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PAPER

Linguistic Multi-Criteria Group Decision-Making Method
Combining Cloud Model and Evidence Theory

Jian ZHOU†,††a), Nonmember, Chong HAN†,††, Member, Lijuan SUN†,††, and Fu XIAO†,††, Nonmembers

SUMMARY The linguistic Multi-Criteria Group Decision-Making
(MCGDM) problem involves various types of uncertainties. To deal with
this problem, a new linguistic MCGDM method combining cloud model
and evidence theory is thus proposed. Cloud model is firstly used to handle
the fuzziness and randomness of the linguistic concept, by taking both the
average level and fluctuation degree of the linguistic concept into consid-
eration. Hence, a method is presented to transform linguistic variables into
clouds, and then an asymmetrical weighted synthetic cloud is proposed to
aggregate the clouds of decision makers on each criterion. Moreover, ev-
idence theory is used to handle the imprecision and incompleteness of the
group assessment, with the belief degree and the ignorance degree. Hence,
the conversion from the cloud to the belief degree is investigated, and then
the evidential reasoning algorithm is adopted to aggregate the criteria val-
ues. Finally, the average utility is applied to rank the alternatives. A nu-
merical example, which is given to confirm the validity and feasibility, also
shows that the proposed method can take advantage of cloud model and
evidence theory to efficiently deal with the uncertainties caused by both the
linguistic concept and group assessment.
key words: MCGDM, linguistic, uncertainty, cloud model, evidence theory

1. Introduction

Multi-Criteria Decision-Making (MCDM) is one of the
most important decision methodologies, which is widely
used in the fields of science [1], business [2], and engineer-
ing [3], etc. Due to the inherent vagueness of human prefer-
ences and the complexity of decision-making problems, the
Decision Makers (DMs) usually feel more confident in pro-
viding linguistic assessments than providing exact numeri-
cal values in real MCDM cases. This decision-making case
is defined as a linguistic MCDM problem, that is, the al-
ternative assessments with regard to criteria are given with
linguistic variables [4].

Recently, linguistic MCDM methods have been stud-
ied in many fields [5]–[7]. Herrera et al. [8] and Martı́nez
et al. [9] survey that three main types of linguistic MCDM
methods have been put forward: 1) The method on the basis
of membership functions, which could convert the linguis-
tic concept into some fuzzy numbers by membership func-
tions [10]–[12]. However, in the transformation process, this
method could possibly lead to information distortion. 2) The
method on the basis of symbols, which could convert the

Manuscript received August 16, 2018.
Manuscript revised January 4, 2019.
Manuscript publicized January 24, 2019.
†The authors are with College of Computer, Nanjing Univer-

sity of Posts and Telecommunications, Nanjing 210003, China.
††The authors are with Jiangsu High Technology Research Key

Laboratory for Wireless Sensor Networks, Nanjing 210003, China.
a) E-mail: zhoujian@njupt.edu.cn

DOI: 10.1587/transinf.2018EDP7288

linguistic concept into some real numbers [13]–[15]. But
this method absolutely loses the fuzziness of linguistic vari-
ables. 3) The method on the basis of 2-tuple linguistic
models, which could also transform the linguistic concept
into some real numbers and introduce the uncertain deci-
sion making into the precise domain [16]–[18]. However,
this method may violate the original intention of DMs.

Furthermore, the linguistic concept usually involves
various uncertainties, among which the fuzziness and ran-
domness are the two most important. The fuzziness of a
concept denotes the uncertainty with regard to the exten-
sion range of this concept, and the randomness of a concept
indicates that any concept is not isolated [19]. Fuzzy sets
theory and probability theory are the main mathematical in-
struments to respectively settle fuzziness and randomness.
Cloud model proposed by Li et al. [20], which can repre-
sent the fuzziness of a concept with the normal membership
function and the randomness with the normal distribution, is
founded on fuzzy sets theory and probability theory. Over
the last few decades, cloud model has been successfully ap-
plied in risk assessment [21], anomaly detection [22], rec-
ommendation system [23] and game problems [24]. Some
methods [25]–[27] have successfully applied cloud model
to linguistic MCDM, by transforming the linguistic assess-
ment into the cloud. Cloud model describes the linguistic as-
sessment with three numerical characteristics that reflect not
only the average levels of the linguistic concept but also the
fuzziness and randomness. Meanwhile, some related aggre-
gation methods of the clouds, such as synthetic cloud [28],
floating cloud [25], and cloud weighted arithmetic averag-
ing (CWAA) operator [26], have been studied. However,
the aggregated clouds using these aggregation methods ei-
ther fail to cover the domain of all original clouds, or cover
the domain of the irrelevant cloud. In this paper, we use
cloud model to handle the fuzziness and randomness of the
linguistic concept. The linguistic assessments of DMs are
transformed into clouds, and then an asymmetrical weighted
synthetic cloud is proposed to aggregate these clouds.

In real MCDM cases, the criteria value of alterna-
tive is often provided by a group of DMs because an indi-
vidual may be incapable of providing reliable assessments
due to the lack of necessary information or experiences.
This decision-making case is called a Multi-Criteria Group
Decision-Making (MCGDM) problem. The MCGDM prob-
lem is often encountered in information systems, such as
crowd sensing [29] and computing task assignment [30].
Nowadays it is more and more common that the solution of
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this problem is achieved by the linguistic MCGDM meth-
ods [31]–[33]. Due to the uncertainty caused by aggrega-
tion of DMs assessments, the criteria value can be hesi-
tant, imprecise, or even incomplete. Fortunately, evidence
theory can provide good solutions to these problems. Evi-
dence theory originated from Dempster’s work [34] and fur-
ther extended by Shafer [35], is a generalization of tradi-
tional probability, which allows us to get a better handle on
the imprecision and incompleteness. It is particularly use-
ful for dealing with uncertain subjective judgments when
multiple pieces of evidence must be simultaneously consid-
ered. An Evidential Reasoning (ER) algorithm on the base
of both evidence theory and decision theory was proposed
by Yang et al. [36], [37] to handle the uncertain MCDM
problem in 1990s. So far, evidence theory and its exten-
sions have been widely applied in many areas such as pat-
tern recognition [38], rule-based systems [39], forex market
analysis [40], and group decision analysis [41]. In this pa-
per, we suppose that the group assessment consists of the
linguistic assessment of each decision maker, just the belief
degree of each linguistic assessment is different. And we use
evidence theory to handle the imprecision and incomplete-
ness of the group assessment. The ER algorithm is adopted
to aggregate the group assessments on each criterion.

We propose a new method to solve the linguistic
MCGDM problem in this paper. To handle the fuzziness and
randomness of the linguistic concept, cloud model is used
to represent and aggregate DMs linguistic assessments. Be-
sides, to cope with the imprecision and incompleteness of
the group assessment, evidence theory is used to fuse the
assessment of each criterion. The new method takes advan-
tage of these two theories, and the major contributions of
this paper are as followings. Firstly, a method for transform-
ing linguistic variables into the corresponding clouds is pro-
posed. Secondly, an asymmetrical weighted synthetic cloud
is presented to aggregate the clouds of DMs on each crite-
rion. Thirdly, the conversion from the cloud to the belief
degree is developed. Finally, the ER algorithm is adopted to
aggregate the criteria values, and then the average utility is
used to rank the alternatives. This method is different from
other MCGDM methods in that it can deal with uncertainties
caused by both the linguistic concept and group assessment.

The remainder of this paper is organized as follows:
Section 2 introduces some relative definitions. Section 3
proposes the linguistic MCGDM method combining cloud
model and evidential theory. To validate the proposed
method, a numerical example is examined in Sect. 4. Sec-
tion 5 concludes this paper.

2. Preliminaries

This section involves some basic concepts of cloud model
and evidence theory.

2.1 Basics of Cloud Model

Li et al. [20] presented a cloud model as a new representa-

tion model of uncertainty on the base of fuzzy sets theory
and probability theory.

Define a qualitative concept T over a universe of dis-
course U = {u}. Then x ∈ U is defined as a random instan-
tiation of T , and μT (x) ∈ [0, 1] is the certainty degree that x
belongs to T , which corresponds to a random number with
a steady trend. Define a cloud that represents the distribu-
tion of x in the universe U, where x is known as a cloud
drop [19]. ∀x ∈ U, the mapping μT (x), is essentially one-
to-many mapping, which means the certainty degree that x
belongs to T is a distribution of probability.

Cloud model can describe a qualitative concept with
three numerical characteristics which are Expectation Ex,
Entropy En, and Hyper entropy He. Ex is the mathematical
expectation of the cloud drops that belongs to a qualitative
concept in the universe. En is used to refer to the fuzziness
measurement of the concept. He reflects the cloud drops
dispersion. Suppose C is a cloud with three numerical char-
acteristics, which can be represented as C(Ex, En,He).

