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PAPER

Missing-Value Imputation of Continuous Missing Based on Deep
Imputation Network Using Correlations among Multiple IoT Data
Streams in a Smart Space

Minseok LEE†a), Student Member, Jihoon AN†b), and Younghee LEE†c), Nonmembers

SUMMARY Data generated from the Internet of Things (IoT) devices
in smart spaces are utilized in a variety of fields such as context recognition,
service recommendation, and anomaly detection. However, the missing
values in the data streams of the IoT devices remain a challenging problem
owing to various missing patterns and heterogeneous data types from many
different data streams. In this regard, while we were analyzing the dataset
collected from a smart space with multiple IoT devices, we found a contin-
uous missing pattern that is quite different from the existing missing-value
patterns. The pattern has blocks of consecutive missing values over a few
seconds and up to a few hours. Therefore, the pattern is a vital factor to
the availability and reliability of IoT applications; yet, it cannot be solved
by the existing missing-value imputation methods. Therefore, a novel ap-
proach for missing-value imputation of the continuous missing pattern is
required. We deliberate that even if the missing values of the continuous
missing pattern occur in one data stream, missing-values imputation is pos-
sible through learning other data streams correlated with this data stream.
To solve the missing values of the continuous missing pattern problem, we
analyzed multiple IoT data streams in a smart space and figured out the
correlations between them that are the interdependencies among the data
streams of the IoT devices in a smart space. To impute missing values of
the continuous missing pattern, we propose a deep learning-based missing-
value imputation model exploiting correlation information, namely, the
deep imputation network (DeepIN), in a smart space. The DeepIN uses
that multiple long short-term memories are constructed according to the
correlation information of each IoT data stream. We evaluated the DeepIN
on a real dataset from our campus IoT testbed, and the experimental results
show that our proposed approach improves the imputation performance by
57.36% over the state-of-the-art missing-value imputation algorithm. Thus,
our approach can be a promising methodology that enables IoT applica-
tions and services with a reasonable missing-value imputation accuracy
(80∼85%) on average, even if a long-term block of values is missing in
IoT environments.
key words: missing-value imputation, deep imputation network, Internet
of Things, smart space

1. Introduction

Recently, many systems based on the Internet of Things
(IoT) have been widely applied to various fields and indus-
tries such as health-care, smart buildings, smart factories,
etc [1], [2]. Accordingly, many studies have been conducted
on basic technologies such as context recognition [3], ser-
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vice recommendation [4], and anomaly detection [5], by us-
ing the data generated from IoT devices in smart spaces.
These studies assume that the data generated from IoT de-
vices are complete. However, the data generated from IoT
devices can be incomplete for the following reasons: stor-
age errors, unreliable IoT devices, unstable network status,
etc. The incomplete data generated from many IoT devices
may include noisy, redundant, and missing values. In par-
ticular, missing values are a very common phenomenon that
causes challenges in the IoT environment. Missing values
adversely affect the accuracy and reliability of IoT applica-
tions such as context awareness, real-time decision-making,
as well as service recommendation and anomaly detection.

In many smart spaces with numerous IoT devices, the
smart space can provide more diverse pervasive computing
services to users by facilitating interactions among users and
IoT devices, while the complexity of the missing-value pat-
tern increases exponentially according to the number of IoT
devices. To realize various IoT applications and services
effectively, imputing missing values as accurately as possi-
ble is an indispensable prerequisite. For accurate missing-
values imputation from a smart space with multiple IoT de-
vices, the smart space system must obtain enough complete
data from many IoT data streams, and these data can then be
used to learn and recover the missing values by a machine
learning system.

Conventionally, missing-value types can be divided
into three categories according to the missing-value ran-
domness [6]: Missing Completely At Random (MCAR),
Missing At Random (MAR), and Missing Not At Random
(MNAR). With a MCAR mechanism, a probability exists
that missing values are not related to any other variables ex-
ists, regardless of whether the variables are included or not
included in the data or model (e.g. data are missing from a
coding error). With a MAR mechanism, missing-values are
related to other variables in the data. MNAR involves miss-
ing values that come neither under MAR nor MCAR mech-
anisms. They can also be classified depending on missing-
value patterns [7]: Monotone Missing Pattern (MMP) and
Arbitrary Missing Pattern (AMP). With MMP, when an indi-
vidual is missing data at one time-point, values for all subse-
quent time-points are also missing for that individual. With
AMP, there is no set structure for which variables have miss-
ing values.

Interestingly, a continuous missing-value pattern [8]
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Fig. 1 Missing-value patterns. Gray parts represent observed data,
whereas empty parts indicate missing values.

that has never been dealt with before in an IoT domain was
found by analyzing the real IoT dataset collected from eight
data streams of the IoT devices over seven months in a real
smart space environment. We constructed a testbed of a
smart meeting room on our campus with various IoT de-
vices installed for context recognition such as have a meet-
ing, watching a movie, eating a meal or taking a rest in sin-
gle smart space.

