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PAPER

Multi-Level Attention Based BLSTM Neural Network for
Biomedical Event Extraction

Xinyu HE†a), Lishuang LI†b), Xingchen SONG†c), Degen HUANG†d), Nonmembers, and Fuji REN††, Member

SUMMARY Biomedical event extraction is an important and challeng-
ing task in Information Extraction, which plays a key role for medicine
research and disease prevention. Most of the existing event detection meth-
ods are based on shallow machine learning methods which mainly rely on
domain knowledge and elaborately designed features. Another challenge
is that some crucial information as well as the interactions among words
or arguments may be ignored since most works treat words and sentences
equally. Therefore, we employ a Bidirectional Long Short Term Memory
(BLSTM) neural network for event extraction, which can skip handcrafted
complex feature extraction. Furthermore, we propose a multi-level atten-
tion mechanism, including word level attention which determines the im-
portance of words in a sentence, and the sentence level attention which
determines the importance of relevant arguments. Finally, we train de-
pendency word embeddings and add sentence vectors to enrich semantic
information. The experimental results show that our model achieves an
F-score of 59.61% on the commonly used dataset (MLEE) of biomedical
event extraction, which outperforms other state-of-the-art methods.
key words: event extraction, trigger detection, argument detection, BLSTM
neural network, multi-level attention

1. Introduction

With the rapid spread of Internet, the biomedical literature is
expanding at an exponential speed, which has made it harder
than ever for scientists to research, manage, and extract
knowledge from unstructured text in their research field.
To tackle these problems, biomedical information extraction
techniques are rapidly developing. As one of the important
information extraction areas, biomedical event extraction
aims to extract more fine-grained and complex biomedical
relations at molecular level, such as biological molecules,
cells and tissues [1], which provides inspiration and basis
for the diagnosis, treatment, new drug research and devel-
opment of diseases. Several evaluation tasks have been held
in recent years to allow researchers to develop and compare
their approaches for biomedical event extraction.

A biomedical event comprises one event trigger and
one or more arguments. The event triggers are usually verbs
or gerunds which trigger the occurrence of a biomedical
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event. The arguments are usually biomedical entities or
other events that are the participants in a biomedical event.
For example, in the sentence fragment “Gi protein (pertussis
toxin), prevented induction of 1L-10 production by Gp41 in
monocytes” (Fig. 1), which describes the inhibition of “per-
tussis toxin” to “monocyte”, three biomedical events are
involved as follows. The first event is a Gene expression
type event E1, including a trigger word “production” and a
Theme type argument “1L-10”; the second event is a Reg-
ulation type event E2, including a trigger word “induction”,
a Theme type argument E1, and a Cause type argument
“Gp41”; the last event is a Negative regulation type event
E3, including a trigger word “prevented” and a Theme type
argument E2. Event E1 is a simple event. Event E2 and E3
are complex events. The structures of the three events are as
follows:

Event E1 (Type: Gene expression, Trigger: produc-
tion, Theme: 1L-10);

Event E2 (Type: Positive regulation, Trigger: induc-
tion, Theme: Event E1, Cause: Gp41);

Event E3 (Type: Negative regulation, Trigger: pre-
vented, Theme: Event E2).

Most of the state-of-the-art biomedical event ex-
traction systems are pipeline-based, including three sub-
processes: trigger identification, argument detection and
post-processing. In the pipeline process, trigger identifica-
tion and argument detection are usually regarded as classi-
fication problems. Particularly speaking, argument detec-
tion belongs to complex relation classification. In previous
works, most methods of event detection are based on shal-
low machine learning. Pyysalo et al. [1] and Zhou et al. [2]
utilized support vector machine (SVM) [3] to classify trig-
gers and arguments with handcrafted features. Zhou et al.
[4] integrated domain knowledge in their architecture.