The normal cloud model founded on the normal mem-
bership function and normal distribution, which we discuss
only in this paper, is generally applicable.
Definition 1 [19]. Suppose U is the discourse universe and
Ã is a qualitative concept in U. If x ∈ U is a random in-
stantiation of the concept Ã, which follows x∼N(Ex, En′2),
En′ ∼ N(En,He2), and the certainty degree that x belongs
to the concept Ã follows μ = e−(x−Ex)2/(2(En′)2), then the x
distribution in the universe U is called a normal cloud.

2.2 Basics of Evidence Theory

Evidence theory was originally presented by Dempster [34]
and later developed by Shafer [35]. Evidence theory was
introduced in the uncertain MCDM problem by Yang
et al. [36], [37] in the early 1990s.
Definition 2. Define Θ as a set of elements that are collec-
tively exhaustive and mutually exclusive, where an element
can be an object, a hypothesis, or in this paper a linguistic
variable. Θ is referred to as the frame of discernment; the
set which consists of all the subsets of Θ is denoted by Ω(Θ)
and seen as the power set of Θ.
Definition 3 [42]. A Basic Probability Assignment (BPA) is
a function m : Ω(Θ)→ [0, 1], which is called a mass function
and satisfies the following equation:

m(Φ) = 0,
∑

A⊆Ω(Θ)

m(A) = 1 (1)

where Φ is empty, and A is any subset of Θ. The assigned
probability m(A), which is also named probability mass,
evaluates the belief accurately assigned to A and indicates
the support degree of the evidence to A. It does not include
the belief in any particular subset of A. Each subset A ⊆ Θ
such that m(A) > 0 is referred to as a focal element of m.
When a mass value is committed to a subset that has more
than one element, it explicitly states that there is not enough
information for assigning this belief more exactly to each
individual element in the subset. Especially when there is
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no evidence about Θ at all, the total belief is assigned to the
whole frame of discernment m(Θ)=1, where m(Θ) is called
the ignorance degree.

3. Linguistic MCGDM Method Combining Cloud
Model and Evidential Theory

3.1 Linguistic MCGDM Problem

With respect to a MCGDM problem, suppose there
are n alternatives A = {a1, a2 · · · ai · · · an} and m crite-
ria C = {c1, c2 · · · c j · · · cm} with weight vector W =

{w1, w2 · · ·w j · · ·wm} associated with C, where w j ∈ [0, 1]
and

∑m
j=1 w j = 1. Suppose there are s DMs D =

{d1, d2 · · · dk · · · ds} whose corresponding weight vector is
λ = {λ1, λ2 · · · λk · · · λs}, where λk ∈ [0, 1] and

∑s
k=1 λk = 1.

The evaluation matrix of the kth DM is expressed as Ek =

(hk
i j)m×n, where hk

i j is the assessment for alternative ai corre-
sponding to criterion c j given by decision maker dk.

As mentioned in Sect. 1, it is hard for DMs to give their
preferences with numerical values. In this paper, to provide
individual preferences, DMs use linguistic variables in the
predefined linguistic term set, hk

i j ∈H.
Definition 4. Let H = {h1, h2 · · · hg · · · hN} be a finite lin-
guistic term set, in which the variables are required to be
collectively exhaustive and mutually exclusive for the as-
sessment. Without loss of generality, h1 and hN are assumed
to be the worst and the best variables respectively, and hg+1

is preferred to hg.
Suppose, N = 5 for example, H may be defined as

follows: H = {poor(h1), indi f f erent(h2), average(h3),
good(h4), excellent(h5)}.

3.2 Transform the Linguistic Information into the Cloud

Transformation between a qualitative linguistic concept and
its quantitative value has always been a barrier in the inguis-
tic MCGDM problem. As a powerful transformation model
of qualitative and quantitative, cloud model makes it possi-
ble to address the potential fuzziness and randomness inher-
ent in the linguistic concept. A method for transforming lin-
guistic variables into the corresponding clouds is introduced
as follows.
Definition 5. Assuming the linguistic term set is H =

{h1, h2 · · · hg · · · hN}, and a valid non-negative universe
[Umax,Umin] is provided. By applying the average method,
H = {h1, h2, · · · hg · · · hN} = {(B1

min, B
1
max), (B2

min, B
2
max), · · ·

(Bgmin, B
g
max), · · · (BN

min, B
N
max)}, where Length(Bgmin, B

g
max) =

(Umax − Umin)/N. Then, the cloud chg (Exg, Eng,Heg) rep-
resenting hg can be defined as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Exg =
Bgmin + Bgmax

2

Eng =
Bgmax − Bgmin

6
Heg = θ

(2)

Fig. 1 Clouds of linguistic variables.

Cloud model uses three numerical characteristics to de-
scribe a linguistic variable. These characteristics realize the
conversion of objective and its interchangeable between a
qualitative linguistic concept and its quantitative value. The
algorithm for computing three numerical characteristics can
be illustrated as shown below. Ex expresses the expectation
of the linguistic concept. Thus, it is natural to use the me-
dian of the interval, where Interval [Ex−3En, Ex+3En] best
describes the qualitative linguistic concept (99.74%, 6En
rule). Consequently, 6En can be adopted to represent the
fuzziness and bound of the linguistic concept. He is set to θ
which can be adjusted according to actual conditions.
Example 1. Let the universe be [0, 1] and the linguistic as-
sessment set be H = {poor(h1), indifferent(h2), average(h3),
good(h4), excellent(h5)}, then H = {(B1

min = 0, B1
max =

0.2), (B2
min = 0.2, B2

max = 0.4), (B3
min = 0.4, B3

max =

0.6), (B4
min = 0.6, B4

max = 0.8), (B5
min = 0.8, B5

max = 1)}.
Given He = 0.01, the following five clouds can be ob-
tained: CH = {ch1 (0.1, 0.033, 0.01), ch2 (0.3, 0.033, 0.01),
ch3 (0.5, 0.033, 0.01), ch4 (0.7, 0.033, 0.01), ch5 (0.9, 0.033,
0.01)}. 1000 cloud drops can be generated for each cloud
using the forward cloud generator [19], and the predefined
linguistic term set can be explicitly presented by clouds, as
shown in Fig. 1.

3.3 Aggregate the Clouds of DMs on Each Criterion

After the linguistic assessment is transformed to the cloud,
an aggregation step must be carried out for a collective
group assessment. On the basis of synthetic cloud [28],
the asymmetrical weighted synthetic cloud aggregation al-
gorithm is proposed in this section to obtain the cloud of
the group assessment. The cloud of the group assessment
can meet the following requirements: 1) The cloud of the
group assessment is required to cover the linguistic assess-
ments of all DMs in group decision-making. 2) The cloud
of the group assessment must be limited between the best
and worst linguistic assessments and should not be out of
the domain. The asymmetrical weighted synthetic cloud can
synthesize all DMs assessments on each criterion and reflect
more general information coverage.
Definition 6. Let ck(Exk, Enk,Hek), k = 1, 2 · · · s, be a col-
lection of clouds, and let λ= {λ1, λ2 · · · λk · · · λs} be a weight
vector with λk ∈ [0, 1],

∑s
k=1 λk = 1. Their asymmetrical
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Fig. 2 Asymmetrical weighted synthetic cloud.

weighted synthetic cloud c̃(Ex, Enl, Enr,He) can be defined
as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ex =
s∑

k=1

λkExk

Enl =

Ex −min
k
{Exk − 3Enk}

3

Enr =

(max
k
{Exk + 3Enk} − Ex)

3

Hes =

s∑

k=1

λkHek

(3)

The asymmetrical weighted synthetic cloud c̃(Ex, Enl,
Enr,He) is made up of two half clouds. One is the left half-
up cloud cl(Ex, Enl,He), the other is the right half-down
cloud cr(Ex, Enr,He). The entropy Enl or Enr of the asym-
metrical weighted synthetic cloud is larger than the entropy
Enk of each individual cloud. And the values of Enl and Enr

ensure that the asymmetrical weighted synthetic cloud cover
the domain of all original clouds, and not cover the domain
of the irrelevant cloud. It can aggregate assessments of DMs
and be regarded as the result of the group decision on each
criterion.
Example 2. Given three clouds c1(0.1, 0.033, 0.01),
c2(0.3, 0.033, 0.01), and c3(0.5, 0.033, 0.01) with an as-
sociated weight vector λ = {0.2, 0.3, 0.5}, then Ex =
0.2 × 0.1 + 0.3 × 0.3 + 0.5 × 0.5 = 0.36, Enl =
0.36−min{(0.1−3×0.033),(0.3−3×0.033),(0.5−3×0.033)}

3 = 0.12, Enr =
max{(0.1+3×0.033),(0.3+3×0.033),(0.5+3×0.033)}−0.36

3 = 0.08, He=0.2×
0.01 + 0.3 × 0.01 + 0.5 × 0.01 = 0.01. The synthetic cloud
c̃(Ex = 0.36, Enl = 0.12, Enr = 0.08,He = 0.01) can be
obtained, as shown in Fig. 2.