As shown in Fig. 1, this pattern has the properties that
combined the AMP and the MMP with the MAR mech-
anism. It includes characteristics that are quite different
compared to the existing missing-value patterns in terms of
the time in which the missing-values occur consecutively.
Based on the analysis of eight IoT data streams in a smart
space, we have confirmed that blocks of continuous missing-
values over a few seconds and up to a few hours have ap-
proximately 40% missing rates in the total dataset. In con-
clusion, a continuous missing pattern in this paper defined
as a missing value pattern in which not only single miss-
ing value but also block of continuous missing values occur
arbitrarily and repeatedly in an IoT data stream.

Hence, a continuous missing pattern is a critical fac-
tor affecting the availability, accuracy, and reliability of IoT
applications and services; yet, it cannot be addressed by
the existing missing-value imputation methods [8]–[14] that
use the near value of the missing-value to impute simple
missing-value patterns and maximum 30% missing rate in
a single data stream without considering the necessity of
missing-value imputation of a continuous missing pattern
in an IoT environment. This is an extraordinarily difficult
problem because the time over 1 min is extremely long in a
data stream. Further, the complexity of the missing pattern
can be higher when considering the IoT applications that
use all the data streams of multiple IoT devices in a smart
space. This is because the continuous missing pattern may
occur in only one data stream or it may occur in several data
streams simultaneously. As a first step for the imputation
of a continuous missing pattern, we consider that the con-
tinuous missing pattern may occur in only one data stream
among multiple IoT data streams in single smart space.

In our initial endeavor to solve the imputation of the
continuous missing pattern in a smart space with multiple
IoT devices, we deliberate that even if the missing values
of the continuous missing pattern occur in one data stream,
missing-value imputation is possible through learning to-
gether other data streams correlated with this data stream
in the same smart space. Therefore, we focused on the re-
lationship among multiple IoT streams in a smart space. To
impute the missing values of the continuous missing pat-

tern, we obtained and utilized the correlation among mul-
tiple IoT-device data streams. The correlation can be ex-
tracted from the temporal-spatial dependencies between the
IoT-device data streams in a smart space, because some IoT
devices directly affect other IoT stream data. For example,
when a light is turned on, the brightness and door sensors
generate different data compared to those before the light
was turned on. We found at least two and at most six cor-
relations for each IoT device using the Pearson correlation
coefficient (PCC) [15] via eight IoT data streams in a smart
space. For example, an IoT device in a smart space with
multiple IoT devices can have a set of correlation as follows:
{light sensor correlated with door sensor, sound sensor, and
brightness sensor}.

Based on these insights and findings, we propose a
deep learning-based model [16], called the deep imputation
network (DeepIN) that uses the correlation information for
the missing-value imputation of a continuous missing pat-
tern from multiple IoT data streams in a smart space. Since
multiple IoT devices generate various types of data, the typ-
ical long short-term memory (LSTM) [17] used for only
time-series data may not be pertinent for our goal. There-
fore, we customized the LSTM model to deal with various
types of data in the same machine learning system. To be
resilient to large blocks of consecutively missing values in
multiple IoT data streams, the proposed DeepIN uses a deep
network consisting of multiple LSTMs that are constructed
according to the correlation information of each IoT device.
Each LSTM is dedicated to the input data stream of each IoT
device. For example, the multiple LSTMs of the DeepIN
include the light sensor-LSTM, door sensor-LSTM, temper-
ature sensor-LSTM, etc.

We evaluate the proposed DeepIN on our dataset col-
lected from eight IoT devices over seven months in a real
IoT testbed. Our experimental results show remarkable per-
formance improvement in missing-value imputation, i.e., by
57.36% over the existing missing-value imputation algo-
rithms as well as by 41.09% over a single-LSTM model.
To confirm the validity of the correlation, we conducted ad-
ditional experiments and showed that the imputation perfor-
mance of the DeepIN is improved by approximately 24%
compared to the case without the correlation. Based on the
proposed model for the IoT, useful applications can be re-
alized. For example, even if a particular sensor is broken,
the context can be recognized or predicted. Further, anoma-
lies can be analyzed and detected even when missing-values
exist.

The remainder of this paper is organized as follows.
Section 2 discusses the related works on missing-value im-
putation and their differences with our proposed approach.
In Sect. 3, we analyze the characteristics of multiple IoT
data streams in a smart space. In Sect. 4, we present the
concept of correlation among multiple IoT data streams to
handle the continuous missing pattern. In Sect. 5, we de-
scribe the deep imputation network model to impute the
missing values of the continuous missing pattern in a smart
space with a multiple-IoT-device environment. In Sect. 6,
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we present our experiment results and evaluate the proposed
model. Finally, we conclude and discuss future work in
Sect. 7.