To reduce the cost of exacting artificial features, deep
neural networks have been widely used in NLP tasks. Wang
et al. [5] and Nie et al. [6] employed a neural network ar-
chitecture to identify triggers. Wang et al. [7] employed
Convolutional Neural Network (CNN) to extract biomedi-
cal events. The above advanced methods have their notable
advantages for event extraction. However, there are still

Fig. 1 An example of biomedical event in a fragment of text
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some aspects which can be improved. Firstly, most of the
mentioned methods rely on hand-crafted features, which are
time consuming, and may lead to poor generalization abil-
ity. Secondly, the existing methods utilize pre-trained word
embeddings, without dependency information and sentence
level feature representation which are important for biomed-
ical event extraction task. Last but not least, the approaches
mentioned above take all words as equally important and the
most crucial semantic information may be ignored.

To solve these problems, we construct a deep learn-
ing model via the bidirectional LSTM (BLSTM) to extract
biomedical events without additional artificial features. The
contributions of this work lie in three-fold:

(1) We train the dependency-based word embeddings
with large scale corpus, which contains important depen-
dency information for event extraction.

(2) Based on the pre-trained word embeddings, we sup-
plement fine-tuned word embeddings with a training process
to enrich the input information, and calculate sentence vec-
tors to get the global sentence feature representation.

(3) We propose a multi-level attention mechanism for
event extraction. The word level attention can enhance the
weights of critical words which have decisive effect on trig-
ger and argument detection. The sentence level attention de-
termines the importance of relevant arguments and enhances
the interactions among them which can improve the perfor-
mance of biomedical event extraction significantly.

Based on the above, our method achieves a higher F-
score on biomedical event extraction task compared to the
state-of-the-art systems, which demonstrates that the pro-
posed method is effective for biomedical event extraction.

2. Related Work

Trigger and argument detection are regarded as multi-class
classification tasks in most of the state-of-the-art event ex-
traction systems. On the MLEE corpus, Pyysalo et al. [1]
employed a SVM-based approach to extract events. They
designed salient lexical and local context features manually,
including whether a word has a capital letter or a number and
so on. Zhou et al. [2] presented a semi-supervised learning
framework to identify the trigger based on hidden topics.
In this framework, the hidden topics embedded in the sen-
tences are used for describing the distance. Zhou et al. [4]
learned biomedical domain knowledge from a large text cor-
pus built from Medline and embedded it into word features.
The above methods rely on the hand-crafted features which
are time consuming. Also, different features are needed to
tailor for different task, thus not making them generalizable.

Wang et al. [5] employed a neural network architecture
to learn significant feature representation based on depen-
dency relation tree, and dynamically adjusted the embed-
dings while training for adapting to the trigger classification
task. Nie et al. [6] proposed a word EANNP architecture
to conduct event identification. Wang et al. [7] employed
task-based features represented in a distributed way as the
input of CNN models to train deep learning models. Al-

though these methods can effectively alleviate the problem
of manually extracting features, however, most of them rely
on local sentence representation features only within a win-
dow, which may be insufficient for event extraction. In ad-
dition, the above methods treated all words as equally im-
portant, the most crucial semantic information might be ig-
nored. Therefore, we propose a BLSTM-based method to
extract events, integrating multi-level attention mechanism
in our model, furthermore, the sentence vectors are utilized
to capture the global information of the sentences.

3. Methods

In this paper, we propose a BLSTM neural network inte-
grating multi-level attention mechanism and dependency-
based word embeddings to extract biomedical events. As
shown in Fig. 2, there are four parts in the event extraction,
which are the input representation of data, trigger identifi-
cation, argument detection and post-processing. Firstly, we
train dependency-based word embeddings by word2vecf [8]
as the input of BLSTMs. To enrich the input information,
we add the sentence vector as additional input. Then, the
BLSTMs integrating the multi-level attention mechanism
are applied in the trigger identification and argument de-
tection. In the trigger identification stage, the word level
attention is employed. In the stage of argument detection,
we propose a multi-level attention mechanism, which inte-
grates both word level attention and sentence level attention.
Finally, the complete biomedical events are constructed by
the machine-learning based post-processing.