Especially, if Enl=Enr, then the asymmetrical weighted
synthetic cloud is equal to a normal cloud. Of course, a
normal cloud also can be seen as a special asymmetrical
weighted synthetic cloud.

3.4 Convert the Cloud into the Belief Degree

Evidence theory describes and handles uncertainties using
the concept of the belief degree. In this section, we convert
the cloud into the belief degree. A cloud is composed of

cloud drops. Given a cloud drop (x, μ), its certainty degree
that x belongs to the concept is μ. If Bgmin ≤ x ≤ Bgmax, we
consider that μ is the certainty degree that hg belongs to the
group assessment. If enough cloud drops can be obtained as
samples, the distribution of the belief degree can be obtained
according to Monte Carlo method.
Definition 7. Given an asymmetrical weighted synthetic
cloud and applied the forward asymmetrical weighted syn-
thetic cloud generator, nall cloud drops can be gener-
ated. Suppose there are n1 cloud drops {(x1, μ1), (x2, μ2) · · ·
(xt1 , μt1 ) · · · (xn1 , μn1 ), between [B1

min, B
1
max], · · · , ng cloud

drops {(x1, μ1), (x2, μ2) · · · (xtg , μtg ) · · · (xng , μng ) between
[Bgmin, B

g
max], · · · , nN cloud drops {(x1, μ1), (x2, μ2) · · ·

(xtN , μtN ) · · · (xnN , μnN ) between [BN
min, B

N
max] and

∑N
g=1 ng =

nall. Then the distribution of the belief degree can be calcu-
lated as follows:

β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β(h1) =

n1∑
t1=1
μt1

nall∑
t=1
μt

∀xt1 ∈ [B1
min, B

1
max]

...

β(hg) =

ng∑
tg=1
μtg

nall∑
t=1
μt

∀xtg ∈ [Bgmin, B
g
max]

...

β(hN) =

nN∑
tN=1
μtN

nall∑
t=1
μt

∀xtN ∈ [BN
min, B

N
max]

(4)

where β(hg) denotes a belief degree to which the criterion is
confirmed to hg.

The forward asymmetrical weighted synthetic cloud
generator based on the forward cloud generator [19] gener-
ates cloud drops in accordance with the numerical character-
istics (Ex, Enl, Enr,He). Definition 8 details the generating
procedure of the algorithm for the asymmetrical weighted
synthetic cloud c̃ as follows:
Definition 8. Forward Asymmetrical Weighted Synthetic
Cloud Generator FAWS CG(Ex, Enl, Enr,He,N).

Input: Four parameters, Ex, Enl, Enr, and He, and
cloud drop number N.

Output: N cloud drops.
Steps:
(1) Generate a random number Enl

i
′

which follows nor-
mal distribution, with expectation Enl and variance He2.

(2) Generate a random number xi which follows normal
distribution, with expectation Ex and variance He2.

(3) If xi > Ex, repeat step 2. Else, calculate μi =

e−(xi−Ex)2/(2(Enl
i
′
)2).

(4) Drop (xi, μi) is a cloud drop of the left half-up cloud.
(5) Repeat steps 1-4 until 
N/2� cloud drops of the left

half-up cloud have been generated.
(6) Generate a random number Enr

t
′ which follows nor-

mal distribution, with expectation Enr and variance.
(7) Generate a random number xt which follows normal

distribution, with expectation Ex and variance (Enr
t
′)2.
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(8) If xt < Ex, repeat step 7. Else, calculate μt =

e−(xt−Ex)2/2(Enr
t
′)2

.
(9) Drop (xt, μt) is a cloud drop of the right half-down

cloud.
(10) Repeat steps 6-9 until N − 
N/2� cloud drops of

the right half-down cloud have been generated.
Example 3. Given an asymmetrical weighted synthetic
cloud c̃(Ex = 0.36, Enl = 0.12, Enr = 0.08,He = 0.01),
1000 cloud drops can be generated by FAWSCG as shown in
Fig. 2. Then its distribution of the belief degree can be cal-
culated: β = {β(h1) = 0.03, β(h2) = 0.731, β(h3) = 0.239,
β(h4) = 0, β(h5) = 0}.

Considering the hesitance and imprecision caused by
aggregation of DMs′ assessments, the discounting coeffi-
cient is used as a reliability coefficient. The more linguis-
tic variables the synthetic cloud covers, the less reliable the
information source is. We use the discounting coefficient to
modify the belief degree.
Definition 9. Given the discounting coefficient α and a be-
lief degree β(hg), the discounted belief degree can be ob-
tained as β′(hg) = αβ(hg). If the distribution of the belief
degree for alternative ai on criterion c j is denoted as βi j, the
distribution of the discounted belief degree can be obtained
as β′i j = αβi j, where α = (l− 2N + 1)/(2− 2N), 0.5 ≤ α ≤ 1.
l is the number of hg covered by the synthetic cloud and

l = max{g|β(hg) � 0} −min{g|β(hg) � 0} + 1.
N∑
g=1
β′(hg) ≤ 1,

that is, the group assessment may be incomplete.
Example 4. Suppose βi j = {βi j(h1) = 0.03, βi j(h2) =
0.731, βi j(h3) = 0.239, βi j(h4) = 0, βi j(h5) = 0}, by ap-
plying Definition 9, the following can be obtained: α =
(3− 2× 5+ 1)/(2− 2× 5) = 0.75 and β′i j = αβi j = {β′i j(h1) =
0.00225, β′i j(h2) = 0.5483, β′i j(h3) = 0.1793, β′i j(h4) = 0,
βi j(h5) = 0}
3.5 Aggregate the Criteria Values of Each Alternative

Based on evidence theory, an ER algorithm have been de-
veloped for MCDM with the imprecise and incomplete in-
formation [42], [43]. We use the ER algorithm to aggregate
the criteria values. The group assessment on each criterion
and the linguistic assessment set H are respectively treated
as the evidence and the frame of discernment Θ. The assess-
ment of each criterion could be fused to obtain the overall
evaluation.

Firstly, the belief degree is transformed into the BPA.
Definition 10. Using the following equations, the distribu-
tion of the discounted belief degree for alternative ai on cri-
terion c j is transformed into the BPA through multiplying
the given discounted degree of belief β′i j(hg) by the relative
weight of the criterion w j.

mi, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mi, j(hg) = w jβ
′
i j(hg)

m̄i, j(H) = 1 − w j

m̃i, j(H) = w j(1 −
N∑

g=1

β′i j(hg))

(5)

where mi, j(H) = m̄i, j(H) + m̃i, j(H) and
m∑

j=1
w j = 1. As the

ignorance degree, mi, j(H) is divided into two parts: m̄i, j(H)
and m̃i, j(H), where m̄i, j(H) is determined by the relative im-
portance of criterion c j and m̃i, j(H) is determined by the im-
precision and incompleteness of the group assessment for ai

on c j.
Next, the BPAs on m criteria are aggregated into the

combined probability assignment.
Definition 11. Suppose mi,I( j)(H), m̄i,I( j)(H) and m̃i,I( j)(H)
are the combined probability masses obtained by aggregat-
ing the first j criteria for ai. The following recursive formu-
las are then proposed to aggregate the first j criteria with the
( j + 1)th criterion.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mi,I( j+1)(hg)=Ki,I( j+1)[mi,I( j)(hg)mi, j+1(hg)

+mi,I( j)(H)mi, j+1(hg)+mi,I( j)(hg)

mi, j+1(H)]

m̄i,I( j+1)(H) = Ki,I( j+1)[m̄i,I( j)(H)m̄i, j+1(H)]

m̃i,I( j+1)(H) = Ki,I( j+1)[m̃i,I( j)(H)m̃i, j+1(H)

+ m̄i,I( j)(H)m̃i, j+1(H)+m̃i,I( j)(H)

m̄i, j+1(H)]

(6)

where Ki,I( j+1) = [1 − N∑
g=1

N∑
t = 1
t � g

mi,I( j)(hg)mi, j+1(ht)]−1, mi,I( j) =

m̄(H)i,I( j)+ m̃i,I( j)(H), j=1, 2 · · ·m−1. mi,I(m)(hg) is a proba-
bility mass defined as the degree of support of all the criteria
to the hypothesis that ai is assessed to hg.

