the number of
edges between micro-communities. In summary, the com-
plexity of Algorithm 2 is O(K2) + O(K log M) = O(K2).

The above analysis shows that the total complexity of
our proposed method is O(m) +O(K2). For most real-world
networks, K << m. Therefore, the total time complexity of
our proposed method is O(m).

The following Table 1 shows the characteristic and
time complexity of different methods, where m is the num-
ber of edges, n is the number of vertices and k is the depth of
the dendrogram. Obviously, our proposed method is more
efficient.

4. Experiments and Results

4.1 Datasets, Baseline Algorithms and Evaluation Metrics

In order to evaluate the performance of our proposed method
(named mMST in this paper), we compare it with three
typical hierarchical community detection methods. Artifi-
cial networks includes: (1) general graphs come from LFR
benchmark generator [33] which can produce the required
networks with implanted communities, and (2) a hierarchi-
cal graph provided by Arenas et al. [34], which is a simple
extension of Girvan and Newman benchmark [35]. It is true
that, the LFR generator may not produce the exactly same
artificial networks in each run even with the same parame-
ters. In order to obtain relatively accurate results, we use the
average of 50 runs as the final results.

1) Datasets. Two types of networks are used in the ex-
periments: artificial networks and real-world networks. Ta-
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Table 2 Real-world networks used in experiments

Network n m Descriptions
Karate [36] 34 78 A social network about a karate club
Book [37] 105 441 A network of books about US politics
Football [32] 115 613 Network of America football games
Call1 [38] 369 525 The first snapshot of VAST 2008
Yeast [39] 2361 6646 Network of yeast cells
Face book [40] 4039 88234 Social circles from Face book (anonymized)
Power [41] 4941 6594 Network of the Western States Power Grid
Ca-GrQc [42] 5242 14490 Collaborative networks of Arxiv General Relativity
Ca-HepTh [42] 9877 25986 Collaborative networks of Arxiv High Energy Physics Theory
Ca-HepPh [42] 12008 118505 Collaborative networks of Arxiv High Energy Physics

ble 2 shows the 10 real-world networks used in experiments,
n, m denote the number of vertices and edges, respectively.

2) Baseline algorithms. Three representative hi-
erarchical community detection methods are selected as
the baseline algorithms, including FN [8], CNM [9] and
ANA [31]. Both FN [8] and CNM [9] are typical hierarchi-
cal community detection methods based on modularity op-
timization. They regard each isolated vertex as an initial
community and merge the two communities with maximal
modularity increment in each iteration until the entire net-
work is merged into one. ANA [31] is a community detec-
tion method that constructs the minimum spanning tree from
single vertices of networks and then detects the community
structure by removing edges of the minimum spanning tree
through the pre-defined rules. The time complexity of the
FN, CNM and ANA algorithms are shown in Table 1.

3) Evaluation metrics. Three metrics are used to eval-
uate the performance of different methods, including Nor-
malized Mutual Information (NMI) [43], Modularity [35]
and running time. NMI is a widely used metric for commu-
nity detection that measures the similarity between the de-
tected community structure and the ground-truth structure.
The running time reveals the efficiency of different methods.
The average of 50 runs is regarded as the final runing time of
each method. Modularity evaluates how good the obtained
community structure is, which is defined as follow:

Q =
1

2m

∑
i, j

(
Ai j − kik j

2m

)
δ
(
ci, c j

)
(3)

In Eq. (3), Ai j denotes the element of the adjacent matrix of
the network. If vertices i and j are connected, Ai j = 1, other-
wise Ai j = 0. m refers to the edge number of the network. ki

represents the degree of vertex i, and ki =
∑

j(Ai j). ci is the
community to which vertex i is assigned. If vertices i, j be-
long to the same community, i.e. ci = c j, then δ

(
ci, c j

)
= 1,

otherwise δ
(
ci, c j

)
= 0.

4.2 Performance on Real-World Networks

Firstly, our proposed method are applied on three small
scale networks, including Karate network [36], Book net-
work [37] and Football network [32]. These three networks
have well-known community structure.

Figure 2 (a) shows the MST of Karate network con-

Fig. 2 MST and corresponding dendrogram of Karate network produced
by mMST

structed by our proposed method. Each vertex represents a
generated micro-community and the edge weight between
vertices denotes the reciprocal of the micro-community
closeness. These 8 micro-communities will be merged one
by one, according to the edge weight. The generated den-
drogram is shown in Fig. 2 (b) The 8 leaves of the dendro-
gram correspond to the 8 micro-communities of the Karate
network. Each merging of the micro-communities will form
a new hierarchy. We select the hierarchy with maximum
modularity as the final community structure. The experi-
mental results show that the 7th level has the maximal mod-
ularity, therefore, the best partition is 2 communities for
Karate network, as shown in Fig. 2 (a). This partition result
is in accordance with the ground truth community structure
of Karate network.
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Fig. 3 Dendrogram of Karate network produced by FN algorithm.