3.1 Input Representation of Data

3.1.1 Dependency-Based Word Embeddings

In recent years, word embeddings have been widely used in
NLP tasks. Miwa et al. [9] has validated the effectiveness
of dependency information for biomedical event extraction.
In this paper, we train dependency-based word embeddings
as feature representation, which can yield more focused em-
beddings, capturing more functional and less topical simi-
larity.

Fig. 2 Our framework of event extraction
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In our research, we firstly download 5.7G PubMed
abstracts, then parse the abstracts with GDep parser [10],
which is a dependency parse tool specialized for biomedical
texts. Finally, we utilize Word2vecf [8] to train dependency-
based word embeddings with the dependency contexts de-
rived in the previous step.

3.1.2 Sentence Vector

The sentence level features may be ignored only using the
word level embeddings. In addition, there is a strong asso-
ciation between events appearing in a sentence, which re-
sults in the global information of the sentence is critical to
biomedical event extraction. Therefore, in our BLSTM ar-
chitecture, we integrate sentence information as supplemen-
tary inputs. The effectiveness of the sentence vectors has
been verified in some NLP tasks, such as biological named
entity recognition (NER) [11]. With similar approach, we
provide two kinds of word embeddings in the whole train-
ing process. One is the pre-trained dependency-based word
embeddings xt, which can obtain the potential feature in-
formation from large scale unlabeled corpus. The other is
fine-tuned word embeddings x′t , which contains richer in-
formation associated with the biomedical events learned by
the neural networks. The initial value of x′t is the same as
xt, however, x′t is fine-tuned with BLSTM neural network
training process. To take advantage of both the word em-
beddings, we integrate the sentence vectors in our LSTM
framework. The memory cell of the LSTM integrating the
sentence vector is shown in Fig. 3. As Eq. (1) shown, the
sentence vector d0 is generated by averaging the differences
of all the words′ two word embeddings in a sentence. Be-
sides, we use reading gate rt ∈[0,1]n to control what infor-
mation should be retrained for future time steps.

d0 =
1
n

(∑T

t=1
(x
′

t − xt)
)

(1)

3.2 BLSTM Integrating Sentence Vectors and Multi-Level
Attention

3.2.1 BLSTM Integrating Sentence Vectors

LSTM units are firstly proposed by Hochreiter and Schmid-
huber [12] to retain information over long distances in time

Fig. 3 Memory cell of BLSTM integrating sentence vector

successfully. A standard architecture of LSTM mainly con-
sists of three units, which are the input, output and forget
gates. The LSTM variants are described as follows:

it = σ(xt · wi
xh + ht−1 · wi

hh
′ + bi

h) (2)

ft = σ(xt · w f
xh + ht−1 · w f

hh
′ + b f

h ) (3)

ot = σ(xt · wo
xh + ht−1 · wo

hh
′ + bo

h) (4)

c̃t = tanh(xt · wc
xh + ht−1 · wc

hh
′ + bc

h) (5)

ct = it ⊙ c̃t + ft ⊙ ct−1 (6)

ht = ot ⊙ tanh(ct), (7)

where σ refers to the logistic sigmoid function and ⊙
denotes the element-wise multiplication. x is the input em-
beddings at time t, and i, f, o and c are input gate, forget
gate, output gate and the proposed values respectively, all of
which are the same size as the hidden vector h. wxh, whh and
bh are the input connections, recurrent connections and bias
values respectively. ct denotes the true cell value at time t.

Bidirectional LSTM (BLSTM) networks can exploit
information both from the left and the right contexts [13].
Therefore, BLSTM is used for trigger and argument detec-
tion. As shown in Fig. 3, we combine the forward pass out-
put (h f

t ) and the backward pass output (hb
t ) by summation.