Finally, normalize the combined probability assign-
ment into the overall belief degrees.
Definition 12. Let βi(hg) and βi(H) denote the overall be-
lief degrees of the integration all assessments for alternative
ai, which are assigned to hg and H, respectively. The distri-
bution of the overall belief degrees of alternative ai can be
calculated as follows:

β(ai)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

βi(hg) =
mi,I(m)(hg)

1 − m̄i,I(m)(H)

βi(H) =
m̃i,I(m)(H)

1 − m̄i,I(m)(H)

(7)

βi(H) is the unassigned belief degree denoting the extent of
imprecision and incompleteness of the overall assessment
for alternative ai.
Example 5. Assume there is an alternative ai and two cri-
teria c1, c2 with weight vector w1 = 0.4, w2 = 0.6. Sup-
pose the distribution of the discounted belief degree for al-
ternative a1 on criterion c1 and c2 are β′11 = {β′11(h1) =
0.0225, β′11(h2) = 0.5483, β′11(h3) = 0.1793, β′11(h4) =
0, β′11(h5) = 0}, β′12 = {β′12(h1) = 0, β′12(h2) = 0.4,
β′12(h3) = 0.3, β′12(h4) = 0.2, β′12(h5) = 0}, respectively.
Using Definition 10, the BPAs can be obtained: m1,1 =

{m1,1(h1) = 0.009, m1,1(h2) = 0.2193, m1,1(h3) = 0.0717,
m1,1(h4) = 0, m1,1(h5) = 0, m̄1,1(H) = 0.6, m̃1,1(H) =
0.1}, m1,2 = {m1,2(h1) = 0, m1,2(h2) = 0.24, m1,2(h3) =
0.18, m1,2(h4) = 0.12, m1,2(h5) = 0, m̄1,2(H) = 0.4,
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m̃1,2(H) = 0.06} Then, using Definition 11, the follow-
ing can be obtained: K1,I(2) = [1 − m1,1(h1)(m1,2(h2) +
m1,2(h3)+m1,2(h4)+m1,2(h5))−m1,1(h2)(m1,2(h1)+m1,2(h3)+
m1,2(h4)+m1,2(h5))−m1,1(h3)(m1,2(h1)+m1,2(h3)+m1,2(h4)+
m1,2(h5))−m1,1(h4)(m1,2(h1)+m1,2(h3)+m1,2(h4)+m1,2(h5))−
m1,1(h5)(m1,2(h1) + m1,2(h3) + m1,2(h4) + m1,2(h5))]−1 =

1.10676
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1,I(2)(h1) = K1,I(2)[m1,1(h1)m1,2(h1)+m1,1(H)m1,2(h1)

+m1,1(h1)m1,2(H)]=0.0046

m1,I(2)(h2) = K1,I(2)[m1,1(h2)m1,2(h2)+m1,1(H)m1,2(h2)

+m1,1(h2)m1,2(H)]=0.3558

m1,I(2)(h3) = K1,I(2)[m1,1(h3)m1,2(h3)+m1,1(H)m1,2(h3)

+m1,1(h3)m1,2(H)]=0.1902

m1,I(2)(h4) = K1,I(2)[m1,1(h4)m1,2(h4)+m1,1(H)m1,2(h4)

+m1,1(h4)m1,2(H)]=0.093

m1,I(2)(h5) = K1,I(2)[m1,1(h5)m1,2(h5)+m1,1(H)m1,2(h5)

+m1,1(h5)m1,2(H)]=0

m̄1,I(2)(H) = K1,I(2)[m̄1,1(H)m̄1,2(H)]=0.2656

m̃1,I(2)(H) = K1,I(2)[m̃1,1(H)m̃1,2(H)+m̄1,1(H)m̃1,2(H)

+m̃1,1(H)m̄1,2(H)]=0.0908

Finally, using Definition 12, the distribution of the
overall belief degrees can be calculated: β(a1) = {β1(h1) =

m1,I(2)(h1)
1−m̄1,I(2)(H) = 0.0062, β1(h2) = m1,I(2)(h2)

1−m̄1,I(2)(H) = 0.4845, β1(h3) =
m1,I(2)(h3)

1−m̄1,I(2)(H) = 0.2591, β1(h4) = m1,I(2)(h4)
1−m̄1,I(2)(H) = 0.1266, β1(h5) =

m1,I(2)(h5)
1−m̄1,I(2)(H) =0.0, β1(H)= m̃1,I(2)(H)

1−m̄1,I(2)(H) =0.0062}

3.6 Rank Alternatives

The average, minimum and maximum utilities are intro-
duced to rank N alternatives [43]. The least preferred lin-
guistic variable with the lowest utility is supposed as h1, and
the most preferred linguistic variable with the highest utility
is supposed as hN .
Definition 13. Suppose the utility of a linguistic variable hg
is u(hg), then the average, minimum and maximum utilities
of the alternative ai are defined as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uavg(ai)=
umin(ai)+umax(ai)

2

umin(ai)=
N∑

g=2

βi(hg)u(hg)+(βi(h1) + βi(H))u(h1)

umax(ai)=
N−1∑

g=1

βi(hg)u(hg)+(βi(hN) + βi(H))u(hN)

(8)

where βi(hg) and βi(H) are the overall belief degrees of the
alternative ai. It is obvious that if βi(H) = 0 then uavg(ai) =
umax(ai) = umin(ai).

In this paper, we rank the alternatives according to their
average utilities. If uavg(ai) > uavg(at), ai is said to be pre-
ferred to at.
Example 6. Suppose the utility of linguistic variables are

u(h1) = 0, u(h2) = 0.25, u(h3) = 0.5, u(h4) = 0.75, u(h5) =
1, If β(a1) = {β1(h1) = 0.0062, β1(h2) = 0.4845, β1(h3) =
0.2591, β1(h4) = 0.1266, β1(h5) = 0, β1(H) = 0.1236},
then the minimum, maximum and average utilities can be
calculated: umin(a1) = 0.4845×0.25+0.2591×0.5+0.1266×
0.75 + 0 × 1 + (0.0062 + 0.1236) × 0 = 0.3456, umax(a1) =
0.0062× 0+ 0.4845× 0.25+ 0.2591× 0.5+ 0.1266× 0.75+
(0+ 0.1236)× 1 = 0.4692, uavg(a1) = 0.4692+0.3456

2 = 0.4074.

3.7 Procedure for Linguistic MCGDM

As a result of the discussion above, we are now in a position
to describe a procedure for solving the linguistic MCGDM
problem. The procedure comprises the following steps.

Step 1: Transform the linguistic variable into the cloud
(hk

i j)m×n → (ck
i j(Exg, Eng,Heg))m×n.

Transform the linguistic variables in the linguistic term
set into the corresponding clouds using Definition 5 in
Sect. 3.2. Then, the evaluation matrix of the kth DM is ob-
tained as (ck

i j(Exg, Eng,Heg))m×n.
Step 2: Aggregate the clouds of DMs on each criterion

s
aggreate

k=1
(hk

i j)m×n → (c̃i j(Ex, Enl, Enr,He))m×n.

Considering the weight vector of DMs λ =

{λ1, λ2 · · · λk · · · λs}, aggregate the clouds of s DMs on each
criterion using Definition 6 in Sect. 3.3. Then, the group
evaluation matrix is obtained as (c̃i j(Ex, Enl, Enr,He))m×n.

Step 3: Convert the cloud into the belief degree
(c̃i j(Ex, Enl, Enr,He))m×n → (β′i j)m×n.

First, convert the asymmetrical weighted synthetic
cloud into the belief degree using Definition 7 in Sect. 3.4,
then use the discounting coefficient to modify the belief de-
gree according to Definition 9 in the same section. The dis-
tribution of the discounted belief degree for alternative ai on
criterion c j is denoted as β′i j.

Step 4: Aggregate the criteria values of each alternative
m

aggreate
j=1

β′i j → β(ai).

The criteria values are aggregated and the overall be-
lief degree of alternative ai is obtained by the ER algorithm
given in Definition 10–12 in Sect. 3.5.

Step 5: Rank alternatives β(ai)→ uavg(ai).
With the use of Definition 13 in Sect. 3.6, calculate the

average utility of each alternative. Then, rank the alterna-
tives according to the average utility uavg(ai).