Fig. 4 MST and corresponding dendrogram of Book network produced
by mMST

Figure 3 shows the dendrogram of Karate network gen-
erated by FN method, and the lowest level corresponds to
the 34 vertices of the Karate network. The FN method
treats each network vertex as an independent community
and merges them one by one. We also select the hierarchy
with maximum modularity as the final community structure.
The experimental results show that the FN method also di-
vides the Karate network into 2 communities, matching the
real community structure. However, the dendrogram pro-
duced by FN method is more complex than that produced by
our proposed method. This is because our proposed method
takes each micro-community as an initial cluster while the
FN method treats each individual vertex as an initial clus-

Fig. 5 Dendrogram of Book network produced by FN algorithm.

Fig. 6 MST and corresponding dendrogram of Football network pro-
duced by mMST

ter. Since the number of individual vertex is much larger
than that of the micro-community, the iterations of the FN
method are much larger than that of the proposed method,
resulting in a more complex dendrogram. Obviously, the
dendrogram obtained by our method is more simple and
meaningful for understanding the hierarchical community
structure.

Figure 4 shows the MST and corresponding dendro-
gram of Book network produced by our proposed method.
As shown in Fig. 4 (a), the MST contains 16 vertices and
each vertex corresponds to a micro-community. These 16
micro-communities will be merged one by one, forming the
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Table 3 Performance of different methods on three real-world networks with ground-truth commu-
nity structure

Methods Karate Book Football
Ground-truth Community number 2 3 12

mMST 2 3 12

Identified community number
ANA 3 8 13
FN 3 4 6

CNM 3 4 7
mMST 0.973 0.972 0.853

NMI
ANA 0.64 0.474 0.887
FN 0.973 0.637 0.439

CNM 0.777 0.621 0.568
mMST 0.039 0.305 1.674

running time
ANA 1.677 6.298 4.223
FN 0.469 10.084 12.723

CNM 1.053 6.846 7.952

Table 4 Performance of different methods on seven real-world networks without ground-truth com-
munity structure

Network
mMST FN ANA CNM

Q Running time Q Running time Q Running time Q Running time
Call1 0.596 3.4566 0.568 19.246 0.112 12.551 0.552 7.683
Yeast 0.364 118.741 0.329 251.829 0.059 245.383 0.365 289.417

Face book 0.602 692.525 0.6 1990.932 0.106 905.512 0.612 1457.833
Power 0.679 1211.522 0.681 3768.249 0.129 1454.188 0.606 1977.331

Ca-GrQc 0.537 1428.961 0.513 4224.358 0.091 1678.254 0.499 2483.418
Ca-HepTh 0.437 3205.694 0.416 9359.595 0.257 5147.332 0.422 7641.845
Ca-HepPh 0.381 5894.153 0.381 15208.91 0.241 8735.225 0.351 12843.81

corresponding dendrogram (Fig. 4 (b)). The 16 leaves of the
dendrogram correspond to the 16 micro-communities. Each
merging of the micro-communities will form a new hierar-
chy. We also select the hierarchy with maximal modularity
as the optimal partition. The experimental results show that
the 14th level has the maximal modularity, which reveals a
3-communities structure, as shown in Fig. 4 (a). This parti-
tion result accurately matches the ground truth community
structure of Book network.

Figure 5 shows the dendrogram of Book network pro-
duced by FN method and the lowest level refers to the 115
vertices of Book network. The optimal partition of FN
method divides Book network into 4 communities, deviat-
ing from the well-known structure of this network. Further-
more, compared with Fig. 4 (b), the Fig. 5 is very complex
with large depth.

Figure 6 is the MST and corresponding dendrogram of
Football network generated by our proposed method. Fig-
ure 6 (a) shows 29 identified micro-communities. These 29
micro-communities will be merged one by one, forming the
corresponding dendrogram (Fig. 6 (b)). The optimal parti-
tion, i.e. the 18th hierarchy with maximal modularity, di-
vides Football network into 12 communities, in accordance
with the ground truth community structure of Football net-
work.

The above results reveal that our proposed method can
accurately identify the optimal community structure. Fur-
thermore, the obtained dendrogram is simple and intuitive,
which is meaningful to analyse the hierarchical community
structure of social networks.

Secondly, we select the dendrogram level that maxi-
mizes the modularity as the optimal partition of different
methods and further compare the performance of our mMST
with that of others. Table 3 shows the corresponding re-
sults. Compared with other three methods, our proposed
mMST method shows good NMI performance and identi-
fies the community number exactly. In addition, our method
can obtain the final results with very high efficiency.

Thirdly, our proposed method are applied on other
seven real-world networks, including Call1 [38], Yeast [39],
Face book [40], Power [41], Ca-GrQc [42], Ca-HepTh [42]
and Ca-HepPh [42]. Since the ground-truth community
structures of these seven networks are not available, we
adopt the modularity Q to evaluate the quality of detected
communities and the running time to evaluate the efficiency
of different methods. We also select the dendrogram level
that maximizes the modularity as the optimal partition of
different methods. Table 4 shows the corresponding re-
sults. Compared with other three methods, our proposed
mMST method exists good modularity Q and efficiency per-
formance in hierarchical community partition.