2. Related Work

In the last few decades, various fields of missing-value im-
putation have received significant attention [18]–[21]. In re-
cent studies, missing-value imputation has attracted partic-
ular examination and has been proposed with various tech-
nologies including sensors, actuators, mobile devices, and
wearable devices [22], [23]. Many researchers have pro-
posed approaches to impute the missing values in various
applications and services. However, only a few studies have
dealt with the missing-value problem in an IoT environment.
The majority have focused on a single data stream, espe-
cially the simple missing pattern. On the contrary, we fo-
cused on the missing-value imputation of continuous miss-
ing patterns in data streams from multiple IoT devices in
a smart space. To the best of our knowledge, none have
studied the missing-value imputation of continuous missing
patterns in the IoT domain.

One of the most popular missing-value imputation
techniques is the listwise deletion method. It simply re-
moves the missing values in the dataset and uses the remain-
ing dataset. Although this method can be implemented eas-
ily, it can lead to a significant bias at the MNAR pattern [24].
Another common method is to use the mean value of the to-
tal data to impute missing values [25]. This is the easiest
imputation method to replace each missing-value, with the
average value as the estimate of the missing-value. The re-
search in [12] proposed a K-nearest neighbors algorithm (K-
NN) based method. It defines for each sample or individual
a set of K-nearest neighbors and then substitutes the missing
value with a given value by averaging the values of its neigh-
bors. This method was modified to improve the imputation
efficiency, for example as the sequential K-nearest neigh-
bors algorithm [13]. In [14], the fuzzy K-means algorithm
was proposed for the knowledge discovery in the database.
These latter imputation methods used the near value of the
missing value, assuming a simple missing pattern and a low
missing rate.

Other imputation algorithms have been presented for
missing-value imputation. [26] proposed multivariate im-
putation by chained equation (MICE) for different types of
data, depending on the parametric model specified sepa-
rately for each variable and involving the other variables
as predictors. MICE is flexible and can handle variables
of varying data types. However, prior knowledge of tun-
ing parameters or the specifications for a parametric model
is necessary and only the MAR pattern is to be considered.
In [11], a random forest-based algorithm called missForest
was suggested for missing-value imputation in mixed-type
data (e.g., categorical and continuous). Even though the al-
gorithm allowed for non-parametric missing-value imputa-
tion on any kind of data, complicated missing-value patterns
were not considered.

The research in [27] addressed a recurrent neural net-
work (RNN) model for missing data in clinical time series
data. Although the authors considered multivariate time se-
ries of observations, they had only concentrated on the di-
agnostic label classification. In [9], researchers proposed an
RNN model to predict medical examination data for missing
information imputation. This method has no assumptions
for the high missing rate and the complex missing pattern.

The study [8] focused on continuous imputation of me-
teorological data streams. They imputed the current contin-
uous missing values in a time series through repeated sea-
sonal patterns. However, the resulting study was limited be-
cause it did not consider multiple streams but considered
only imputation based on historical repeating patterns.

3. Continuous Missing Pattern in a Smart Space with
Multiple IoT Data Streams

As mentioned in Sect. 1, we focus on the missing-value
imputation of continuous missing pattern in multiple data
streams generated simultaneously from heterogeneous IoT
devices installed in a smart space. Our research can also
be applied to smart spaces such as smart homes and smart
buildings. In view of the missing-value imputation, the di-
versity and complexity of missing-value patterns are differ-
ent in each smart space environment. The missing-value
pattern is typically relatively simple and iterative in a smart
space with a single IoT device. However, more complex
and various missing-value patterns can exponentially occur
in a smart space where numerous IoT devices are installed.
Therefore, a rigorous analysis of data streams from multi-
ple IoT devices is needed for the missing-value imputation
of IoT applications that concurrently use data streams gen-
erated from multiple IoT devices. Thus, in this section, we
elaborately analyze and obtain the characteristics of multi-
ple IoT data streams from our IoT dataset, and define the
challenging requirements arising from it.

3.1 Attributes of Multiple IoT Stream Data in a Smart
Space

In a smart space with multiple IoT devices, the data stream
is generated from various smart IoT actuators and sensors.
In our dataset, we collected over 18 million items from
eight IoT devices, such as “open/close a door” contexts from
smart door-lock agents (actuator) and “turn on/off a projec-
tor” contexts from projector agents (actuator). The item in
this paper is defined as the number of single values observed
in an IoT data stream. These values are categorical data that
contain label values rather than numeric values; hence, we
used a one-hot encoding form on the categorical data. On
the other hand, ambient context represents environmental
conditions of the smart space, and they are generated from
ambient sensors in the form of numeric value type such as
temperature, brightness, humidity, and sound sensors.