4. Illustrative Example

This section demonstrates the implementation process of the
proposed method through a numerical example. Consider an
emergency planning evaluation problem for water pollution
incidents on six criteria [44]. It is necessary to make a deci-
sion of five emergency plans A = {a1, a2.a3, a4, a5} accord-
ing to the following six criteria C = {c1, c2, c3, c4, c5, c6}:
Effectiveness c1, Operability c2, Completeness c3, Rapidity
c4, Flexibility c5, Rationality c6, with the associated weight
vector W = {0.12, 0.15, 0.18, 0.25, 0.2, 0.1}. In addition,
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there are three DMs D = {d1, d2, d3} whose weight vec-
tor is λ = {0.35, 0.4, 0.25}, given the assessment with the
linguistic term set H = {h1 = very poor, h2 = poor, h3 =

medium poor, h4= f air, h5=medium good, h6 = good, h7 =

very good} Suppose the utilities of linguistic variables are
U = {u(h1) = 0, u(h2) = 0.167, u(h3) = 0.333, u(h4) =
0.5, u(h5) = 0.667, u(h6) = 0.833, u(h7) = 1, }. The lin-
guistic evaluation matrices of these three DMs are shown in
Tables 1–3.

4.1 Procedure for Linguistic MCGDM

Step 1: Transform the linguistic variable into the cloud.
Given the universe [Umax,Umin]= [0, 1] and He=0.01,

using Definition 5, the linguistic variables in the lin-
guistic term set can be transformed into 7 clouds as
ch1 (0.071, 0.024, 0.01), ch2 (0.214, 0.024, 0.01), ch3 (0.375,
0.024, 0.01), ch4 (0.5, 0.024, 0.01), ch5 (0.643, 0.024, 0.01),
ch6 (0.786, 0.024, 0.01), ch7 (0.929, 0.024, 0.01), Then, the as-
sessment information can be represented by these 7 clouds.

Step 2: Aggregate the clouds of DMs on each criterion.

Table 1 Evaluation matrix of d1

c1 c2 c3 c4 c5 c6

a1 h3 h4 h2 h2 h1 h3

a2 h2 h1 h5 h5 h2 h4

a3 h6 h5 h6 h7 h4 h6
a4 h3 h2 h4 h5 h2 h3

a5 h3 h2 h4 h2 h3 h6

Table 2 Evaluation matrix of d2

c1 c2 c3 c4 c5 c6

a1 h4 h2 h3 h3 h4 h2

a2 h3 h2 h4 h3 h6 h4

a3 h5 h7 h5 h7 h6 h4

a4 h3 h2 h5 h3 h5 h4

a5 h7 h1 h2 h4 h3 h1

Table 3 Evaluation matrix of d3

c1 c2 c3 c4 c5 c6

a1 h5 h3 h2 h4 h1 h1

a2 h2 h5 h3 h5 h4 h4

a3 h6 h7 h5 h7 h5 h6
a4 h2 h6 h3 h4 h5 h3

a5 h4 h2 h4 h2 h3 h1

Table 4 Group evaluation matrix.

c1 c2 c3

a1 c̃11(0.4857, 0.0669, 0.0764, 0.01) c̃12(0.3498, 0.0693, 0.0741, 0.01) c̃13(0.2712, 0.0431, 0.0526, 0.01)
a2 c̃21(0.2712, 0.0431, 0.0526, 0.01) c̃22(0.2712, 0.0907, 0.1479, 0.01) c̃23(0.5143, 0.0764, 0.0669, 0.01)
a3 c̃31(0.7288, 0.0526, 0.0431, 0.01) c̃32(0.8289, 0.086, 0.574, 0.01) c̃33(0.693, 0.0407, 0.055, 0.01)
a4 c̃41(0.3212, 0.0597, 0.0359, 0.01) c̃42(0.357, 0.0717, 0.167, 0.01) c̃43(0.5214, 0.0788, 0.0645, 0.01)
a5 c̃51(0.6215, 0.1122, 0.1265, 0.01) c̃52(0.1568, 0.0526, 0.0431, 0.01) c̃53(0.3856, 0.0812, 0.0621, 0.01)

c4 c5 c6

a1 c̃14(0.3427, 0.0669, 0.0764, 0.01) c̃15(0.2426, 0.0812, 0.1098, 0.01) c̃16(0.2283, 0.0764, 0.0669, 0.01)
a2 c̃24(0.5286, 0.0812, 0.0621, 0.01) c̃25(0.5143, 0.1241, 0.1146, 0.01) c̃26(0.5, 0.024, 0.024, 0.01)
a3 c̃34(0.929, 0.024, 0.024, 0.01) c̃35(0.5929, 0.044, 0.407, 0.01) c̃36(0.786, 0.024, 0.024, 0.01)
a4 c̃44(0.4929, 0.0693, 0.0741, 0.01) c̃45(0.4929, 0.1169, 0.0741, 0.01) c̃46(0.4142, 0.0431, 0.0526, 0.01)
a5 c̃54(0.3284, 0.0621, 0.0812, 0.01) c̃55(0.357, 0.024, 0.024, 0.01) c̃56(0.3212, 0.1074, 0.1789, 0.01)

For each criteria, using Definition 6, the asymmetrical
weighted synthetic cloud can be obtained by aggregating the
clouds of d1, d2, d3. Then, the group evaluation matrix is
shown in Table 4.

Step 3: Convert the cloud into the belief degree.
For each asymmetrical weighted synthetic cloud, use

Definition 7 and Definition 9 to obtain the distribution of
the discounted belief degree. The result is shown in Table 5.

Step 4: Aggregate the criteria values of each alterna-
tive.

Firstly, using Definition 10, the distribution of the dis-
counted belief degree of each criterion is transformed into
the BPA, as shown in Table 6. Next, the BPAs of all six
criteria are aggregated into the combined probability assign-
ment for each alternative using Definition 11. The result is
shown in Table 7. Finally, using Definition 12, normalize
the combined probability assignments into the overall belief
degree, as described in Table 8.

Step 5: Rank alternatives.
The average utility of each alternative can be ac-

quired using Definition 13 as follows: uavg(a1) = 0.3169,
uavg(a2) = 0.4572, uavg(a3) = 0.7958, uavg(a4) = 0.4530,
uavg(a5) = 0.3454. According to the average utility, the or-
der of alternatives can be determined, and they are as fol-
lows: a3 > a2 > a4 > a5 > a1.

4.2 Comparative Analysis and Discussion

For validation of the feasibility of the proposed method, a
comparative analysis is executed by using another four lin-
guistic MCDM methods. This analysis uses the same nu-
merical example as described in Sect. 4.1. The results are
shown in Table 9.

As Table 9 shows, the ranking of alternatives in
Sect. 4.1 is identical to the results of the methods in [10]
and [16], but is different from the result of the method in
[25] and [26]. A uniform granular linguistic assessment
scale is adopted in [10] and [16], but a multi-granular lin-
guistic assessment scale is applied in [25] and [26]. The
linguistic concept involves uncertainties due to the inherent
subjective nature. Different individuals hold different under-
standing about the linguistic concept and even the same in-
dividual may hold different opinions at different times. Not
only the average levels of evaluation information but also the
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Table 5 Distribution of the discounted belief degree.

c1 c2 c3

a1 β̃′11{0, 0, 0.1005, 0.6827, 0.0501, 0.0001, 0} β̃′12{0, 0.0828, 0.6883, 0.0622, 0.0001, 0, 0} β̃′13{0.0001, 0.6042, 0.312, 0.0004, 0, 0, 0}
a2 β̃′21{0.0001, 0.6042, 0.312, 0.0004, 0, 0, 0} β̃′22{0.0157, 0.3537, 0.2494, 0.0464, 0.0015, 0, 0} β̃′23{0, 0, 0.0508, 0.6845, 0.098, 0.0001, 0}
a3 β̃′31{0, 0, 0, 0, 0.3406, 0.5757, 0.004} β̃′32{0, 0, 0, 0, 0.0256, 0.6065, 0.2013} β̃′33{0, 0, 0, 0, 0.0006, 0.6606, 0.2554, 0.001}
a4 β̃′41{0.0002, 0.1967, 0.7188, 0.001, 0, 0, 0} β̃′42{0, 0.0596, 0.4236, 0.1574, 0.0246, 0.0014, 0} β̃′43{0, 0, 0, 0.6606, 0.2554, 0.0001}
a5 β̃′51{0, 0, 0.0054, 0.1743, 0.3845, 0.098, 0.0044} β̃′52{0.3234, 0.05929, 0.0004, 0, 0, 0, 0} β̃′53{0, 0.0336, 0.6639, 0.1357, 0.0001, 0, 0}

c4 c5 c6

a1 β̃′14{0.0001, 0.6042, 0.312, 0.0004, 0, 0, 0} β̃′15{0.0338, 0.4977, 0.2127, 0.0058, 0.0001, 0, 0} β̃′16{0.0508, 0.6845, 0.098, 0.0001, 0, 0, 0}
a2 β̃′24{0, 0, 0.0357, 0.6592, 0.1365, 0.0001, 0} β̃′25{0, 0.0028, 0.1063, 0.402, 0.1512, 0.0043, 0} β̃′26{0, 0, 0.0005, 0.9978, 0.0017, 0, 0}
a3 β̃′34{0, 0, 0, 0, 0, 0.0012, 0.9988} β̃′35{0, 0, 0.0002, 0.2654, 0.6507, 0.0004, 0} β̃′36{0, 0, 0, 0, 0.0011, 0.9968, 0.0021}
a4 β̃′44{0, 0, 0.0877, 0.6926, 0.0529, 0.0001} β̃′45{0, 0.0048, 0.171, 0.5265, 0.0476, 0.0001, 0} β̃′46{0, 0.0006, 0.6086, 0.3074, 0.0001, 0, 0}
a5 β̃′54{0.0001, 0.1503, 0.6444, 0.0385, 0.0001, 0, 0} β̃′55{0, 0.0011, 0.9968, 0.0021, 0, 0, 0} β̃′56{0.0052, 0.1861, 0.274, 0.1015, 0.0157, 0.0007, 0}

