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PAPER

An Enhanced Affinity Graph for Image Segmentation

Guodong SUN†a), Member, Kai LIN†, Junhao WANG†, and Yang ZHANG††, Nonmembers

SUMMARY This paper proposes an enhanced affinity graph (EA-
graph) for image segmentation. Firstly, the original image is over-
segmented to obtain several sets of superpixels with different scales, and
the color and texture features of the superpixels are extracted. Then, the
similarity relationship between neighborhood superpixels is used to con-
struct the local affinity graph. Meanwhile, the global affinity graph is ob-
tained by sparse reconstruction among all superpixels. The local affinity
graph and global affinity graph are superimposed to obtain an enhanced
affinity graph for eliminating the influences of noise and isolated regions
in the image. Finally, a bipartite graph is introduced to express the affil-
iation between pixels and superpixels, and segmentation is performed us-
ing a spectral clustering algorithm. Experimental results on the Berkeley
segmentation database demonstrate that our method achieves significantly
better performance compared to state-of-the-art algorithms.
key words: image segmentation, superpixels, sparse reconstruction, en-
hanced affinity graph, spectral clustering

1. Introduction

Image segmentation is one of the fundamental yet challeng-
ing tasks in computer vision, which has great potential in
high-level applications [1], [2]. In the literatures, the unsu-
pervised spectral clustering algorithms become popular in
the field of image segmentation. The core of this problem is
how to create a reliable graph [3]–[7].

Clearly, the effectiveness of graph-based segmentation
algorithms depends on the construction of affinity graph,
which depends on the neighborhood topology and pairwise
affinities between nodes (pixels or superpixels). As pointed
out in [8], the GL-graph is constructed by fusing local-graph
and sparse global-graph, while can obtain better segmenta-
tion results compared with a local graph as shown in [9], and
a global graph as shown in [10]. However, the local-graph
and global-graph are not easily obtained because the layouts
of superpixels are diverse at difference scales. In addition,
a global-graph built with all superpixels is a dense graph,
resulting in large computation costs.

To solve these problems, an enhanced affinity graph
is proposed to accurately capture both short- and long-
range grouping cues of the superpixels at different scales.
The several sets of superpixels are firstly obtained by
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over-segmentation at different scales. Then, the affinities
among neighborhood superpixels are computed to build the
local affinity graph, and it can accurately capture short-range
grouping cues. Meanwhile, the global affinity graph is ob-
tained by sparse reconstruction among global superpixels to
search for long-range grouping cues. The local and global
affinity graph are combined to obtain an enhanced affinity
graph (EA-graph). Finally, a bipartite graph is introduced to
express the affiliation between pixels and superpixels, and
a spectral clustering algorithm is used to divide the super-
pixels at different scales. Experiments are carried out on
the Berkeley segmentation database (BSD) with four differ-
ent criteria, namely, PRI, VoI, GCE, and BDE. The results
show that our method achieves significantly better perfor-
mance compared to state-of-the-art methods, and it also can
produce meaningful results with k = 2 for most images,
while is more realistic applications. As shown in Fig. 1, the
visual comparison results are shown with the SAS [9] and
GL-graph [8].

The organization of this paper is as follows: in Sect. 2
we discuss the different models of affinity graph. In Sect. 3
we introduce the construction process of the proposed

Fig. 1 Superpixels-based segmentation. (a) Original image, (b) ground
truth, (c-h) multi-scale superpixels. (i) SAS, (j) GL-graph, and (k) the pro-
posed EA-graph. Our result can better segment the target object compared
to other methods
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EA-graph. In Sect. 4 we present experimental results com-
pared to state-of-the-art methods on the BSD, and the con-
clusion is described in Sect. 5.

2. Related Works

The conventional graph-cut models are insufficient to
achieve a desirable segmentation, since local neighborhood
relationships between data nodes is only considered [8], [9],
[11], [12], e.g., the ε-neighborhood graph, the k-nearest
neighborhood graph and the fully connected graph, etc.
Therefore, many studies about propagating local grouping
cues across long-range spatial connections are gradually
proposed to improve the performance of segmentation. For
instance, Cour et al. [12] proposed the multiscale spectral
method to capture fine- and coarse-level details of the large
images. Li et al. [9] proposed a graph-cut method based
on superpixels to replace the pixels as graph nodes by pre-
segmenting the image into small regions.