Within the perspective of the missing-value imputation,
we describe the attributes of the IoT data stream in a smart
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space consisting of multiple IoT devices as follows:

• Simultaneous generation and integrated utilization of
data streams attribute. In a smart space with multi-
ple IoT devices, they can concurrently generate data
streams. For example, a set of IoT data streams can be
generated as follows: {humidity, temperature, bright-
ness, door} or {light, humidity, projector, sound}. It
depends on the configuration of the IoT devices in the
smart space.
A set of data streams from multiple IoT devices is used
together for an IoT application. For example, a com-
bination of information from each of the sensors such
as door sensor (entrance), projector sensor (turning on
a projector), and presence sensor (sitting down) can be
used to recognize the context, such as “have a meet-
ing.”
• Various value types attribute. Each data stream of the

IoT devices has its own type of value. This is because
a smart space is composed of heterogeneous IoT de-
vices, e.g., door sensor (open/close), temperature sen-
sor (26.7◦), light sensor (10lux), and projector actuator
(on/off, input port). For example, the data stream val-
ues generated from multiple IoT devices may take on
many types such as numeric, string, binary, ternary, etc.
• Continuous missing pattern attribute. Data streams of

multiple IoT devices contain incomplete data such as
noisy data, redundant data, and missing values. Miss-
ing values account for the largest share in incomplete
data. In particular, a serious missing pattern that in-
cludes high missing rates and extremely long contin-
uous missing values is present. This is distinct from
the existing missing-value pattern such as the AMP and
MMP.

We consider the attributes above for the missing-value
imputation in a smart space with multiple IoT devices. The
continuous missing pattern attribute is one of the most out-
standing attributes different from other studies so far on
missing-value imputation. The continuous missing pattern
attribute is described in detail below.

3.2 Analysis of Continuous Missing Pattern

A continuous missing pattern has characteristics that are
considerably different compared to the existing missing-
value patterns in terms of the time in which the missing val-
ues occur consecutively. Figure 2 shows the average missing
rate per unit time and the cumulative missing rate according
to continuous missing time in eight IoT data streams. As
shown in Fig. 2, the continuous missing pattern has blocks
of continuous missing values over a few seconds and up to
a few hours. In addition, we found the continuous missing
pattern in all eight IoT data streams that make up our dataset.

To determine the scope of the length of continuous
missing pattern in our research, we applied the elbow
method [28] that is used to find the optimal k-value in the
k-means algorithm. As depicted in Fig. 2, an elbow point

Fig. 2 Missing-values ratio of continuous missing pattern

was determined by the relationship between the period of
consecutive missing and the cumulative proportion of miss-
ing data in the total data. We determined an elbow point in 3
h where approximately 40% of the total data were missing.

Formally, a continuous missing pattern is formulated as
follows:

D = [X1, . . . , Xi, . . . , Xt]
T

Xi = [xi1, . . . , xi j, . . . , xin], (1 ≤ i ≤ t, 1 ≤ j ≤ n),

where D is a set of data streams generated from multiple
IoT devices, X is a set of values on each IoT device, t is
the number of IoT devices, x is the single value of each IoT
data stream, and n is the size of the data stream from each
IoT device. The example of continuous missing pattern can
be expressed as follows:

D =


1, 0, 0, 1, 0, 0, · · · , 0, 1, 0, 1, 0, · · · , 0
0, 0, 1, 1, 0, · · · , 0, 0, 1, 1, 0, 1, 1, 0, 1

...
0, 0, · · · , 0, 1, 0, 0, · · · , 1, 0, · · · , 0, 1


where 0 means that the value generated from the IoT device
is missing and 1 means that the value is not missing.

Consequently, the continuous missing pattern is dis-
tinct from the existing missing-value patterns in terms of
continuous missing time. Based on above analysis, this is a
new form of missing-value pattern combining the AMP and
MMP with the MAR mechanism. This is an extraordinarily
difficult problem because the time over 1 min is extremely
long in a data stream. That is, since the missing-value im-
putation of the continuous missing pattern is not possible
using only single data stream, it requires a rather consider-
able amount of other data streams to determine the correla-
tion with this data stream. That is why we focused on the
relationships among multiple IoT streams in a smart space.

4. Missing-Value Imputation of Continuous Missing
Pattern Using Correlation among Multiple IoT Data
Streams

Imputing a missing value means to recover it with a good es-
timate that is derived from intrinsic relationships in the un-
derlying dataset. To solve the continuous missing pattern in
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Table 1 Classification of Pearson correlation coefficient

Range of r-value Degree of correlation

0.7 ≤ |r| < 1 Very strong correlation
0.5 ≤ |r| < 0.7 Strong correlation
0.3 ≤ |r| < 0.5 Moderate correlation
0.1 ≤ |r| < 0.3 Weak correlation
0 ≤ |r| < 0.1 No linear correlation

a smart space with a multiple-IoT-device-environment de-
tailed above, we analyzed multiple IoT data streams and
used their inter-relationships. Generally, the data streams
generated from multiple IoT devices in a smart space may
imply temporal-spatial interdependency, because some IoT
devices directly affect other IoT stream data. For example,
when the light is turned on, it strongly implies the presence
of users in the smart space; when a door is opened by a user,
the sound and presence sensors generate different data than
those before the door is opened. In this regard, we define
these inter-dependencies of the IoT data streams as the cor-
relation of the IoT devices in a smart space.