Table 6 Basic probability assignment.

c1 c2 c3

a1 m1,1{0, 0, 0.0121, 0.0819, 0.006, 0, 0, 0.88, 0.02} m1,2{0, 0.0124, 0.1033, 0.0093, 0, 0, 0, 0.85, 0.025} m1,3{0, 0.1088, 0.0562, 0, 0, 0, 0, 0.82, 0.015}
a2 m2,1{0, 0.0725, 0.0374, 0.0001, 0, 0, 0, 0.88, 0.02} m2,2{0.0024, 0.053, 0.0374, 0.007, 0.0002, 0, 0, 0.85, 0.05} m2,3{0, 0, 0.0091, 0.1232, 0.0176, 0, 0, 0.82, 0.03}
a3 m3,1{0, 0, 0, 0, 0.0409, 0.0691, 0, 0.88, 0.01} m3,2{0, 0, 0, 0, 0.0038, 0.091, 0.0302, 0.85, 0.025} m3,3{0, 0, 0, 0.0001, 0.1189, 0.046, 0, 0.82, 0.03}
a4 m4,1{0, 0.0236, 0.0863, 0.0001, 0, 0, 0, 0.88, 0.01} m4,2{0, 0.009, 0.0635, 0.0236, 0.0037, 0.0002, 0, 0.85, 0.05} m4,3{0, 0, 0.0079, 0.1213, 0.0208, 0, 0, 0.82, 0.03}
a5 m5,1{0, 0, 0.0007, 0.0209, 0.0461, 0.0118, 0.0005, 0.88, 0.04} m5,2{0.0485, 0.0889, 0.0001, 0, 0, 0, 0, 0.85, 0.0125} m5,3{0, 0.0061, 0.1195, 0.0244, 0, 0, 0, 0.82, 0.03}

c4 c5 c6

a1 m1,4{0, 0.0251, 0.1707, 0.0125, 0, 0, 0, 0.75, 0.0417} m1,5{0.0068, 0.0995, 0.0425, 0.0012, 0, 0, 0, 0.8, 0.05} m1,6{0, 0, 0, 0.0998, 0.0002, 0, 0, 0.9, 0}
a2 m2,4{0, 0, 0.0094, 0.1648, 0.0341, 0, 0, 0.75, 0.0417} m2,5{0, 0.0006, 0.0212, 0.0804, 0.0302, 0.0009, 0, 0.8, 0.0667} m2,6{0, 0, 0, 0.1, 0, 0, 0, 0.9, 0}
a3 m3,4{0, 0, 0, 0, 0, 0.0003, 0.2497, 0.75, 0} m3,5{0, 0, 0, 0.0531, 0.1301, 0.0001, 0, 0.8, 0.0167} m3,6{0, 0, 0, 0, 0.0001, 0.0997, 0.0002, 0.9, 0}
a4 m4,4{0, 0, 0.0219, 0.1732, 0.0132, 0, 0, 0.75, 0.0417} m4,5{0, 0.001, 0.0342, 0.1053, 0.0095, 0, 0, 0.8, 0.05} m4,6{0, 0.0001, 0.0609, 0.0307, 0, 0, 0, 0.9, 0.0083}
a5 m5,4{0, 0.0376, 0.1611, 0.0096, 0, 0, 0, 0.75, 0.0417} m5,5{0, 0.0002, 0.1994, 0.0004, 0, 0, 0, 0.8, 0} m5,6{0.0005, 0.0186, 0.0274, 0.0102, 0.0016, 0, 0, 0.9, 0.0417}

Table 7 Combined probability assignment.

mi,I(6)(h1) mi,I(6)(h2) mi,I(6)(h3) mi,I(6)(h4) mi,I(6)(h5) mi,I(6)(h6) mi,I(6)(h7) m̄i,I(6)(H) m̃i,I(6)(H)
a1 0.0064 0.1978 0.2639 0.0574 0.0032 0 0 0.3849 0.0864
a2 0.0013 0.0701 0.066 0.3326 0.0492 0.0005 0 0.3784 0.1019
a3 0 0 0 0.0292 0.1755 0.177 0.17 0.4142 0.0341
a4 0 0.018 0.1669 0.3134 0.0273 0.0002 0 0.3774 0.0968
a5 0.0264 0.0869 0.3559 0.0358 0.0241 0.006 0.0003 0.3826 0.082

Table 8 Distribution of the overall belief degree.

βi(h1) βi(h2) βi(h3) βi(h4) βi(h5) βi(h6) βi(h7) βi(H)
a1 0.0104 0.3217 0.429 0.0933 0.0051 0 0 0.1405
a2 0.002 0.1128 0.1062 0.5351 0.0791 0.0008 0 0.164
a3 0 0 0 0.0498 0.2966 0.3021 0.2903 0.0582
a4 0 0.0289 0.2681 0.5034 0.0438 0.0003 0 0.1555
a5 0.0428 0.1408 0.5764 0.0579 0.0391 0.0097 0.0004 0.1329

fluctuation is considered in cloud model using En and He.
FAWSCG realizes the conversion from a qualitative linguis-
tic concept to its quantitative value According to FAWSCG,
a cloud drop is generated by two random numbers. Thus,
the corresponding cloud drops generated by FAWSCG each
time are not the same, though they follow the same distribu-
tion. Obviously, the belief degrees calculated from the cloud
drops are not the same neither. We suppose that the group
assessment consists of the linguistic assessment of each de-
cision maker, just the belief degree of each linguistic as-
sessment is different. The imprecision and incompleteness
of the group assessment are caused by aggregation of DMs
assessments. Evidence theory can model the imprecision
and incompleteness with the ignorance degree which is the

probability mass assigned to the whole set. The ER al-
gorithm is adopted to aggregate the group assessments on
each criterion. By comparison, the aggregation results of
the existing methods which use the traditional aggregation
operators such as the ordered weighted geometric averag-
ing (OWGA) operator and the ordered weighted averaging
(OWA) operator, cannot reflect the uncertainty of the group
assessment. Because evidence theory can model the igno-
rance degree in the belief structure, which is neglected by
the traditional aggregation operators, the proposed method
exhibits a higher performance than the methods mentioned
above. We repeat the proposed method 5000 times, and the
results are shown in Table 10.

The frequency of a3 > a2 > a4 > a5 > a1 is much higher
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Table 9 Comparison with different methods.

Methods Ranking results
the method based on membership f unctions [10] a3>a2>a4> a5>a1

the method based on 2 − tuple linguistic model [16] a3>a2>a4> a5>a1

the method based on a cloud mode [25] a3>a4>a2> a5>a1

the method based on cloud aggregation operators [26] a3>a4>a2> a5>a1

Table 10 Results of repeating the proposed method 5000 times.

Ranking results Frequency
a3>a2>a4> a5>a1 4986
a3>a4>a2> a5>a1 14

Table 11 Maximum average utility and minimum average utility

min max
uavg(a1) 0.3138 0.3200
uavg(a2) 0.4541 0.4595
uavg(a3) 0.7942 0.7985
uavg(a4) 0.4514 0.4565
uavg(a5) 0.3438 0.3474

than a3>a4>a2> a5>a1. The former appeared 4986 times,
and the latter appeared 14 times. The difference lies in the
sequence of a2 and a4. The maximum average utility and
the minimum average utility of each alternative in the 5000
times are shown in Table 11.

It is clear from Table 11 that the average utilities of a2

and a4 are close, and the minimum average utility of a2 is
not larger than the maximum utilities of a4. So it is possible
that a4 is preferred to a2, though the average level of a2 is
higher than a4.

