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PAPER

Discriminative Learning of Filterbank Layer within Deep Neural
Network Based Speech Recognition for Speaker Adaptation

Hiroshi SEKI†a), Nonmember, Kazumasa YAMAMOTO††, Tomoyosi AKIBA†, Members,
and Seiichi NAKAGAWA†,††, Fellow

SUMMARY Deep neural networks (DNNs) have achieved significant
success in the field of automatic speech recognition. One main advan-
tage of DNNs is automatic feature extraction without human interven-
tion. However, adaptation under limited available data remains a major
challenge for DNN-based systems because of their enormous free param-
eters. In this paper, we propose a filterbank-incorporated DNN that in-
corporates a filterbank layer that presents the filter shape/center frequency
and a DNN-based acoustic model. The filterbank layer and the following
networks of the proposed model are trained jointly by exploiting the ad-
vantages of the hierarchical feature extraction, while most systems use pre-
defined mel-scale filterbank features as input acoustic features to DNNs.
Filters in the filterbank layer are parameterized to represent speaker char-
acteristics while minimizing a number of parameters. The optimization
of one type of parameters corresponds to the Vocal Tract Length Normal-
ization (VTLN), and another type corresponds to feature-space Maximum
Linear Likelihood Regression (fMLLR) and feature-space Discriminative
Linear Regression (fDLR). Since the filterbank layer consists of just a
few parameters, it is advantageous in adaptation under limited available
data. In the experiment, filterbank-incorporated DNNs showed effective-
ness in speaker/gender adaptations under limited adaptation data. Exper-
imental results on CSJ task demonstrate that the adaptation of proposed
model showed 5.8% word error reduction ratio with 10 utterances against
the un-adapted model.
key words: speech recognition, deep neural network, acoustic model,
speaker adaptation, filterbank learning

1. Introduction

In recent years, deep neural networks (DNNs) have been ap-
plied to automatic speech recognition (DNN-HMM; deep-
neural-network hidden Markov models) and have outper-
formed conventional Gaussian mixture model (GMM) based
methods [1]. One main advantage of DNNs is a hierarchical
non-linear feature extraction under a simple objective func-
tion. Exploiting this property, some recent novel approaches
focus on front-end learning based on DNNs that take low-
level acoustic features [2]–[6]. Sainath et al. [2] and Sailor
et al. [3] proposed an end-to-end model that uses waveform
and performs frequency analysis. These studies reported
that some of the learned characteristics showed a similar-
ity with human auditory characteristics and traditional re-

Manuscript received July 13, 2018.
Manuscript revised October 2, 2018.
Manuscript publicized November 7, 2018.
†The authors are with the Department of Computer Science

and Engineering, Toyohashi University of Technology, Toyohashi-
shi, 441–8580 Japan.
††The author is with the Department of Computer Science,

Chubu University, Kasugai-shi, 487–8501 Japan.
a) E-mail: seki@nlp.cs.tut.ac.jp

DOI: 10.1587/transinf.2018EDP7252

fined hand-crafted feature extractors [2], [3]. In addition,
Sailor et al. [3] investigated the difference of center frequen-
cies among models that were trained by both clean and noisy
speech. They reported that the center frequency of learned
filters do not show consistency between clean speech and
noisy speech, suggesting that the optimal properties of fil-
terbanks depend on the task and target environments. Zhu et
al. [4] also presented a model to learn features directly from
waveforms and performed convolution operations with sev-
eral types of window sizes and stride parameters to push past
the inherent trade-off between temporal and frequency res-
olutions. These DNN-based systems eliminate the feature
extraction stage and significantly improve the recognition
performance.

Earlier works reported the difference of filter charac-
teristics caused by the condition of training data. However,
since a system can not identify varying test speaker and test
environment in advance, there is a mismatch between input
test speech and learned model which causes performance
reduction. Therefore, adaptation remains a major challenge
for DNN-based systems, which must alleviate the mismatch
and recover recognition performance. In practical use, it is
preferable for low-level feature extractor to track various test
conditions. To adapt DNNs, model adaptation techniques
re-estimate the model parameters based on the test data. In
this scenario, the trade-off between the size of the adapta-
tion data and the number of parameters becomes a critical
problem. In other words, too many parameters cause poor
generalization and overfitting to the given data if the avail-
able adaptation data are limited.

In contrast to DNNs, a physiologically motivated
model is composed of a small number of parameters. There-
fore, a physiologically motivated model is advantageous in
model adaptation under limited adaptation data. Further-
more, introducing restrictions resulting from a physiologi-
cally motivated model protects the (introduced) filterbank
layer from extreme deterioration. Previously, we proposed
a filterbank-incorporated DNN with a Gaussian filterbank
layer at DNN’s bottom and evaluated the effectiveness of our
proposed model as a data-driven filterbank learning tech-
nique [7].

In this paper, we evaluate the adaptation of a filterbank-
incorporated DNN. Since the filterbank layer that presents
the filter shape/center frequency consists of a small number
of parameters, a filterbank-incorporated DNN is effective in
regards to adaptation with limited available data. The fol-
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lowings are the contributions of this work:

(i) proposed a filterbank-incorporated DNN;
(ii) evaluated our proposed model for speaker/gender adap-

tation and compared various filter types;
(iii) discussed the relation between the physical character-

istics of vocal tracts and optimal filterbanks from an
engineering viewpoint.