Thus, we consider that if we can appropriately use
the correlation concept, the missing-value imputation of the
continuous missing pattern would be possible. To represent
the correlation among multiple IoT data streams in a smart
space, the PCC [15] is utilized as follows:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(1)

where n is the sample size of the stream data from an IoT
device. Further, xi and x̄ are the single samples indexed with
i and the sample mean, respectively, and analogously for yi

and ȳ. The PCC measure is used to determine the strength of
correlation among multiple IoT data streams. From Eq. (1),
the r-value is a real value between [−1 and 1]. If the values
of the data streams x and y are completely the same, the
r-value is +1, and if they are completely the same in the
opposite direction, the r-value is −1. A value of zero means
that a linear correlation does not exist between x and y.

To determine the appropriate correlation criteria, we
used the absolute value of r in this study, because it is only
necessary to confirm a correlation among IoT devices rather
than by the positive or negative direction. Although the PCC
degree is generally classified with directions, we classified
the degree of correlation in IoT devices without directions.
In addition, we used the classification criteria of the PCC,
which is generally referred to in the field of statistics [29],
as shown in Table 1. Based on these criteria, we determined
that the r-value of 0.1 or greater is meaningful correlation
information among multiple IoT data streams.

As depicted in Fig. 3, we found 16 correlations among
multiple IoT devices based on the absolute value of r greater
than 0.1. Based on the results in Fig. 3, Table 2 shows that
each of the IoT devices in our testbed has a correlation of
maximum six from at least two. The PCC was generally
utilized to determine the strength of the correlation between
two data streams. That is, the PCC provides the correlation
of each pair of data streams. Therefore, the results shown

Fig. 3 Correlation among multiple IoT devices

Table 2 A set of correlation based on the PCC

IoT data stream A set of correlation

Temperature {Humidity, Sound, Brightness, Light}
Humidity {Temperature, Brightness}

Sound {Temperature, Brightness, Light, Door, Presence}

Brightness
{Temperature, Humidity, Sound,

Presence, Projector, Light}

Light
{Sound, Door, Presence,

Projector, Brightness, Temperature}
Door {Sound, Light, Presence}

Projector {Brightness, Light}
Presence {Sound, Brightness, Light, Door}

in Table 2 can be derived because the PCC does not include
causality between two IoT data streams.

Based on the results above, we deliberate that the
missing-value imputation of the continuous missing pat-
tern is possible by learning a set of data streams of IoT
devices with correlation by using machine learning algo-
rithms such as the deep learning algorithm. For example,
the missing-value imputation of the continuous missing pat-
tern in a brightness sensor data stream is possible through
learning the set of data streams of IoT devices having the
correlation to the brightness sensor, such as {humidity sen-
sor, temperature sensor, sound sensor, projector actuator,
light actuator, and presence sensor}. To utilize the corre-
lation information, we designed a deep learning model for
the missing-value imputation of the continuous missing pat-
tern in a smart space with multiple IoT devices.

5. Deep Imputation Network: Deep Learning-Based
Missing-Value Imputation of Continuous Missing
Pattern Using Correlation

Although RNN models have been utilized in many research
fields to address time-series data [30]–[32], they demon-
strated weakness in sequence-inferring on large data, espe-
cially on long time-series data, and this problem is called the
vanishing gradient problem [33]. Therefore, LSTM models
have been suggested to solve this problem and overcome the
vanishing gradient problem using the forget gate concept.

For accurate learning in a deep learning model, it is
generally known that a large volume of data is needed. Sev-
eral studies have proven that a small data volume degrades
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Fig. 4 Structure and overall flow of a DeepIN. m is the number of corre-
lations for each IoT data stream. h, x, and A mean the output layer, input
layer, and hidden layer in each LSTM module, respectively.

the performance of deep learning models [34], [35]. Simi-
larly, in the case of extreme data status such as the continu-
ous missing pattern defined above, many limitations will be
encountered by relying on the general deep learning meth-
ods. To cope this challenging issue, we designed the model,
i.e., the deep imputation network (DeepIN), that integrates
the correlation concept into our deep learning architecture,
for the missing-value imputation of the continuous missing
pattern on data streams from multiple IoT devices.