The result of the proposed method prefers to a3 > a2 >
a4 > a5 > a1 and includes a3 > a4 > a2 > a5 > a1

at a lower frequency at the same time, which is the result
of multi-granular linguistic assessment scale. Traditional
methods totally abandon the uncertainty of the qualitative
linguistic concept and the uncertainty caused by aggrega-
tion of DMs assessments. However, in the proposed method,
cloud model can handle the fuzziness and randomness of the
linguistic concept, and evidence theory can handle the im-
precision and incompleteness of the group assessment. So
the proposed method can get the results of different under-
standing for the same linguistic concept, and prefer the more
common one. Take the factors mentioned previously into
consideration, the proposed method performs more reliable
and precise than traditional methods.

5. Conclusion

The linguistic MCGDM problem is widespread in the ar-
eas such as science, business, engineering, and military ap-
plications. Most real linguistic MCGDM problems involve
various types of uncertainties. However, the existing meth-
ods are not robust enough to completely reflect the uncer-
tainties caused by both the linguistic concept and group
assessment. In this paper, we propose a new linguistic
MCGDM method combining cloud model and evidence the-
ory. The new method can take advantage of cloud model and

evidence theory to deal with the fuzziness and randomness
of the linguistic concept, as well as the imprecision and in-
completeness of the group assessment. The contributions of
this paper are fourfold. First, a method for transforming lin-
guistic variables into the corresponding clouds is proposed.
Second, an asymmetrical weighted synthetic cloud is pre-
sented to aggregate the clouds of different DMs. Third, a
method for converting the cloud into the belief degree is
developed. Last but not the least, the ER algorithm and
the average utility are adopted to aggregate different crite-
ria values and rank the alternatives respectively. Moreover,
a numerical example together with the corresponding com-
parison analysis with other methods is used to demonstrate
the feasibility and validity of the proposed method. The re-
sults show that the new method can get the results of dif-
ferent understanding for the same linguistic concept, and
prefer the more common one. Thus, this method can deal
with uncertainties caused by both the linguistic concept and
group assessment, which neutralize most of the information
distortion. In this paper, different DMs use the same lin-
guistic term set which has the same domain and utility. In
future research, we will apply our method in resolution of
the multigranular MCGDM problem.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (No. 61873131, 71301081, 61572261,
61373139), Natural Science Foundation of Jiangsu Province
(No. BK20130877, BK20150868), Natural Science Founda-
tion of the Higher Education Institutions of Jiangsu Prov-
ince (No.17KJB520027), Natural Science Foundation of
Nanjing University of Posts and Telecommunications (No.
NY218073).

References

[1] N. Cavus, “The application of a multi-attribute decision-making al-
gorithm to learning management systems evaluation,” British Jour-
nal of Educational Technology, vol.42, no.1, pp.19–30, 2011.

[2] M. Gul, E. Celik, A.T. Gumus, and A.F. Guneri, “Emergency depart-
ment performance evaluation by an integrated simulation and inter-
val type-2 fuzzy MCDM-based scenario analysis,” European Journal
of Industrial Engineering, vol.10, no.2, pp.196–223, 2016.

[3] M.A. Ilgin, S.M. Gupta, and O. Battaı̈a, “Use of MCDM tech-
niques in environmentally conscious manufacturing and product re-
covery: state of the art,” Journal of Manufacturing Systems, vol.37,
pp.746–758, 2015.

[4] L.A. Zadeh, “The concept of a linguistic variable and its applica-
tion to approximate reasoning–I,” Information Sciences, vol 8, no.3,
pp.199–249, 1975.

[5] S.M. Yu, H.Y. Zhang, and J.Q. Wang, “Hesitant fuzzy linguistic

http://dx.doi.org/10.1111/j.1467-8535.2009.01033.x
http://dx.doi.org/10.1504/ejie.2016.075846
http://dx.doi.org/10.1016/j.jmsy.2015.04.010
http://dx.doi.org/10.1016/0020-0255(75)90036-5
http://dx.doi.org/10.1002/int.21907


854
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.4 APRIL 2019

maclaurin symmetric mean operators and their applications to multi-
criteria decision-making problem,” International Journal of Intelli-
gent Systems, 2017. DOI: 10.1002/int.21907.

[6] X.-Y. Zhang and J.-Q. Wang, “Consensus-based framework to
MCGDM under multi-granular uncertain linguistic environment,”
Journal of Intelligent & Fuzzy Systems, vol.33, no.2, pp.1263–1274,
2017. DOI: 10.3233/JIFS-17202.

[7] Y.J. Xu, F. Ma, W.J. Xu, and H.M. Wang, “An incomplete multi-
granular linguistic model and its application in emergency decision
of unconventional outburst incidents,” Journal of Intelligent & Fuzzy
Systems, vol.29, no.2, pp.619–633, 2015.

[8] F. Herrera, S. Alonso, F. Chiclana, and E. Herrera-Viedma, “Com-
puting with words in decision making: foundations, trends and
prospects,” Fuzzy Optimization and Decision Making, vol.8, no.4,
pp.337–364, 2009.

[9] L. Martı́nez, D. Ruan, and F. Herrera, “Computing with words in
decision support systems: an overview on models and applications,”
International Journal of Intelligent Systems, vol.3, no.4, pp.382–
395, 2010.

[10] M. Delgado, J.L. Verdegay, and M.A. Vila, “Linguistic decision
making models,” International Journal of Intelligent Systems, vol.7,
no.4, pp.479–492, 1992.

[11] S.-M. Yu, J. Wang, and J.-Q. Wang, “An interval type-2 fuzzy like-
lihood-based MABAC approach and its application in selecting ho-
tels on a tourism website,” International Journal of Fuzzy Systems,
vol.19, no.1, pp.47–61, 2017.

[12] S.M. Yu, J. Wang, and J.Q. Wang, “An extended TODIM approach
with intuitionistic linguistic numbers,” International Transactions in
Operational Research, 2016. DOI: 10.1111/itor.12363.

[13] G. Bordogna, M. Fedrizzi, and G. Pasi, “A linguistic modeling
of consensus in group decision making based on OWA operators,”
IEEE Trans. Syst., Man, Cybern., vol.27, no.1, pp.126–132, 1997.

[14] J.P. Xu, Z.B. Wu, and Y. Zhang, “A consensus based method for
multi-criteria group decision making under uncertain linguistic set-
ting,” Group Decision and Negotiation, vol.23, no.1, pp.127–148,
2014.

[15] Z.B. Wu and J.P. Xu, “Possibility distribution-based approach for
MAGDM with hesitant fuzzy linguistic information,” IEEE Trans.
Cybern., vol.46, no.3, pp.694–705, 2016.

[16] L. Martı́nez and F. Herrera, “An overview on the 2-tuple linguistic
model for computing with words in decision making: extensions, ap-
plications and challenges,” Information Sciences, vol.207, pp.1–18,
2012.

[17] J. Wang, J.-Q. Wang, H.-Y. Zhang, and X.-H. Chen, “Multi-criteria
group decision making approach based on 2-tuple linguistic aggre-
gation operators with multi-hesitant fuzzy linguistic information,”
International Journal of Fuzzy Systems, vol.18, no.1, pp.81–97,
2016.

[18] Y.C. Dong, C.-C. Li, and F. Herrera, “Connecting the linguistic hi-
erarchy and the numerical scale for the 2-tuple linguistic model and
its use to deal with hesitant unbalanced linguistic information,” In-
formation Sciences, vol.367, pp.259–278, 2016.

[19] D.Y. Li, C.Y. Liu, and W.Y. Gan, “A new cognitive model: cloud
model,” International Journal of Intelligent Systems, vol.24, no.3,
pp.357–375, 2009.

[20] D.Y. Li, H.J. Meng, and X.M. Shi, “Membership clouds and mem-
bership cloud generators,” Journal of Computer Research & Devel-
opment, vol.32, pp.16–21, 1995.

[21] L. Zhang, X. Wu, Q. Chen, M.J. Skibniewski, and J. Zhong, “De-
veloping a cloud model based risk assessment methodology for tun-
nel-induced damage to existing pipelines,” Stoch. Environ. Res. Risk
Assess., vol.29, no.2, pp.513–526, 2015.

[22] M.-X. Wang and J.-Q. Wang, “An evolving Takagi-Sugeno model
based on aggregated trapezium clouds for anomaly detection in large
datasets,” Journal of Intelligent & Fuzzy Systems, vol.32, no.3,
pp.2295–2308, 2017.

[23] M.-X. Wang, J.-Q. Wang, and L. Li, “New online personalized

recommendation approach based on the perceived value of consumer
characteristics,” Journal of Intelligent & Fuzzy Systems, vol.33,
no.3, pp.1953–1968, 2017. DOI:10.3233/JIFS-17034.

[24] H.-G. Peng, X.-K. Wang, T.-L. Wang, and J.-Q. Wang, “Multi-crite-
ria game model based on the pairwise comparisons of strategies with
Z-numbers,” Applied Soft Computing, vol.74, pp.451–465, 2019.