The output at t moment is shown as Eq. (8). In addition, we
employ two kinds of word embeddings in the whole training
process, thus our new BLSTM architecture after adding the
fine-tuned word embeddings can be described as Eq. (9) to
(12). The reading gate can be described as Eq. (13). The
sentence information can be calculated as Eq. (14) at t mo-
ment. After integrating the sentence vector, the cell value ct

is modified to Eq. (15).

ht = [
−→
ht ⊕
←−
ht] (8)

it = σ(xt · wi
xh + x

′

t · wi
x′h
+ ht−1 · wi

hh
′ + bi

h) (9)

ft = σ(xt · w f
xh + x

′

t · w
f
x′h
+ ht−1 · w f

hh
′ + b f

h ) (10)

ot = σ(xt · wo
xh + x

′

t · wo
x′h
+ ht−1 · wo

hh
′ + bo

h) (11)

c̃t = tanh(xt · wc
xh + x

′

t · wc
x′h
+ ht−1 · wc

hh
′ + bc

h) (12)

rt = σ(xt · wr
xh + x

′

t · wr
x′h
+ ht−1 · wr

hh
′ + br

h) (13)

dt = rt ⊙ dt−1 (14)

ct = it ⊙ c̃t + ft ⊙ ct−1 + tanh(dt) (15)

3.2.2 Multi-Level Attention

Word Level Attention: Attention-based neural net-
works have recently demonstrated success in a wide range of
tasks ranging from digit classification [14], machine transla-
tion [15], to sentence summarization [16]. Inspired by the
previous works, we integrate attention mechanism in our
BLSTM architecture for the event detection, which helps to
filter out the irrelevant noise and find the important units in
the input sequence.
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Different from most attention mechanisms, we set a
random initial weight matrix and let it tune with training
process instead of setting a fixed calculation formula for
weight. In this way, the common features will be learned
by the neural networks automatically, and the correspond-
ing weights of the words with these features will be in-
creased, therefore, the pivotal information can be captured.
As shown in Eq. (16), H ∈RL×dw represents the final BLSTM
hidden layer output vector matrix, consisting of output vec-
tors [h1, h2, · · ·, hL], where L is the sentence length, dw refers
to the dimension of the word embeddings. After utilizing the
activation function tanh, the attention weights are trained as
Eq. (17), where w denotes a trained parameter vector and wT

is its transpose. Then, in Eq. (18), the representation γ of the
sentence is formed by a weighted sum of the output vector
H, where the dimensions of α and γ are L and dw respec-
tively. Finally, the ultimate semantic information of the sen-
tence is produced from Eq. (19), where h∗ denotes the final
sentence representation and the representation of ith word is
described as h∗i .

N = tanh(H) (16)

α = so f tmax(wT N) (17)

γ = HαT (18)

h∗ = tanh(γ) (19)

Sentence Level Attention: In the event extraction, the
argument candidate instances are the pairs comprising the
predicted trigger and entity/trigger (nested event). To obtain
the context information, we extend the argument candidate
instances to sentence fragments which are composed of pre-
dicted trigger, entity/trigger (nested event) and the words be-
tween them of the raw texts. The word level attention only
captures the features from the given argument instances.
However, other instances may contain significant semantic
information for this instances. Therefore, it is reasonable
to look over other relevant instances when determining the
type of the current argument instance. We employ the sen-
tence level attention to enhance the interaction among the
relevant instances.

In this paper, the argument instances that have the same
predicted trigger are believed to be relevant, and they are
trained in the same batch. The weights of the important in-
stances will be increased by the attention mechanism men-
tioned above. The attention can strengthen the interaction
of any relevant argument, which can make up for the long
distance dependence of LSTM. The relevant instances set is
represented as H∗ = {h∗1, h∗2, · · ·, h∗M}, where M denotes the
numbers of relevant instances in a batch, h∗i is the hidden
output in the word level attention. After reducing the dimen-
sion of h∗i as Eq. (20) shown, a new vector matrix H∗S = {h∗S 1

,
h∗S 2

, ···, h∗S M
} is generated, which represents the sentence fea-

ture vector. With similar attention mechanism, replacing H
with H∗S from Eq. (16) to Eq. (19), a new h∗ in Eq. (19) de-
noting the final sentence representation will be calculated,
which is used for argument classification by softmax func-
tion.

hS i
∗ =
∑dw

i=1

∑L

j=1
h∗i /L (20)