4.3 Performance on Artificial Networks

4.3.1 Hierarchical Artificial Network

The hierarchical artificial graph with built-in hierarchi-
cal community structure is provided by Arenas et al. [34],
which is a simple extension of Girvan and Newman
benchmark [35]. This hierarchical benchmark contains 512
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Fig. 7 NMI of different methods on the hierarchical artificial benchmark

vertices, arranged into 16 groups with 32 vertices each. The
16 groups are further ordered into 4 super-groups. In addi-
tion, each vertex has a number of K3 links with the rest of
the network (“rest” refers to the vertices that are not in the
same group or super-group). In this way, two hierarchical
levels emerge: the higher level contains 4 super-groups and
each of them has 128 vertices; the lower level contains 16
communities with 32 vertices each. In general, the build-in
hierarchy depends on the parameter K3, the mixing degree
of the four super-groups. We evaluate the NMI performance
of different methods with the variation of mixing parameter.
For each value, we build 50 realizations of the network.

Figure 7 (a) shows the corresponding results of the
higher level which contains 4 super-communities. When
K3 < 32, the 4 super-communities can be correctly iden-
tified by three methods, and our proposed method exhibits
a relatively better NMI performance. After that, the links
outside the super-community is bigger than that within the
super-community, and the 4 super-communities mixes well
with each other. Thus, the community structure of the high
level becomes unclear, leading to the degradation of NMI
performance. Figure 7 (b) shows the corresponding results
of the lower level which contains 16 communities. Our
proposed method can also obtain good performance, and
the identified community structure is close to the built-in
structure. FN and CNM methods cannot handle the fringe
vertices reasonably, and some fringe vertices are merged
into communities at the higher level, resulting in poor NMI

Fig. 8 NMI of different methods with the variation of the mixing param-
eters u

Fig. 9 Modularity of different methods with the variation of the mixing
parameters u

performance.

4.3.2 LFR Artificial Networks

The LFR benchmark generator can be defined as follows:

LFR = (n, k, kmax,Cmin,Cmax, t1, t2, u)

where, n denotes the number of vertices, i.e. network scale.
k, kmax refer to the average degree and maximum degree,
respectively. Cmin, Cmax represent the minimum and max-
imum size of communities, respectively. t1, t2 are the ex-
ponents of the power-law distributions of vertex degree and
community size, respectively. u denotes a mixing parameter
used to regulate the quality of the community structure to be
generated.

Firstly, we analyze the influences of the mixing param-
eter u on partition performance. Figure 8, Fig. 9 show the
NMI and modularity of different methods with the variation
of the mixing parameter u, respectively. The other key pa-
rameters are set as follows: n = 5000, k = 15, kmax = 50,
Cmin = 20, Cmax = 50, t1 = 2, t2 = 1. With the increas-
ing of u, the community structure of the generated artifi-
cial network becomes unclear, leading to the degradation of
NMI performance (Fig. 8) and the deterioration of modular-
ity value (Fig. 9). Compared with other three methods, our
mMST method can obtain the best NMI and modularity per-
formance for the most value of the mixing parameter u.
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Fig. 10 NMI of different methods with the variation of the network
scale n

Fig. 11 Modularity of different methods with the variation of the net-
work scale n

Fig. 12 Running time of different methods with the variation of the net-
work scale n

Secondly, we analyze the influences of the network
scale n on partition performance. Figure 10, Fig. 11 show
the NMI and modularity of different methods with the vari-
ation of the network scale n, respectively. The other key
parameters are set as follows: k = 15, kmax = 50, Cmin = 20,
Cmax = 50, u = 0.05, t1 = 2, t2 = 1. With the increas-
ing of the network scale n, our proposed method shows the
best NMI performance. mMST also exhibits competitive
modularity performance as that of FN and CNM. We fur-
ther record the running time of different methods with the
variation the network scale n, and Fig. 12 shows the corre-

sponding results. Each point denotes the average of 50 times
runs. Compared with other three methods, the curve of our
proposed method rises more slowly with the increasing of n,
indicating a high partition efficiency.

5. Conclusion

Many social networks exhibit a natural hierarchical com-
munity structure. Most traditional methods need some pre-
defined parameters, and the obtained dendrograms are ex-
tremely complex to understand and analyze. In the pa-
per, we propose a novel hierarchical community detection
method based on micro-community and minimum spanning
tree. The proposed method calculates the link strength of
adjacent vertices and then generates micro-communities.
Minimum spanning tree is constructed from these gener-
ated micro-communities by linking one by one. The link-
ing order will reveal the nest structure of these micro-
communities. We applied our proposed method on synthetic
and real-world networks. Compared with other state-of-
the-art methods, our proposed method exhibits good accu-
racy and efficiency performance. In addition, our proposed
method does not require any pre-defined parameters, and the
output dendrogram is very intuitively for understanding and
analyzing.

Our proposed method mainly concentrates on the undi-
rected and unweighted networks. In the future, we will fur-
ther investigate directed networks and weighted networks.
What’s more, Hadoop or Spark will be adopted for paral-
lel processing to achieve better performance, especially for
large scale networks.
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