The rest of the paper is organized as follows. We first
review related works on adaptation techniques and data-
driven filterbank learning techniques in Sect. 2. Next, we
introduce our framework of a filterbank-incorporated DNN
in Sect. 3. Experiments are conducted in Sect. 4, followed
by a conclusion and future work in Sect. 5.

2. Review of Adaptation Technique and Related Works

In this section, we first summarize feature adaptation and
model adaptation techniques in Sect. 2.1. We also discuss
the introduced constraints for some adaptation techniques
from the viewpoint of matrix multiplication and present
data-driven filterbank learning methods in Sect. 2.2.

2.1 Adaptation Techniques and Introduced Constraints

Adaptation techniques can be roughly classified into three
types: feature adaptation, model adaptation, and addition of
auxiliary features [8]–[10]†. In this section, we summarize
feature adaptation and model adaptation techniques that are
related to our proposed filterbank-incorporated DNN.

Feature adaptation techniques are used to adapt the in-
put acoustic features to the DNN-HMM system independent
from the DNN. fMLLR [11], VTLN [12], and Maximum
Likelihood Linear Transforms (MLLT) + Linear Discrimi-
nant Analysis (LDA) [13] are used to adapt the acoustic fea-
tures that support the performance improvement of DNN-
based systems, and Seide et al. [14] concluded that DNNs
can subsume much of the VTLN gain. Feature adaptation
methods factorize speech recognition tasks into several in-
dependent sub-tasks. Therefore, the feature adaptation cri-
terion is different from other parts of DNN.

Model adaptation is a promising method to adapt a
DNN that updates its parameters given the adaptation data.
For model adaptation, structural changes and parameter re-
strictions are introduced to robustly learn a speaker specific
transformation using short samples from the target speaker.
Neto et al. and Bo et al. presented a Linear Input Net-
work (LIN) that restricts the adapting layer to the input
layer [15], [16]. The same idea is also applicable to other
layers: Linear Hidden Network (LHN) and Linear Output
Network (LON). The computation of each layer consists of
a matrix multiplication and a non-linear transformation. The
singular value decomposition (SVD) replaces the matrix to

†The distinction between model adaptation and feature adapta-
tion is getting blurry. Adaptation of denoising auto-encoder can be
regarded as both feature adaptation and model adaptation.

the product of two low ranked matrices. The SVD-based pa-
rameter reduction showed effective adaptation [17]. Swieto-
janski et al. [18] presented an approach that adapted hidden
units called learning hidden unit contributions (LHUCs),
which directly rescale the amplitude of the hidden units.
Zhao et al. [19] presented an adaptation method to adapt the
node activation function. LHUC and the adaptation of the
node activation function also resemble a matrix multiplica-
tion of a diagonal matrix. In the particular case of feed-
forward DNNs, the neighboring frames of the acoustic fea-
tures are concatenated to take the context information into
account that contributes to the senone classification. Focus-
ing on such stacked frames, Seide et al. [14] inserted a linear
layer that is tied across neighboring frames (fDLR; feature-
space discriminative linear regression). In the model adap-
tation, a large number of parameters must be trained without
causing any overfitting. Yu et al. [20] presented a Kullback-
Leibler divergence-based regularization to address this con-
cern. Such model adaptation techniques only focus on the
reduction of free parameters. However, we must consider
expressiveness against the total free parameters for adapta-
tion under limited available data.

Several model adaptation techniques can be regarded
as matrix multiplications. Figure 1 summarizes the rela-
tion among adaptation methods and introduced restrictions
to the matrix. LIN inserts a matrix at the bottom of the
DNN without any restrictions that resembles a fully con-
nected layer. fDLR introduces a restriction where the ma-
trix is a block-diagonal type and the block is shared across
the diagonal. Therefore, frame-based transformation is car-
ried out for each frame. Likewise, VTLN is regarded as a
transformation by a tri-diagonal matrix, even though it is not
adapted under the backpropagation framework [21]. LHUC
is also regarded as a matrix multiplication by introducing a
restriction under which the matrix takes a diagonal matrix.
From these results, LHUC’s expressiveness is included in

Fig. 1 Relations among adaptation methods and introduced restrictions:
LIN inserts a matrix A without adaptation. Here, the input is composed of
four frames. fDLR introduces a restriction with a block-diagonal matrix
and the block is shared across the diagonal (At = At∗ = · · · ). VTLN and
LHUC are regarded as a matrix multiplication with tridiagonal and diagonal
matrices, respectively.
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the fDLR, which is again included in the LIN. The cate-
gorization of the feature transformations, which are based
on the considerations of the Spectro-Temporal domain, was
previously discussed [22].