3.3 Trigger Identification

The goal of trigger identification is to assign each token in
a sentence to an event trigger class (19 types in all) or a
negative class if it does not belong to a trigger class. In the
stage of trigger detection, we firstly treat each token in a
sentence as a trigger candidate instance. Then, the hidden
state h∗i of each token is generated by the BLSTM model
integrating word level attention. Finally, a softmax classifier
is employed to predict label ŷ of each trigger candidate. The
classifier takes the hidden state h∗i as input:

p̂(y|x) = so f tmax(Wh∗i + b) (21)

ŷ = arg max
y

p̂(y|x) (22)

After trigger identification, argument detection is
needed. Their frameworks are similar, the only difference is
that we add the sentence level attention based on the trigger
identification model for argument detection, namely multi-
level attention. Since the argument detection (Fig. 4) is more
complicated, therefore, a detailed argument detection archi-
tecture is described in Sect. 3.4, the framework of trigger
identification is no longer described here.

3.4 Argument Detection

The goal of argument detection is finding whether there is a
relation between an event trigger and an entity, or between
an event trigger and another event trigger (nested event). If
there is a relation, the relation types, namely argument types
(7 types in all), should be predicted.

In the argument detection stage, we firstly generate all
potential argument candidate instances based on the pre-
dicted triggers and the given entities of the sentences. As
mentioned in “Sentence Level Attention”, we take the sen-
tence fragments which are composed of predicted trigger,
entity/trigger (nested event) and the words between them as
argument candidate instances. Then, our argument detection
model takes all argument candidate instances as inputs, and
outputs argument types (7 types in all) the argument candi-
date belongs to.

As shown in Fig. 4, the n relevant instances are de-
scribed as {S 1, S 2, · · ·, S n} which are sentence fragments
constructed by the predicted triggers, argument candidates
and the words between them, S i denotes the i-th sentence
(i ∈[1,n]), li is the length of S i, and wi

j is the j-th word in
sentence S i(j ∈[1, li]). In the embedding layer, the model
represents each word (wi

j) as a vector. After the BLSTM
layer, the word level attention layer takes the hidden out-
puts of BLSTM layer as inputs, and the sentence matrix
is generated, where each column vector (S i) is the seman-
tic representation of the corresponding word. The sentence
level attention layer produces final representation for the rel-
evant instances with the same predicted triggers. Finally, the
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Fig. 4 The framework of argument detection

model classifies the argument candidates as a specific argu-
ment type by a softmax classifier.

3.5 Post-Processing

After trigger identification and argument detection, the fi-
nal complete biomedical events are constituted by post-
processing. The post-processing [17] ensures that the events
can generate candidate instances correctly. The main meth-
ods of post-processing are rule-based and machine learning
based. We employ a SVM-based post-processing to learn
the valid event combination automatically, which can avoid
the cost of handcrafted rules. The SVM classifier automati-
cally learns the legal event structure for each event type by
the extracted features, then constitutes event candidates and
finally determines their event types. The features extracted
in this process mainly include three categories [18]: linear
span features, argument combination features and argument
content features.

4. Experiments and Results

4.1 Corpus and Evaluation

Our experiments are conducted on the commonly used
dataset (MLEE) [1]. The MLEE dataset supports event ex-
traction of all levels of biomedical organization from the
molecular level to the whole organism. Specifically, the
related event types are divided into four categories (i.e.
Anatomical, Molecular, General and Planned), containing
19 pre-defined event categories. The static distribution of
the MLEE corpus is shown as Table 1.

On the MLEE corpus, the data is provided in three
parts as training, development and test sets. We com-
bine the training and development datasets for training, use
development dataset for tuning parameters, and the test
dataset for testing. We evaluate the proposed approach with
P(recision)/R(ecall)/F(-score). The evaluation metric P/R/F
is defined as Eq. (23), where TP, FP and FN are short for
True Positives, False Positives and False Negatives respec-
tively.