As illustrated in Fig. 4, we utilized and customized the
LSTM model to deal with both kinds of categorical and
numeric data in the same machine learning system for the
missing-value imputation of the continuous missing pattern
in extremely long time-series data generated from multiple
IoT devices. The output from our proposed model repre-
sents the imputed value. Our proposed DeepIN is designed
to learn the correct values using the many-to-many approach
when it receives each IoT stream data as the input data. To
impute the missing values of the continuous missing pattern
in multiple IoT data streams, the DeepIN consists of mul-
tiple LSTMs, one fully connected layer, one output layer,
as shown in Fig. 4. The LSTM generate real-valued feature
vectors from given IoT data stream. All the output vectors
generated from the LSTMs are concatenated into one vector,
which moves to the fully connected layer. Each output node
value in the output layer is represented the imputed values of
missing values the given data stream belongs through fully
connected layer and rectified linear unit (ReLU) [36] layers.

The hyperbolic tangent function is used for the activa-
tion function of both the LSTMs and the fully connected lay-
ers since it in general provides better performance in LSTM
learning than the sigmoid function [37]. For imputing the
missing value for each output node, we use the ReLU activa-
tion function in the output layer of DeepIN. Therefore, given
multiple IoT data streams included with continuous missing
pattern, DeepIN calculates the imputed value of missing val-
ues as the most accurate value.

The DeepIN is constructed for each IoT device hav-
ing a correlation, and the configuration of the LSTMs in the
DeepIN can be varied corresponding to the correlation in-
formation of each IoT device. Specifically, each LSTM is

dedicated to each data stream generated from other IoT de-
vices that have correlations with the IoT device having the
continuous missing pattern in its data stream. Each LSTM
module is designed in a many-to-many method that is suit-
able for the purposes of missing value inference. Thus, the
DeepIN comprises m+1 LSTM modules when its IoT device
has m correlations. The m means the number of correlations
for each IoT device. For example, the presence sensor has
four correlations with the {light actuator, door sensor, sound
sensor, and brightness sensor}; thus, the DeepIN structure
for the presence sensor includes five LSTM modules. There-
fore, the structure of the DeepIN is highly flexible in adap-
tively configuring the LSTMs according to the status of the
IoT devices in a smart space. In other words, the proposed
DeepIN is suitable to learn the correlation among multiple
IoT data streams by adjusting the number of LSTM mod-
ules in DeepIN according to the correlation information of
each IoT data stream. In addition, the input length of the
LSTM determines the size of the model, in which a larger
size would degrade the accuracy and effectiveness of learn-
ing. Using multiple dedicated LSTMs, our proposed model
can maintain the learning accuracy on extremely long data
streams from multiple IoT devices, because each LSTM has
a shorter input length. In conclusion, it is resilient to contin-
uous missing values because each LSTM module in DeepIN
is dedicated to only one IoT data stream.

The objective function in DeepIN is defined as the im-
putation errors on the given IoT data stream, which is min-
imized by the training phase. Single IoT data stream are
given as input to each LSTM in DeepIN. The real-valued
vectors feature-extracting the input data are generated by
LSTM. All the outputs generated by each LSTM are con-
catenated into a vector, which is forwarded into the fully
connected layer. Fully connected layer is utilized into our
proposed model to obtain the output of imputed value. Sub-
sequently, the output layer is the imputed missing values
contained within the real-valued vector, which is the ReLU
activation function in the output layer fitted from a given
concatenated vector. In the training step, the mean-squared
error (MSE) is used as a loss function in the DeepIN. The
errors are propagated from the output layer into the fully
connected hidden layer and the weights of the hidden layer
are updated by hyperbolic tangent activation function. The
back-propagated error gradients are distributed into the top
hidden node errors of each LSTM. Then, the weights of the
LSTMs are updated via the back-propagation through time
(BPTT) [38]. In the test step, missing values of continuous
missing pattern is imputed by providing the previous data as
sequential inputs for already trained LSTM module.

Consequently, the whole system for the missing values
of the continuous missing pattern in a smart space with mul-
tiple IoT devices is accomplished via the correlation infor-
mation of each IoT device and the DeepIN model. Through
this architecture, we can impute the missing values of the
continuous missing pattern efficiently.
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6. Experiments and Evaluation

6.1 Dataset and Experimental Setup

To evaluate the proposed DeepIN model, data from multiple
IoT devices were collected over seven months from our IoT
testbed. We built a smart space with various IoT devices
in the campus meeting room. Eight IoT devices were in-
stalled in a smart space, as illustrated in Fig. 5. The devices
included in the our testbed were two actuators (Light, Pro-
jector) and six sensors (Temperature, Humidity, Brightness,
Sound, Presence, Door). All sensors generated the data ev-
ery 3 s and the actuator devices were controlled by a board
PC, e.g., the Raspberry Pi.