Specially, Cheng et al. [13] proposed a multi-task low-
rank affinity pursuit method to fuse multiple type of image
features. This method infers a unified affinity graph to en-
code the segmentation of the image by seeking the sparsity
consistent low-rank affinities from the joint decompositions
of multiple feature matrices into pairs of sparse and low-
rank matrices. Experimental results show that this method
can achieve a good segmentation result.

Wang et al. [10] proposed a graph-cut method to con-
struct an affinity graph using �0-sparse representation. This
method encodes the connection information between super-
pixels with the non-zero representation coefficients, and the
affinity of connected superpixels is derived by the corre-
sponding representation error. This method also has fine
properties of long range and sparsity on superpixels of dif-
ferent scales, and enables propagation of grouping cues
between superpixels of different scales based on a bipar-
tite graph [9]. Experimental results show that the model
of �−0 sparse reconstruction can achieve good segmentation
performance.

Wang et al. [8] proposed a novel sparse global/local
affinity graph (GL-graph) over superpixels to capture both
short- and long-range grouping cues. This method over-
segments the input image into superpixels at different scales
and divides superpixels adaptively into small-, medium-,
and large-sized sets. Medium-sized superpixels are used to
achieve global grouping through a sparse representation of
superpixels’ features by solving a �0-minimization problem
with orthogonal matching pursuit (OMP). Small- and large-
sized superpixels are then used to achieve local smoothness
through an adjacent graph. Finally, a bipartite graph is also
introduced to enable propagation of grouping cues between
superpixels of different scales. Experimental results show
that the GL-graph yields very competitive quantitative seg-
mentation results.

Our method follows a similar, yet not identical, strategy
as the SAS [9], �0-graph [10], and GL-graph [8] algorithms.
i.e., building a bipartite graph over multiple superpixels and

pixels, then using Tcuts for image segmentation. The main
difference between SAS, �0-graph, and our method is the
construction model of the affinity graph. In SAS, the neigh-
borhoods of the superpixels are only used to build adjacent
graph, and the affinity among superpixels is computed by
the Gaussian weighted Euclidean distance in the color fea-
ture space. In �0-graph, the global affinity graph of superpix-
els is only used, but in our method, we build an EA-graph
combining local affinity graph and global affinity graph over
multiscale superpixels, and it can capture both short- and
long-range grouping cues of the superpixels. In particu-
lar, the best difference between GL-graph and our method
is the dictionary construction of local/global affinity graph.
In GL-graph, the dictionary of local affinity graph is built
with small- and large-sized superpixels. The dictionary of
global affinity graph is built with medium-sized superpix-
els. In our method, the dictionary of local affinity graph is
built with the neighborhoods of the given superpixels. The
dictionary of global affinity graph is built by searching for
the L superpixels which are similar to the given superpixel
in global space. Therefore, our method preserves the intrin-
sic properties of the image without prior experience and can
accurately describe local and global information.

3. Enhanced Affinity Graph

3.1 Superpixels Generation and Feature Extraction

As pointed out in [9], superpixels generated by employ-
ing different algorithms with varying parameters can effect-
tively encode complex image structures for segmentation.
The original images can be over-segmented into sub-regions
with consistent color and texture features. As showed in
Fig. 2, we use the methods and parameters as same as the
SAS [9] to over-segment the original image into superpix-
els of different scales (e.g. 5 scales in the Fig. 2) with the
Mean Shift (MS) [14] and the Felzenszwalb-Huttenlocher
(FH) graph-based method [4]. Then, visual features of each
superpixel are computed to obtain a discriminative affinity
graph. Considering that mLab (mean value in Lab color
space) is applied to approximate human vision and its L
component closely matches human perception of lightness.
LBP (Local Binary Pattern) is reputed to encode micro-
texture and robust to monotone light changes [8]. We ex-
tract the mLab and LBP features of the superpixels to build
an enhanced affinity graph. The parameters of these features
will be introduced in Sect. 4.2.

3.2 Enhanced Affinity Graph Construction

The affinity graph describes the affinity among superpixels,
playing an important role in image segmentation. However,
the conventional affinity graph only calculates the affin-
ity between the superpixel and its neighboring superpix-
els to build a local affinity graph, as shown in Fig. 3 (a).
It only makes use of the local information of the image,
and ignores regions in the segmentation. To improve the
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Fig. 2 Illustration of extracting multi-features over multi-scale superpixels

Fig. 3 The construction process of enhanced affinity graph

segmentation performance, an enhanced affinity graph is
built by adding global information based on the local affin-
ity graph, as shown in Fig. 3. The construction process of
the enhanced affinity graph is divided into local and global
affinity graph construction.