Some studies reported an acoustic model based on con-
volutional neural networks (CNNs) [23]. A convolution op-
eration focuses on the small localized regions of the in-
put speech, unlike the fully connected layer. In addition,
weight sharing significantly reduces the number of parame-
ters. Kaneyama et al. [24] proposed a method to apply con-
volutional filters that follows a Gabor function for image
texture classification. CNN’s success shows that the intro-
duction of structural restrictions are critical to capture lo-
cally invariant features and further improve the performance
even though fully connected neural networks include CNN
capability.

Other studies reported methods that represent speaker
characteristics as a combination of the components of bases.
Cluster adaptive training (CAT) combines multiple weight
matrices using an interpolation vector to form one final
DNN layer [25]. In the adaptation stage, the interpolation
vector is updated while maintaining the weight matrices.
The Factorized Hidden Layer (FHL) approach resembles
CAT [26]. In FHL, the interpolation vector is shared among
several layers and initialized by an i-vector. By introducing
an interpolation vector, these studies separate speaker and
phone spaces for efficient adaptations. CAT and FHL only
adapt the interpolation vector, and robust adaptation is guar-
anteed only within the range that covered by training data.

2.2 Filterbank Learning

Finding an optimal filterbank is an important topic not only
for speech recognition but also for speaker recognition, di-
alization, and event detection. Several studies proposed
methods based on heuristic search algorithms. Pinheiro et
al. [27] proposed a scheme to find the best filterbank con-
figuration using an Artificial Bee Colony (ABC) algorithm
for speaker verification. Charbuillet et al. [28] proposed an
method to search for optimal center frequency and band-
width based on genetic algorithms. These heuristic search
algorithms independently repeat both the selection and eval-
uation stages. Several studies proposed methods that intro-
duce objective functions. Kobayashi et al. [29] and Burget et
al. [30] proposed methods based on a dimensionality reduc-
tion technique, and Suh et al. [31] proposed a method that
measures filterbank properties derived from the Kullback-
Leibler (KL)-divergence among filters. Recently, hierarchi-
cal feature extraction based on deep neural networks has be-
come a topic of interest in classification tasks [6]. Sainath et
al. [2] presented a method to apply convolution over a raw
time-domain waveform. Sailor et al. [3] proposed a method
based on a convolutional Restricted Boltzmann Machine
that uses a raw time-domain waveform. Tokozume et al. [32]
presented an end-to-end convolutional neural network for
environmental sound classification. Su et al. [33] further in-
troduced an event-specific Gaussian filterbank layer to han-

dle different temporal properties of audio events. In this pa-
per, we propose a novel approach to train and adapt filter-
bank based on DNN.

3. Discriminative Learning of a Filterbank Llayer

In this section, we first introduce neural network-based fil-
terbank weighting, Gaussian filter and Gammatone filter,
and compare with a conventional method, triangular filter,
in Sect. 3.1.1. Next, we present a procedure to train our pro-
posed model in Sect. 3.2, and summarize the advantages of
our proposed methods in Sect. 3.3. Finally, we present a pro-
cedure to adapt our proposed model and compared methods
(LHUC and SVD) in Sect. 3.4.

3.1 Incorporation of a Filterbank Layer

3.1.1 Triangular Filterbank

Filterbank feature is calculated by weighing spectra of
speech waveform using triangular filterbank. The vertex
of triangles is configured according to the mel-scale which
models non-linear sensitivity of human perception. The
mel-scale is defined as follows:

p( f ) = 1127.0 ln

(
f

700.0
+ 1.0

)
(1)

where f is linear frequency and p( f ) is mel-scale frequency.
The pre-defined configuration of filterbank is unchanged at
all times.

3.1.2 Gaussian Filterbank

Log mel-scale filterbank features are computed by applying
filterbank weighting to the spectra. In general, hand-crafted
triangular filters are used as filter shapes. However, this tri-
angular filter is not differentiable and cannot be incorporated
into a scheme of a backpropagation algorithm. To parameta-
rize the filter, Biem et al. modeled its shape as a Gaussian
function [34]:

θn( f ) = ϕn exp
{
−βn(p(γn) − p( f ))2

}
, (2)

where θn( f ) is an n-th filter at frequency f . ϕn is a gain
parameter, βn is a bandwidth parameter, and γn is a center
frequency. Function p(·) maps linear frequency f to the mel-
scale. Three trainable parameters, ϕn, βn, and γn, control the
filter shape. Figure 2 visualizes the role of three parameters.
A change of the gain parameter scales the magnitude of the
filterbank features. This function is also realized by the ad-
justed weight in the following layer. A change of the center
frequency parameter shifts the region of the power spectra
on which the filter is focused. A change of the bandwidth
parameter enlarges the power spectra region on which the
filter is focused. A set of Gaussian filters can be regarded
as a neural network layer that maintains a function of fre-
quency domain smoothing.
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Fig. 2 Roles of parameter changes, gain, center frequency, and band-
width. The x- and y-axis of each subfigure are power spectra and corre-
sponding amplitude. The red line represents an initial filter shape, and the
green line represents the filter shape after adaptation.

Fig. 3 Overview of Gaussian-filterbank-incorporated DNN: Filterbank
weighting is performed at DNN’s bottom. Horizontal axis is for the fre-
quency bin, and vertical axis is for the power spectrum. In the experiment,
input power spectra are concatenated from several consecutive frames
(depth).