Table 1 The static distribution of the MLEE corpus

Data Train Test Total
Document 175 87 262
Sentence 1728 880 2608
Event 4471 2206 6677

P=
TP

TP + FP
,R=

TP
TP + FN

,F-score=
2 ∗ P ∗ R

P + R
(23)

4.2 Hyper-Parameters Settings and Training Details

Our framework is implemented based on Theano, and the
number of BLSTM neural network layer is 2. We use a
batch size of 64 in all training. The dimensions of all the
word-embeddings employed in the experiments are 200. In
addition, we set the dropout [19] rate to 0.5, the number of
hidden nodes to 200, and the maximum number of itera-
tions to 100 epochs. We select the Adadelta as the training
algorithm. The learning rate is selected as 0.01 from the set
{0.01, 0.001, 0.0001}.

4.3 Results of Trigger Prediction

Dependency-based Word Embeddings vs. Skip-gram
Model based Word Embeddings: The dependency-based
word embeddings can obtain more abundant semantic in-
formation, so that the performance of trigger detection will
be improved. As shown in Table 2, dependency-based word
embeddings (line 2) outperforms the skip-gram word em-
beddings (line 1) by 2.05% F-score, which illustrates the
effectiveness of dependency-based word embeddings.

Effectiveness of Sentence Vectors: We generate the
sentence vectors by the following ways:(1) averaging or
maximizing the differences (/sum) between the pre-trained
and the fine-tuned word embeddings of each word in sen-
tences; (2) averaging or maximizing only the fine-tuned or
pre-trained word embeddings. Finally, averaging the differ-
ences between the two kinds of word embeddings obtains
the best performance, achieving an F-score of 77.96%. As
shown in Table 2 (line 4), the F-score of our method is im-
proved by 3.75% significantly, which validates the effective-
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ness of the sentence vectors.
Effectiveness of Attention Mechanism: Based on the

above experiments, the attention mechanism is integrated.
As shown in Table 2 (the last line), the experimental result
has been increased to 79.55%, improved by 1.59% F-score.
It is worth mentioning that the recall is improved by 2.9% F-
score after integrating attention mechanism. The main rea-
son is that the attention mechanism helps to filter out the
irrelevant noise and find the important units in the input se-
quence, so that more event trigger words are recalled.

4.4 Results of Argument Prediction and Event Extraction

Effectiveness of Multi-level Attention Mechanism: The
results of argument prediction and event extraction integrat-
ing multi-level attention are shown in Table 3. To constitute
more biomedical events, we select the results of argument
prediction with higher recall instead of higher F-score. That
is, Recall is the measure of model performance and we re-
port the results with the best Recall of each model in Table
3. As shown in Table 3, the recall of argument detection
with word level attention (line 2) and sentence level atten-
tion (line 3) are both improved than the baseline method
(line 1). However, the recall is the highest when we com-
bine word level attention with sentence level attention (line
4), namely multi-level attention. Table 3 also give the corre-
sponding results of event extraction. The corresponding F-
score of event extraction is also better when the word level
attention or sentence level attention is integrated into our
model. When we integrate multi-level attention, the perfor-
mance of event extraction is best, achieving an F-score of
59.61%, which illustrates the effectiveness of multi-level at-
tention.

4.5 Comparisons with Other Methods

Recent researches of event extraction are all based on the
MLEE corpus, and there is no published results of argument
detection for comparison. Therefore, we compare our exper-
imental results of trigger identification and event extraction
with the advanced methods based on MLEE.