Table 3 lists the specifications of our dataset for the ex-
periments. The records presented in Table 3 contain 18.7
million items from January 2016 to July 2016. The raw data
were generated by multiple IoT devices and stored in a Mon-
goDB. The data of the user activity context were generated
from many kinds of actuators. For example, when people
performed activities for presentation in the testbed, the pro-
jector actuator generated values such as “Turn on” and the
light actuator generated values such as “On”. The data of
the space context, such as temperature, humidity, sound, and
brightness, were sensed directly from ambient sensors.

As preprocessing, the input data stream were formatted
as 30 days long for each LSTM in the DeepIN. We elim-
inated rare noisy and redundant data. The values of ac-
tuators are categorical data that contain label values rather
than numeric values and can be expressed as [1, 1, 0, 2, 0,
. . . ] by a vector. The fixed parameters of DeepIN for the
experiment are learning rate and minibatch size, which are

Fig. 5 IoT testbed

Table 3 IoT dataset specification

IoT devices Data type Value example # of data

Temperature Real value 26.7◦ 4,233,619
Humidity Real value 52.9% 3,987,412

Sound Real value 124.5dB 2,120,684
Brightness Real value 76lux 4,981,356
Presence Binary 1(No user)/ 2(Present) 789,107

Door Binary 0(Outward) / 1(Inward) 700,362
Light Binary 0(Off) / 1(On) 1,610,081

Projector Binary 0(Off) / 1(On) 295,196

0.002 with Adam optimization method [39] and 100, respec-
tively. Each LSTM in DeepIN has one hidden layer with 200
nodes. Fully connected layer also has one hidden layer with
500 node size. These values are determined by many exper-
imental experiences. The data in the dataset were randomly
selected into 90% training and 10% test sets. The DeepIN
model was implemented based on TensorFlow [40] using a
single GPU, GTX1080 with 8GB VRAM.

6.2 Performance Measure and Comparison

To measure imputation performance, we used the normal-
ized root mean square error (NRMSE) metric. The normal-
ization of the RMSE is as follows:

RMS E =

√∑n
i=1(xtrue

i − ximputed
i )2

n
= y (2)

NRMS E =
RMS E
ymax − ymin

(3)

where n is the sample size of the IoT data stream, Xtrue
i and

Ximputed
i are the true value and the imputed value, respec-

tively, and ymax and ymin are the maximum and minimum
values of RMSE, respectively. A good performance leads
toward a value of 0 and a poor performance leads toward
a value of approximately 1. Compared to the RMSE, the
NRMSE is less affected by the data scale from the heteroge-
neous IoT devices.

We compared our proposed approach with five exist-
ing missing-value imputation algorithms, as well as a single
LSTM model. To apply the missing values of the continu-
ous missing pattern to the existing missing-value imputation
methods, the imputation performance was measured by in-
creasing the consecutive missing time. Furthermore, we val-
idated the effects of the correlation concept on the DeepIN
model.

6.3 Imputation Performance

The goal of our proposed method was to impute the miss-
ing values of the continuous missing pattern as accurately as
possible using correlation information for a DeepIN learn-
ing system in a smart space with multiple IoT devices. To
evaluate the performance of our method, first, we com-
pared the imputation accuracy of the DeepIN model with
other conventional imputation algorithms and single LSTM
model. Second, we tested the extent to which the correla-
tion information affected the imputation performance of the
DeepIN.

Figure 6 presents the imputation performance of the
DeepIN compared to other missing-value imputation algo-
rithms. Based on the result in Fig. 2, the criteria of con-
tinuous missing time was determined to up to 3 h, as men-
tioned above in Sect. 3. The experimental results used the
mean value of the imputation performance of eight IoT data
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Fig. 6 missing-value imputation performance comparison between the
DeepIN and the other algorithms

stream cases, with a continuous missing pattern on one de-
vice in each instance. As shown in Fig. 6, the DeepIN shows
a 57.36% performance improvement compared to the miss-
Forest algorithm, which shows the best imputation perfor-
mance among the existing algorithms. By comparing the
single LSTM model with the DeepIN, our model demon-
strated approximately 41.09% performance improvement.
These results indicate that our DeepIN model outperforms
in the imputation performance on the missing values of the
continuous missing pattern generated from multiple IoT de-
vices. From Fig. 6, we also found that the longer the pe-
riod of continuous missing, the lower is the imputation per-
formance in all methods. This is due to the proportional
relationship between consecutive missing periods and high
missing rates. However, the DeepIN maintains the best im-
putation performance while the continuous missing time is
increased.