Figure 3 shows an overview of the Gaussian filterbank-
incorporated DNN. Power spectra at frame t, xt( f ), are con-
catenated from several consecutive frames and fed into the
filterbank layer. These features are multiplied by the corre-
sponding filter gain by Eq. (2) and summed across the fre-
quency bin. Then applying a log-compression gives the fol-
lowing neural-network-based log mel-scale filterbank fea-
tures:

ht,n = log

⎛⎜⎜⎜⎜⎜⎜⎝
∑

f

θn( f )xt( f )

⎞⎟⎟⎟⎟⎟⎟⎠ (3)

ht = [ht,1, ht,2, . . . , ht,n, . . . , ht,N] (4)

where N is the number of filters and t is the frame index.
For the training of feedforward DNN, ht with consecutive
±c frame features, [ht−c, . . . ,ht, . . . ,ht+c], are fed into the
following layer to compute the posterior probability of the
triphone states [7]. We call this architecture Gaussian filter-
bank incorporated DNN (GFDNN).

3.1.3 Gammatone Filterbank

In this framework, arbitrary differentiable filter functions
can be used as a filter shape. To compare the recognition
performance among filter types, we also used a Gammatone
filter, which is a widely used model as an auditory filter [35].
A Gammatone filter is modeled as

gn(t) = cnta−1 exp(−2πbnt) cos(2π f0(n)t + ζn), (5)

where cn is a constant value, ζn is a phase, a is an order, bn

is a temporal decay, and f0(n) is a center frequency. Equa-
tions (6) and (7) are obtained by applying the Fourier trans-
form to Eq. (5):

Hn( f ) =
cn

2
(a − 1)!(2πbn)−a

{
e(iζn)

[
1 +

i( f − f0(n))
bn

]−a

+ e(−iζn)

[
1 +

i( f + f0(n))
bn

]−a}

(6)

θn( f ) = |Hn( f )|2 ∼ k2
n⎧⎪⎪⎨⎪⎪⎩

[
1 +

( f − f0(n))2

b2
n

]−a

+

[
1 +

( f + f0(n))2

b2
n

]−a⎫⎪⎪⎬⎪⎪⎭ ,
(7)

where

a = 4 (8)

kn =
cn

2
(a − 1)!(2πbn)−a (9)

ζn( f ) = tan−1

{ −2 f0(n)bn

b2
n + ( f 2 − f0(n)2)

}
. (10)

The followings are the trainable parameters: kn (gain), f0(n)
(center frequency), and bn (temporal decay). In the experi-
ment, the initial values of f0(n) and bn are set [36], [37]:

f0(n) = −η + ( fmax + η) exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n log fmin+η

fmax+η

N

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (11)

bn = 1.019 × 24.7 ×
(

f0(n) × 4.37
100
+ 1

)
(12)

η = 228.83, (13)

where n is an index of the filters, N is the total number of
filters, and fmin (in Hz) and fmax (in Hz) are the lowest and
highest cutoff frequencies of the filterbank, respectively. As
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seen in Eq. (7), the Gammatone filter takes a line asymmet-
ric curve. Mitra et al. reported the effectiveness of Gam-
matone filterbank features for DNN acoustic model in noisy
condition (Note that our experimental condition is clean en-
vironment) [38]. The Gammatone filterbank incorporated
DNN (GtFDNN) without update of filterbank corresponds
to the DNN with Gammatone filterbank features.

3.1.4 Exponential Filterbank

Sainath et al. [39] proposed a method to jointly train a fil-
terbank layer and the following networks under a restriction
where the elements of the filters take positive values by in-
troducing the exponential of weights (Exponential filterbank
incorporated DNN; ExpFDNN):

ht,n = exp (wn)xt =
∑

f

exp (wn( f ))xt( f ), (14)

where n is a filter index, f is a frequency bin, wn is a weight
vector of n, and x( f ) are power spectra. However, this weak
restriction does not explicitly give a smoothing function,
which is the original purpose of a hand-crafted triangular
filterbank. In other words, the parameters of the filterbank
layer overfit the given data and the shape of the filters leads
to multiple peaks. Figure 4 shows an example of the actual
filter shapes that were fine-tuned in the experiment. This
ExpFDNN characteristic could becomes a disadvantage in
adaptation. Therefore, we also trained this model for com-
parison.

3.2 Training Procedure

The filterbank layer parameters were trained by backpropa-
gation. The update rule of ϕn, for example, is as follows:

ϕnew
n = ϕold

n − η
∂L
∂ϕn

(15)

= ϕold
n − η

∂L
∂hn

∂hn

∂ϕn
, (16)

Fig. 4 Example of actual filter shapes that were fine-tuned in the exper-
iment. Blue double line shows conventional triangular filter. Green dotted
line is a Gaussian filter, and red bold line is an exponential filter.

where L is an objective function and η is the learning rate.
Other parameters, βn, γn (for GFDNN), k, f0, and b (for
GtFDNN), are updated in the same manner. The models are
trained in two stages. First, except for the filterbank layer,
the DNN is fine-tuned until a convergence criterion is met.
Then the filterbank layer and the following DNN are trained
jointly with the same initial learning rate.