Table 2 Performances of different methods on trigger detection

Method P (%) R (%) F (%)
LSTM(Skip-gram) 69.53 71.64 70.57
LSTM(Dependency-based) 73.56 71.70 72.62
BLSTM(Dependency-based) 76.26 72.27 74.21
BLSTM+Sentence Vector 82.81 73.66 77.96
BLSTM+Sentence Vector+Attention 82.79 76.56 79.55

Table 3 Performances of different methods on argument detection and event extraction

Argument Prediction Event Extraction
Method P (%) R (%) F (%) P (%) R (%) F (%)
BLSTM 42.09 67.68 51.89 90.93 38.50 54.09
BLSTM + Word Level Attention 39.30 74.75 51.52 90.75 43.00 58.35
BLSTM + Sentence Level Attention 38.14 77.26 51.07 89.69 44.12 59.14
BLSTM + Word Level Attention + Sentence Level Attention 37.06 78.45 50.34 90.24 44.50 59.61

4.5.1 Comparisons of Trigger Identification Performance
of Different Methods

Pyysalo et al. [1] utilized support vector machine (SVM) to
classify triggers, achieving 75.84% F-score. Zhou et al. [2]
identified the trigger based on hidden topics, which obtained
76.89% F-score. Wang et al. [5] employed a neural network
architecture to learn better feature representation for trigger
identification, achieving a micro F-score of 78.27%. Nie et
al. [6] proposed a word embeddings assisted neural network
architecture (EANNP) to conduct event identification. Their
system achieved an F-score of 77.23%. Zhou et al.’s [4]
trigger identification method integrating domain knowledge
achieved 78.32% F-score. As shown in Table 4, our method
achieves the best performance on the MLEE corpus. Our
F-score is 3.71% higher than the baseline method’s, 1.23%
higher than Zhou et al.’s [2] best performance system, 1.28%
higher than Wang et al.’s [5], and 2.22% higher than Nie et
al.’s [6], which also employed deep learning methods in their
studies.

4.5.2 Comparisons of Event Extraction Performance of
Different Methods

From Table 5, our approach achieves 59.61% F-score on
MLEE datasets for event extraction, which is 1.3% higher
than the best system proposed by Wang et al. [7]. They em-
ployed task-based features represented in a distributed way
as the input of CNN models to extract biomedical events.
Zhou et al. [2] utilized a semi-supervised learning frame
work based on hidden topics for biomedical event extrac-
tion. Pyysalo et al. [1] employed an SVM-based approach

Table 4 Comparison of the performance of trigger identification

Method P (%) R (%) F (%)
Pyysalo et al. [1] 70.79 81.69 75.84
Zhou et al. [2] 72.17 82.26 76.89
Nie et al. [6] 71.04 84.60 77.23
Wang et al. [5] 73.56 83.62 78.27
Zhou et al. [4] 75.35 81.60 78.32
Proposed 82.79 76.56 79.55

Table 5 Comparison of the performance of event extraction

Method P (%) R (%) F (%)
Pyysalo et al. [1] 62.28 49.56 55.20
Zhou et al. [2] 55.76 59.16 57.41
Wang et al. [7] 60.56 56.23 58.31
Proposed 90.24 44.50 59.61
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with many lexical features. The results of Table 5 show
that the proposed model, which employs multi-level atten-
tion and dependency word embeddings, is beneficial to im-
prove the performance of biomedical event extraction. In
this work, we employ sentence vector and BLSTM based
encoder to capture the accurate clues related to the events in
the sentence. At each time step, the current trigger candi-
date is classified depending on not only the word itself and
the words within a window but also other clues related to the
event in the sentence, which are helpful for accurate classi-
fication. Thus, our model has higher precision with a little
loss of recall than the other state-of-the-art methods.

5. Discussion

From the above experimental results, we can conclude that
our BLSTM model based on multi-level attention mecha-
nism outperforms most state-of-the-art systems and mainly
includes the following important advantages:

Dependency-based Word Embeddings: The dependency-
based word embeddings can obtain the dependency rela-
tions, which are important for event extraction. It is difficult
to obtain the relation between words that are far apart by the
traditional word embeddings. However, the dependency-
based word embeddings can capture the long-distance de-
pendency information. For example, in the sentence frag-
ment ‘The toxin prevented induction of 1L-10” (Fig. 5), the
relation between “prevented” and “1L-10” is out-of-reach
when the size of the window is 1 or 2. Furthermore, the
“coincidental” contexts which are within the window but
not directly related to the target word can be filtered out
(e.g. the word “The is not used as the context for “pre-
vented”). In addition, the contexts are typed, for example,
“1L-10induction” is the object of “prevented, and “toxin is
the subject. Therefore, we expect the dependency-based
contexts to yield more focused embeddings, capturing more
functional and less topical similarity. Table 2 shows the ef-
fectiveness of the dependency-based word embeddings.