We investigated the influence of the correlation on im-
putation performance. In the case of DeepIN without cor-
relation, all IoT data streams generated from our testbed
were used as input in eight LSTM modules of the proposed
DeepIN. In the case of single LSTM model, all IoT data
streams were constructed as one vector and used as input
values. Other conditions of the proposed DeepIN for ex-
periments, such as the number of hidden layer in multi-
ple LSTMs, the activation function, and the optimization
function, were the same as for DeepIN with correlation.
Figure 7 shows the imputation performance curves of the
DeepIN with correlation, DeepIN without correlation and
single LSTM model. Even though the three curves present
a similar trend while the continuous missing time is pro-
longed, Fig. 7 confirms that the correlation enhances the
performance of the DeepIN model by approximately 24%.
This implies that our design approach with multiple LSTMs
learned and extracted various correlation information, and
is feasible and efficient for the missing values imputation
of the continuous missing pattern. These results prove the
validity of our proposed method based on the correlation
information among multiple IoT data streams.

6.4 Effects of Other Missing-Value Patterns

We additionally conducted experiments and compared the

Fig. 7 Effects of correlation in DeepIN

Fig. 8 Comparison of imputation performance according to missing pat-
terns at 20% missing rates

Fig. 9 Comparison of imputation performance curves according to miss-
ing patterns and missing rates

results for other missing-value patterns with the continuous
missing pattern case. In this experiment, we investigated the
influence of AMP and MMP on the imputation performance
of the proposed model. Figure 8 presents the imputation
performance with the AMP and MMP case by the DeepIN
and other missing-value imputation algorithms. To compare
the imputation performance with that of other missing-value
patterns, we experimented on various missing-value impu-
tation methods under average 20% missing rates with the
AMP, MMP, and continuous missing pattern. The missing-
values of the AMP, MMP and the continuous missing pat-
tern were generated randomly via our dataset.

As illustrated in Fig. 8, all missing-value imputation
methods except the DeepIN show a large imputation perfor-
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mance drop in the continuous missing pattern case. We also
confirmed that the DeepIN model shows the best imputa-
tion performance on existing missing-value patterns such as
the AMP and MMP. Therefore, these results indicated that
the proposed method achieved an imputation performance
comparable with the previous studies by focusing on simple
missing-value patterns and can be applied to an IoT services
of a smart space with a multiple-IoT-device-environment,
such as a context recognition/prediction system.

As the auxiliary results shown in Fig. 9, we compared
the imputation performance curves of the three methods,
MICE, missForest, and the DeepIN, which show better im-
putation performance than other methods. To apply the
missing values of the AMP and MMP, the imputation perfor-
mance was measured by increasing the missing rates from
10% up to 50% as shown in Fig. 9. The DeepIN not only
maintains the imputation performance while the missing
rate is increased but also shows the best imputation perfor-
mance in any missing-value pattern. These results verify
that the DeepIN can appropriately cope with various types of
missing patterns including the continuous missing pattern.

Our evaluations were conducted using the dataset gen-
erated from a single smart space with multiple IoT devices.
Although our IoT testbed includes various IoT devices, the
complexity of missing-value pattern may increases accord-
ing to the number of IoT devices. Despite of that, these
results show that the DeepIN achieves consistent imputation
performance even if the continuous missing time or miss-
ing rate increases in various missing-value pattern. Con-
sequently, this implies that reasonable imputation perfor-
mance is predicted even in other IoT environments.

7. Conclusion

Missing-value imputation is a significant and challenging
problem in the IoT environment. We considered a smart
space with a multiple-IoT-device environment. The contin-
uous missing-value pattern that has never been dealt with
before includes blocks of consecutive missing values over
a few seconds and up to a few hours. To impute the miss-
ing values of the continuous missing pattern, we figured out
the correlation concept among the IoT data streams. Based
on the correlation information, we proposed a deep learn-
ing model named DeepIN for the missing-value imputation
of the continuous missing pattern, which uses multiple dedi-
cated LSTMs for feature construction and a fully connected
layer. By using the correlation-based structure, the DeepIN
not only maintains the size of the input data from extremely
long data streams, but can also cope with the continuous
missing-value patterns and high missing rates of heteroge-
neous data streams from multiple IoT devices.

We evaluated the DeepIN on a real IoT dataset, and
the experimental results showed that the proposed DeepIN
model dramatically improves the imputation accuracy com-
pared to conventional missing-value imputation algorithms.
Further, we confirmed the validity of the correlation on the
imputation performance through experiments. Furthermore,

we verified the effects of other missing-value patterns such
as the AMP and the MMP on the imputation performance
of the DeepIN. In conclusion, our proposed model achieved
an imputation performance improved by 57.36% over the
state-of-the-art missing-value imputation algorithm, which
enabled IoT applications and services with more than 80%
missing-values imputation accuracy on average, even un-
der the long-term continuous missing-values in IoT environ-
ments.

The DeepIN still has room for improvement despite its
encouraging results. Although its imputation performance
is relatively good, further improvement is still desired for
the time of consecutive missing of more than 3 h. In addi-
tion, it is noteworthy that the continuous missing pattern can
occur in multiple data streams. Concurrent continuous miss-
ing patterns with more IoT data streams will be considered
as future work.
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