3.3 Characteristics of Filterbank-Incorporated DNN

The filterbank-incorporated DNN has some advantages
compared with earlier studies.

• The proposed method can compute neural network-
based log mel-scale filterbank features.
• Unlike the fully connected layer, the proposed system

performs framewise transformation. Each filter takes a
certain portion of the power spectra. The initial cen-
ter frequency and bandwidth values are described in
Sect. 4.1.2.
• An adjustment of the gain parameter corresponds to

fMLLR [40]. An adjustment of the center frequency
parameter corresponds to VTLN [41] by regarding the
frequency shift as frequency warping. In summary,
our proposed system has fMLLR and VTLN capabil-
ity while minimizing the number of free parameters.
• The shapes of the filters are adapted in a discriminative

manner using backpropagation.
• The filterbank layer, which consists of a small number

of parameters, is effective for adaptation under limited
available data while fully neural network based archi-
tecture suffers from the overfitting problem (e.g. time-
domain convolution layer in [2] has 16,000 parame-
ters).

We considered whether there is a relation between the
learned center frequencies and the vocal tract length. A vo-
cal tract’s average length depends on gender and age. The
average length of the vocal tracts of Japanese adult males
and females is 17.0 cm and 15.0 cm, respectively. The aver-
age length of the vocal tracts of children is 9.0 cm [42]. The-
oretically, the spectra of female speakers shift to an approx-
imately 11.8% (15.0/17.0) higher frequency domain from
that of male speakers due to the differences of vocal tract
length. Therefore, we assume that the center frequencies of
the filterbank layer shift to a 11.8% higher frequency do-
main by adapting a filterbank layer of a male-specific DNN
using female speech data†.

3.4 Adaptation of Proposed and Compared Methods

In the experiment, we conducted supervised adaptation
to evaluate the effectiveness of the filterbank-incorporated
DNNs. During adaptation, the parameters of the filterbank

†The shift (warping) of frequencies in VLTN is also accom-
plished by the adjustment of channel gains. The function of VTLN
is executed by both shift of center frequencies and scale of filter
gains.
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Table 1 Comparison of number of parameters updated in adaptation.

Target of adaptation Parameters
GFDNN 120
GtFDNN 120

ExpFDNN 10,240
fDLR 1,600
LHUC 2,048
SVD 420

layer that present the filter shape/center frequency are up-
dated to minimize the cross-entropy loss function at the level
of the triphone states. During the adaptation of GFDNN,
GtFDNN, fDLR, and ExpFDNN, the bottom layers of the
models were updated. Table 1 summarizes the number of
parameters that were updated in the model adaptation. The
dimension of power spectra and filterbank feature are set
to 256 and 40 respectively. The number of parameters for
GFDNN and GtFDNN was 120 (40 filters × 3 parameters).

We also used LHUC- and SVD-based adaptation in our
experiment for comparison.

3.4.1 LHUC

The LHUC rescales the hidden units of the l-th layer as fol-
lowing equation:

hl
j = 2σ(rl,s

j ) · ψ(wl
jh

l−1 + bl
j), (17)

where j is an index of the units, wl
j is a weight vector,

and ψ(·l) computes the l-th hidden units. They are rescaled
by applying element-wise multiplication with σ(·) rang-
ing from 0.0 to 1.0. Variables rl,s

j are optimized by each
speaker s.

3.4.2 SVD

The SVD was applied to the matrix of l-th hidden layer:

wl
m,n = Ul

m,nΣ
l
n,n(Vl

n,n)T (18)

≈ Ul
m,kΣ

l
k,k(VT

n,k)T (19)

where Σ is a diagonal matrix of singular values, and sub-
script is the size of matrix. Adaptation of decomposed di-
agonal matrix and further selection of k singular values de-
crease the number of free parameters. The singular values
in the diagonal matrix, Σl

k,k, were updated in the experiment.

4. Experiments

4.1 Experimental Setup

4.1.1 Corpora

The details of the Corpus of Spontaneous Japanese
(CSJ) [43] are shown in Table 2. It consists of 186 hours of
speech of male speakers (SM) and 42 hours of speech of fe-
male speakers (SF). We used an attached evaluation set-2 for

Table 2 Details of CSJ corpus.

Gender Male (SM) Female (SF)

Train
Lectures 787 166

Data 186 hours 42 hours

Test
Lectures 5 5

Data 1.0 hours 0.9 hours

the evaluation that consists of five male speakers and five fe-
male speakers. We used all utterances of the evaluation set-2
as test data for speaker-independent experiment and gender
adaptation experiment. In case of speaker-independent ex-
periment, we trained SM-specific, SF-specific, and gender
independent models and tested the models using the gen-
der matched test data. In case of gender adaptation experi-
ment, we adapted the SM-specific models using the training
data of female speakers, and tested the models using female
speakers in the evaluation set-2. In case of speaker adap-
tation experiment, we assigned 20 utterances to the adap-
tation data and 40 utterances to the test data. The SM-
specific models were trained by male speakers and they were
adapted/tested by 5 male speakers in the evaluation set-2.