[25] J.-Q. Wang, J.-J. Peng, H.-Y. Zhang, T. Liu, and X.-H. Chen, “An
uncertain linguistic multi-criteria group decision-making method
based on a cloud model,” Group Decision and Negotiation, vol.24,
no.1, pp.171–192, 2015.

[26] J.-Q. Wang, L. Peng, H.-Y. Zhang, and X.-H. Chen, “Method of
multi-criteria group decision-making based on cloud aggrega-
tion operators with linguistic information,” Information Sciences,
vol.274, pp.177–191, 2014.

[27] J.-Q. Wang, P. Wang, J. Wang, H.-Y. Zhang, and X.-H. Chen,
“Atanassov’s interval-valued intuitionistic linguistic multicriteria
group decision-making method based on the trapezium cloud
model,” IEEE Trans. Fuzzy Syst., vol.23, no.3, pp.542–554, 2015.

[28] X. Yang, L. Yan, and L. Zeng, “How to handle uncertainties in
AHP: The Cloud Delphi hierarchical analysis,” Information Sci-
ences, vol.222, pp.384–404, 2013.

[29] Z. Zhou, H. Liao, B. Gu, K.M.S. Huq, S. Mumtaz, and J. Rodriguez,
“Robust mobile crowd sensing: when deep learning meets edge
computing,” IEEE Netw., vol.32, no.4, pp.54–60, 2018.

[30] B. Gu, Y. Chen, H. Liao, et al., “A distributed and context-aware task
assignment mechanism for collaborative mobile edge computing,”
Sensors, vol.18, no.8, 2018.

[31] H.-G. Peng and J.-Q. Wang, “A multicriteria group decision-making
method based on the normal cloud model with Zadeh’s Z-numbers,”
IEEE Trans. Fuzzy Syst., vol.26, no.6, pp.3246–3260, 2018.

[32] W.Y. Yu, Z. Zhang, Q.Y. Zhong, and L. Sun, “Extended TODIM
for multi-criteria group decision making based on unbalanced hesi-
tant fuzzy linguistic term sets,” Computers & Industrial Engineering,
vol.114, pp.316–328, 2017.

[33] C.Z. Bai, R. Zhang, S. Shen, C. Huang, and X. Fan, “Interval-val-
ued probabilistic linguistic term sets in multi-criteria group decision
making,” International Journal of Intelligent Systems, vol.33, no.6,
pp.1301–1321, 2018.

[34] A.P. Dempster, “A generalization of Bayesian inference,” Journal
of the Royal Statistical Society, Series B, vol.30, no.2, pp.205–247,
1968.

[35] G. Shafer, A Mathematical Theory of Evidence, Princeton Univer-
sity Press, Princeton, 1976.

[36] J.-B. Yang and M.G. Singh, “An evidential reasoning approach for
multiple-attribute decision making with uncertainty,” IEEE Trans.
Syst., Man, Cybern., vol.24, no.1, pp.1–18, 1994.

[37] J.-B. Yang and P. Sen, “A general multi-level evaluation process for
hybrid MADM with uncertainty,” IEEE Trans. Syst., Man, Cybern.,
vol.24, no.10, pp.1458–1473, 1994.

[38] Z.-G. Liu, Q. Pan, J. Dezert, and A. Martin, “Adaptive imputation of
missing values for incomplete pattern classification,” Pattern Recog-
nit., vol.52, pp.85–95, 2016.

[39] K. Abudahab, D.-L. Xu, and Y.-W. Chen, “A new belief rule base
knowledge representation scheme and inference methodology using
the evidential reasoning rule for evidence combination,” Expert Sys-
tems with Applications, vol.51, pp.218–230, 2016.

[40] L. Dymova, P. Sevastjanov, and K. Kaczmarek, “A forex trading ex-
pert system based on a new approach to the rule-base evidential rea-
soning,” Expert Systems with Applications, vol.51, pp.1–13, 2016.

[41] C. Fu, M. Huhns, and S. Yang, “A consensus framework for multiple
attribute group decision analysis in an evidential reasoning context,”
Information Fusion, vol.17, pp.22–35, 2014.

[42] J.B. Yang, Y.M. Wang, D.L. Xu, and K.S. Chin, “The evidential
reasoning approach for MADA under both probabilistic and fuzzy
uncertainties,” European Journal of Operational Research, vol.171,
no.1, pp.309–343, 2006.

[43] J.-B. Yang, “Rule and utility based evidential reasoning approach

http://dx.doi.org/10.1002/int.21907
http://dx.doi.org/10.3233/jifs-17202
http://dx.doi.org/10.3233/ifs-141355
http://dx.doi.org/10.1007/s10700-009-9065-2
http://dx.doi.org/10.1007/s40815-016-0217-6
http://dx.doi.org/10.1111/itor.12363
http://dx.doi.org/10.1109/3468.553232
http://dx.doi.org/10.1007/s10726-012-9310-x
http://dx.doi.org/10.1109/tcyb.2015.2413894
http://dx.doi.org/10.1016/j.ins.2012.04.025
http://dx.doi.org/10.1007/s40815-015-0050-3
http://dx.doi.org/10.1016/j.ins.2016.06.003
http://dx.doi.org/10.1002/int.20340
http://dx.doi.org/10.1007/s00477-014-0878-3
http://dx.doi.org/10.3233/jifs-16254
http://dx.doi.org/10.3233/jifs-17034
http://dx.doi.org/10.3233/jifs-17034
http://dx.doi.org/10.1016/j.asoc.2018.10.026
http://dx.doi.org/10.1007/s10726-014-9385-7
http://dx.doi.org/10.1016/j.ins.2014.02.130
http://dx.doi.org/10.1109/tfuzz.2014.2317500
http://dx.doi.org/10.1016/j.ins.2012.08.019
http://dx.doi.org/10.1109/mnet.2018.1700442
http://dx.doi.org/10.1109/tfuzz.2018.2816909
http://dx.doi.org/10.1016/j.cie.2017.10.029
http://dx.doi.org/10.1002/int.21983
http://dx.doi.org/10.1111/j.2517-6161.1968.tb00722.x
http://dx.doi.org/10.1109/21.259681
http://dx.doi.org/10.1109/21.310529
http://dx.doi.org/10.1016/j.patcog.2015.10.001
http://dx.doi.org/10.1016/j.eswa.2015.12.013
http://dx.doi.org/10.1016/j.eswa.2015.12.028
http://dx.doi.org/10.1016/j.inffus.2011.12.002
http://dx.doi.org/10.1016/j.ejor.2004.09.017
http://dx.doi.org/10.1016/s0377-2217(99)00441-5


ZHOU et al.: LINGUISTIC MULTI-CRITERIA GROUP DECISION-MAKING METHOD COMBINING CLOUD MODEL AND EVIDENCE THEORY
855

for multiattribute decision analysis under uncertainties,” European
Journal of Operational Research, vol.131, no.1, pp.31–61, 2001.

[44] C.Y. Cheng and X. Qian, “Evaluation of emergency planning for
water pollution incidents in reservoir based on fuzzy comprehen-
sive assessment,” Procedia Environmental Sciences, vol.2, no.6,
pp.566–570, 2010.

Jian Zhou was born in Jiangsu Prov-
ince, China. He is an associate professor at
Nanjing University of Posts and Telecommuni-
cations, China. He received his B.S. and Ph.D.
degrees in major of Computer Science from
Nanjing University of Science and Technology
in 2004 and 2012, respectively. His research in-
terests include decision-making system and ex-
pert system.

Chong Han was born in Henan Province,
China. He is a lecturer at Nanjing University of
Posts and Telecommunications, China. He re-
ceived his M.S. degrees in major of Computer
Application from Henan University in 2010,
Ph.D. degree in Information Network from
Nanjing University Posts and Telecommunica-
tions in 2013, respectively. His research inter-
ests include computer networks and multimedia
information processing.

Lijuan Sun was born in Jiangsu Prov-
ince, China. She is a professor, Ph.D. supervisor
in Nanjing University Posts and Telecommuni-
cations, China. She received her M.S. degree
in Signal, Circuit and System, Ph.D. degree in
Communication and Information System from
Nanjing University Posts and Telecommunica-
tions in 1988 and 2007, respectively. Her re-
search interests include computer networks and
evolutionary computation.

Fu Xiao was born in 1980. He received
his Ph.D. degree from Nanjing University of
Science and Technology in 2007. Now he is
a professor in Nanjing University of Posts and
Telecommunications. His research interests in-
clude computer networks and artificial intelli-
gence.

http://dx.doi.org/10.1016/s0377-2217(99)00441-5
http://dx.doi.org/10.1016/j.proenv.2010.10.061