Sentence Vector: To take advantage of both the pre-
trained word embeddings and fine-tuned word embeddings,
we generate sentence vectors by averaging the differences
of the two word embeddings in a sentence. Sentence vec-
tors can establish the relation between word level features
and sentence level features, enrich context information. In
addition, for our task, there is a strong association between
events appearing in a sentence. There are multiple events
in a sentence, and each event has its own triggers and ar-
guments. The semantic information of the triggers and ar-
guments may be helpful to identify each other. Also, there
may be nested events in a sentence, which means a trigger

Fig. 5 Example of dependency-based context

may be the argument of the other event in the sentence (such
as event E2 and E3 of Fig. 1). That means, there might be
interrelation between any two words in a sentence. There-
fore, the global information of the sentence is important for
event extraction. Thus, we supplement the sentence vec-
tors to capture the global sentence-level features. The ex-
perimental results reveal that the sentence vectors have the
significant impact on trigger detection.

Multi-level Attention Mechanism: To filter out the ir-
relevant noise and find the important units of the inputs, we
integrate multi-level attention for event extraction. The con-
tribution is that it can automatically focus on the words that
have decisive effect on classification and enhance the effect
among relevant arguments without using extra knowledge
and NLP tools.

Effectiveness of Word Level Attention: The word level
attention focuses on important words within one sentence.
Figure 6 shows to what extent the attentive model focuses on
the contextual representations of the sentence “Inhibition of
angiogenesis has been shown to be an effective strategy in
the therapy.” In the sentence, there are three triggers, which
are “Inhibition”, “angiogenesis” and “therapy” respectively.
All the words are treated equally before integrating atten-
tion. However, after integrating the attention mechanism
in our architecture, as shown in Fig. 6, most of the verbs
(“has”, “shown”) and nouns (“Inhibition”, “angiogenesis”,
“therapy”) in the sentence are strengthened by the attention
weights in the training process. The event triggers are usu-
ally verbs or gerunds, and arguments are usually nouns or
other triggers (nested events). Therefore, the potential trig-
gers and arguments might be focused on via the attention,
which might be helpful for trigger detection. Also, the en-
hancement of the argument information might be helpful for
determining the trigger types.

Effectiveness of Sentence Level Attention: The interac-
tion among relevant arguments will be enhanced by the sen-
tence level attention. For instance, in the “Binding” type
event: (Type: Binding, Trigger: binding, Theme: TRAF2,
Theme: CD40) in Fig. 7, the arguments (binding, TRAF2)
and (binding, CD40) with the same trigger “binding” are
treated as relevant arguments. After integrating the sen-
tence level attention, the interaction among relevant argu-
ments will play a role in the argument prediction. There-
fore, if one of the above argument is predicted as a “Theme”
type argument, we would have more confidence in predict-
ing the other argument as a “Theme” type argument. That’s

Fig. 6 Visualization of attentions over words

Fig. 7 An example of biomedical events
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because there are usually multiple “Theme” type arguments
in the “Binding” type event. The experimental results also
reveal the effectiveness of the attention.

6. Conclusion

In this paper, we propose a multi-level attention mechanism
based on BLSTM neural network for biomedical event ex-
traction. The BLSTM can reduce the manual efforts and
obtain both left and right context information in sentence.
The dependency-based word embeddings capture more se-
mantic and syntactic information in dependency contexts,
which is beneficial for our task. Sentence vectors enrich
the sentence level global features of the events within a sen-
tence. Multi-level attention mechanism captures the most
important information and enhance the interactions among
relevant arguments. Our method achieves 59.61% F-score
without using additional handcrafted features, and outper-
forms other state-of-the-art systems, which demonstrates the
potential and effectiveness of the proposed framework.
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