The speech was analyzed using a 25-ms Hamming win-
dow with a pre-emphasis coefficient of 0.97 and shifted with
a 10-ms frame advance.

4.1.2 Acoustic Model

We built a hybrid DNN-HMM system. For an experiment
of speaker and gender adaptations, we implemented some
regular model adaptation techniques. The following is the
experimental setup of GMM-HMM and DNN:

GMM-HMM
To obtain the training target labels for DNNs, GMM-
HMMs are trained using a corpus of SM, SF, and SM
plus SF (mixed). The models are trained on standard
MFCC features. The senones of SM, SF, and SM plus
SF are 4783, 4860, and 5023, respectively. Corre-
sponding GMM-HMMs are used for forced alignment.

Baseline DNN (Triangle filterbank)
As a baseline system, we trained a fully connected
DNN, which has five hidden layers with 2,048 rectified
linear units [44]. Its input is 11 consecutive frames of
40-dimensional log mel-scale triangle-shape filterbank
features extracted using the Hidden Markov Model
Toolkit (HTK) [45]. The features are normalized to
zero mean and unit variance. Due to the fixed and un-
differentiable shape of the triangular filters, the filter
shapes are unchanged at all times.

Gaussian filterbank incorporated DNN (GFDNN)
The Gaussian filterbank layer (Eq. (3)) was inserted
into the bottom of the baseline DNN (Fig. 3). Its input
was 11 consecutive frames of 256-dimensional power
spectra. The number of filters was set to 40, which
is the same as the baseline system (n = 1, 2, . . . , 40).
The initial values of the gain parameter were set to 1.0.
The center frequencies were spaced equally along the
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Table 3 WERs [%] of baseline DNN and filterbank-incorporated DNNs.

System
WER [%]

SM SF Ave. SM+SF

Baseline (Triangle) 12.4 20.4 16.4 13.4
GFDNN (fixed) 12.4 18.8 15.6 12.5

GFDNN (trained) 12.5 19.0 15.8 12.9
GtFDNN (fixed) 12.1 16.3 14.2 12.6

GtFDNN (trained) 12.1 15.9 14.0 12.6
ExpFDNN 12.3 17.0 14.7 12.9

mel-scale. The bandwidths were set so that the two-
sigma range equals the corresponding bandwidth of the
mel-scale filterbank. At the Gaussian filterbank layer,
120 parameters, which consist of ϕ (gains), γ (center
frequencies), and β (bandwidths), were updated using
backpropagation.

Gammatone filterbank incorporated DNN (GtFDNN)
The Gammatone filterbank layer (Eq. (7)) was inserted
into the bottom of the baseline DNN. The initial val-
ues were set according to Eqs. (11), (12), and (13). The
other setup is the same as GFDNN. At the Gamma-
tone filterbank layer, 120 parameters were updated us-
ing backpropagation.

ExpFDNN
A DNN with an exponential filterbank layer [39] was
trained for comparison. The initial values of the filter-
bank layer were set similar to the triangular filterbank.
At the filterbank layer, 10,240 parameters (256 fre-
quency bins of 40 filters) are updated using backprop-
agation. The other setup is identical as the GFDNN.

feature-space disctiminative linear regression (fDLR)
A linear layer was inserted into the bottom of the net-
work for the baseline DNN, and it was inserted after the
filterbank layer for the GtFDNN. The identity matrix
was 40 by 40.

Learning hidden unit contribution (LHUC)
To adapt the models, we rescaled the hidden units us-
ing LHUC. In the experiment, the hidden units of the
third layer were adapted which showed the best perfor-
mance in the preliminary experiment. The number of
parameters was 2,048.

Singular value decomposition (SVD)
We applied SVD on the 1st fully connected layer and
kept top 420 singular values. These values were de-
cided from the best performance.

Comparative adaptation methods, fDLR, LHUC, and
SVD, are applicable to GtFDNN since the training of fil-
terbank layer and adaptation of hidden layer is indepen-
dent. Therefore, we applied comparative speaker adapta-
tion methods on baseline (triangular shape filter) DNN and
GtFDNN. Filterbank layer was un-adapted when the com-
parative methods are applied to GtFDNN.

We used Chainer [46] for training the DNNs. The
models were trained using Adam [47] with batch normal-
ization [48]. The 1% of the training data was used for the
model selection. For training the GFDNN and GtFDNN, we
first trained the DNN while fixing the filterbank parameters.

Hereinafter, we refer to this model as a fixed model. Next,
we trained the DNNs with a filterbank layer. Hereinafter,
we refer to this model as a trained model. We followed the
existing Kaldi recipe [49] for training GMM-HMM and de-
coding.

4.2 Results

4.2.1 Speaker Independent Model

The performance of the speaker-independent models are
shown in Table 3. The baseline gender independent DNN,
which takes triangular filterbanks, achieved an average
WER of 13.4%. When we focus on the baseline models
and the fixed (untrained) models, the latter outperformed the
baseline models in all cases, even though the filter shape is
the only difference between the two models. This differ-
ence changes the coverage of the frequency bin. The Gaus-
sian and Gammatone filters focus on all the frequency bins
while the baseline triangular filter zeroes out the frequency
bins outside a certain bin distance. These results comparing
fixed and baseline model show the importance of refined
acoustic features. Mitra et al. also investigated the effec-
tiveness of robust features for DNN including Gammatone
filterbank [38]. The performance improvement of the fixed
models correspond with their results. The Gammatone filter
is widely used as an auditory filter. However, the difference
between filter types did not show any performance gain.

In comparison with the fixed models, the trained mod-
els did not show performance improvement. We considered
that the difference of optimal center frequencies between
male and female speakers made it difficult to learn univer-
sal center frequencies for both male and female speakers. In
the following experiment, we only present the results of the
trained models.

4.2.2 Gender Adaptation

In this section, we performed gender adaptation from SM to
SF as shown in Table 4 to confirm the presence of the filters’
shift to alleviate the vocal tract length. The first column is
the duration of SF speech for adaptation. The row of 0 ut-
terance is the WERs of the model without adaptation. The
WERs of SM specific GFDNN and GtFDNN were worse
at 26.8% and 24.4%, due to the gender mismatched condi-
tion. For evaluations of 10 and 20 utterances, 60 utterances
in Table 4 were split into six or three folds, and averaged
to alleviate any selection bias. In the scenario of limited
adaptation data, the best performance was obtained when
we adapted the filterbank layer of GFDNN. We considered
that the focus on filter adaptation worked on the alleviation
of gender mismatch effectively while discarding other mis-
matched conditions that are difficult to adapt under limited
data. When the adaptation data increased to 0.5 hour and
more, the best model was replaced by LHUC which has
larger free parameters.

By adapting GFDNN from SM to SF, we considered
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Table 4 WERs [%] of gender adaptation from adult male speakers to adult female speakers. Bold is
the best performance among models.

Adaptation data # speakers
GFDNN GtFDNN Baseline DNN (Triangle) ExpFDNN
filterbank filterbank fDLR LHUC SVD fDLR LHUC SVD filterbank

0.0 h 0 26.8 24.4 24.4 24.4 28.2 26.5 26.5 26.5 25.2
0.02 h (72 seconds) 20 22.3 22.7 23.3 22.9 28.2 26.0 32.8 28.6 23.6

0.03 h (108 seconds) 30 18.9 20.1 22.0 20.9 27.2 27.1 32.2 28.2 20.4
0.1 h (360 seconds) 51 16.4 16.5 17.8 20.3 22.3 19.1 31.8 23.7 17.2

0.5 h (1800 seconds) 166 15.7 14.9 17.0 13.9 18.2 17.4 31.2 18.2 15.7
1.0 h 166 15.4 15.4 16.5 13.8 14.6 19.4 31.6 16.2 14.1
10.0 h 166 14.9 15.6 16.1 14.2 14.3 16.6 31.2 14.3 14.6
30.0 h 166 15.0 15.2 16.1 13.6 14.0 16.6 31.4 14.1 14.7

Fig. 5 Changes of gain parameters from SM-specific model (SM) to SF-adapted model and averaged
Gaussian filterbank features of SM- and SF-speakers.

Table 5 Shift of center frequencies [Hz] caused by gender adaptation
from SM to SF speakers using 10 hours of data. SM → SF shows center
frequencies of unadapted and adapted models. SF column shows center
frequencies of SF-specific model trained using SF speech data.

SM→ SF SF

n
Before

Adaptation
After

Adaptation Difference -
6 315.8 369.7 54.1 (17.2%) 310.5
7 382.6 438.1 55.5 (14.5%) 374.3
8 449.4 508.1 58.7 (13.1%) 439.3
9 530.6 592.0 61.4 (11.6%) 524.3
10 597.2 669.0 71.8 (12.0%) 589.5
11 701.1 741.1 39.9 (5.7%) 687.1
12 783.9 912.9 129.1 (16.5%) 783.7
13 866.1 976.1 110.0 (12.7%) 874.9
14 953.6 1033.9 80.4 (8.4%) 965.4
15 1055.1 1103.9 48.7 (4.6%) 1061.5

that the frequency shift of the filters are caused by the differ-
ences of the vocal tract lengths. Table 5 shows the relation
among the center frequencies of SM-dependent GFDNN,
adapted GFDNN from SM to SF using 10 hours of data, and
SF-dependent GFDNN. Theoretically, an ideal frequency
shift is approximately 11.8%, as described in Sect. 3.3.
The column of difference shows the actual shift was ap-
proximately 4.6% to 17.2%, which resembles the theoret-
ical value at low- and middle-frequency region (300Hz ∼
1000Hz). These results show that the optimization of the
filterbank layer causes a shift of the center frequencies to
discriminatively perform frequency warping. This charac-
teristic corresponds to the VTLN function.

The last column of Table 5, SF, shows the center fre-
quencies of the SF-dependent GFDNN. When we focus on
the SM- and SF-dependent GFDNNs, the relation between
the two models cannot be observed in the experiment. In-
stead, the learned center frequencies based on SF speakers
showed lower frequencies than those of the SM speakers at
n = 6 ∼ 12 because the optimal position of the filters in
the training stage depends of the condition of the following
DNN. However, in the adaptation stage, the filterbank layer
was updated, and the parameters of the following DNN were
fixed. In this situation, the filterbank layer can be handled
independently of the following DNN to perform frequency
warping.

Figure 5 shows the gender-dependent Gaussian filter-
bank features and the change of gain parameters. The
square markers and diamond markers show the Gaussian
filterbank features of SM and SF speakers, respectively.
The triangle markers show the SM-dependent features with
horizontal shifting according to the change of center fre-
quencies caused by gender adaptation to SF-speakers from
SM-speakers. We can see that the features of SM at low-
frequency region shifted toward the ones of SF speakers.
Next, the change of gain parameters are depicted at the
right vertical axis. To emphasize the conspicuous change of
gains, their relative changes are plotted with circle markers
by computing log(gains of SF/gains of SM). In the low-
frequency region, the change of gain was relatively small
while the shift of center frequency was remarkable. Con-
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Table 6 WERs [%] of the triphone level supervised speaker adaptation. Bold is the best performance
among models.

#utt
GFDNN GtFDNN Baseline DNN (Triangle) ExpFDNN
filterbank filterbank fDLR LHUC SVD fDLR LHUC SVD filterbank

0 12.5 12.1 12.1 12.1 13.2 12.4 12.4 13.4 12.3
1 12.3 12.2 13.6 13.3 13.1 36.0 13.2 13.3 12.4
2 12.2 12.9 13.6 14.1 13.1 15.4 12.8 13.4 12.7
3 12.5 12.8 13.6 14.4 13.2 12.7 12.4 13.4 13.1
4 12.4 12.6 13.2 14.1 13.1 13.1 12.5 13.3 13.0
5 12.0 12.3 13.4 13.9 13.0 13.0 12.3 13.2 12.8

10 11.4 11.4 13.4 12.9 12.8 13.0 12.4 12.6 11.7
15 11.2 11.2 13.4 12.5 12.6 12.2 12.0 12.7 11.4
20 11.4 11.3 13.3 12.1 12.5 12.7 11.9 12.5 11.2

versely, the shift of center frequency was relatively small at
a high-frequency region (∼ 2000Hz). The variances of the
filterbank features are relatively large enough to overlap the
SM- and SF-speakers. Therefore, the optimization of the
gain parameters is a secondarily important factor in gender
adaptation. In contrast to the above two parameters, no dis-
crimination of the change of the bandwidth parameters was
observed in gender adaptation.

4.2.3 Speaker Adaptation

Table 6 shows the supervised adaptation result. The mod-
els trained by SM in Table 3 were used as source models.
The 0 utterance row shows the WERs, which were recog-
nized using the model without adaptation. By adapting the
filterbank layer of GtFDNN using 15 utterances, WER was
improved from 12.1% to 11.2%, and a word error reduction
rate (WERR) of 7.4% was obtained. This WERR is bet-
ter than the unadapted GtFDNN at a significance level of
0.005 under a statistical sign test. These results show that
the adjustment of the filter shapes can handle the diversity
of speakers.

Performance gains were observed when adaptation was
applied for GFDNN with 5 utterances (p < 0.03) and
GtFDNN with 10 utterances (p < 0.005). These results
are better than the other adaptation methods, although base-
line DNN with LHUC and ExpFDNN also showed a per-
formance improvement when more than 15 or 10 utterances
are available for each method. Table 6 also shows the adap-
tation result using fDLR, LHUC, and SVD under the same
GtFDNN. The adaptation of filterbank layer obtained the
best performance on all conditions of adaptation utterances
among other adaptation methods.

Finally, we depicted the relation between adaptation ut-
terances and WERs per speaker in GtFDNN in Fig. 6. The
WERs of almost all the speakers decreased linearly over the
adaptation utterances. However, Speaker 1 showed unex-
pected behavior when the value of the horizontal axis was 2
to 5.

5. Conclusions

In this paper, we evaluated a filterbank-incorporated DNN
which has a filterbank layer at the bottom of the DNN.

Fig. 6 Relation between number of adaptation utterances and WERs per
speaker (Speaker 1 to Speaker 5). GtFDNN in Table 6 is used for error
analysis.

Compared with the baseline DNN, which uses log mel-
scale triangular shape filterbank features as its input, the
proposed method can discriminatively learn optimal filter
shapes. When we carried out speaker adaptation, we found
that filterbank-incorporated DNNs showed effectiveness in
speaker adaptation under limited adaptation data. We also
carried out gender adaptation from male to female speakers
and discussed the relation between the physical characteris-
tics of the vocal tract length and an optimal filterbank from
an engineering viewpoint.

The filterbank layer is a simple module of a neural net-
work and can be combined with other modules, e.g. CNNs,
Recurrent Neural Networks (RNNs), and Long Short-Term
Memory (LSTM) [50]. In future work, we will conduct an
evaluation under noisy conditions.
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