3.2.1 Building a Local Affinity Graph

Let SIl = {sl
i}Nl

i=1, l = 1, 2, 3, · · · denote the collection of
the superpixels generated by over-segmenting the input im-
age I in Sect. 3.1, where l and Nl represent the scales l of
superpixels and the number of superpixels at scale l, respec-
tively. For each superpixel sl

i, we can extract mLab and LBP
features vectors (xl

i)
mLab ∈ R3 and (xl

i)
LBP ∈ R64 at scale l,

respectively. Therefore, we can obtain the associated feature
matrix [xl

1, · · · , xl
Nl

] ∈ Rm×Nl (m = 3 for mLab and m = 64
for LBP, see Sect. 4.2) at sacle l.

To compute the affinity accurately between adjacent su-
perpixels, we use the neighborhood superpixels of the su-
perpixel sl

i to obtain a local affinity graph, unlike the local
affinity graph in [8], which is obtained with small- and large-
sized superpixels. For each feature matrix [xl

1, · · · , xl
Nl

], the
specific construction steps of the corresponding local affin-
ity graph are as follows:

a) The neighborhood dictionary Dl
i = [xl

ak
]ni

k=1 of the su-
perpixel sl

i is first constructed and unitized, where ak

denotes the index of the neighborhood superpixels, and
xl

ak
denotes the feature vectors of the neighborhood of

the superpixel sl
i at scale l.

b) The superpixel sl
i is computed as a linear combination

of elements in Dl
i. In practice, this solution can be

transformed into the following optimization problem:

ĉi = arg min
ci

{∥∥∥xl
i − Dl

ic
i
∥∥∥2

2
, ci ∈ Rni×1, ci

ak
≥ 0
}

(1)

where ĉi denotes the optimal combination coefficient

obtained by using the mLab or LBP feature of the su-
perpixel sl

i, and ci
ak
≥ 0 denotes that each element in

the ĉi is non-negative.
c) Calculate the reconstruction error rl

i j between super-

pixel sl
i and its neighborhood superpixel sl

j at scale l.

The rl
i j is defined as

rl
i j =
∥∥∥xl

i − ĉi
j x

l
j

∥∥∥
2

(2)

where ĉi
j denotes the corresponding coefficient of the

neighborhood superpixel sl
j in the vector ĉi

d) Calculate the affinity wl
i j between superpixel sl

i and its

neighborhood superpixel sl
j as follows.

wl
i j =

{
0 if i = j
1 − (rl

i j + rl
ji)/2 if i � j (3)

e) Finally, we define Wl = (wl
i j) as the local affinity graph

at scale l.

3.2.2 Building a Global Affinity Graph with Orthogonal
Matching Pursuit

To avoid the subjectivity of global affinity graph (�0-graph)
obtained by medium-sized superpixels in [8], we build the
global dictionary D̃l = [xl

i]
Nl

i=1, l = 1, 2, 3 · · · with all su-
perpixels, and then we search for the L superpixels which
are similar to the given superpixel sl

i with D̃l in the global
scope. Meanwhile, superpixel sl

i is computed as a linear
combination of the L superpixels. The solution of sparse
reconstruction can be transformed into the following opti-
mization problem.

min ‖ci‖0 s.t. xl
i = D̃lci, ci

i = 0 (4)

where ci denotes the sparse reconstruction coefficient of su-
perpixel sl

i in the global dictionary D̃l, and ‖ · ‖0 denotes the
�0 norm, which counts the number of nonzero elements in a
vector.

However, the Eq. (4) which searches the sparsest so-
lution of linear equations is NP-hard, which is hard to get
results directly. In practice, we make use of orthogonal
matching pursuit (OMP) to seek an approximation of the
sparsest solution with the �0-norm to solve Eq. (4). Consid-
ering that the reconstruction coefficient among superpixels
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Fig. 4 The overall framework of the proposed EA-graph

must be non-negative, the constraint condition ci
j ≥ 0, j � i

is added based on the OMP algorithm. The Eq. (4) is trans-
formed into the following optimization problem:

c̃i = arg min
ci

{∥∥∥xl
i − D̃lci

∥∥∥2
2
,
∥∥∥ci
∥∥∥

0
≤ L, ci

i = 0,

ci
j ≥ 0 ( j � i)

}
(5)

where the parameter L controls the sparsity of the recon-
struction, and L is the maximal number of coefficients for
each input data atom xl

i.
Once the sparse representation coefficient c̃i has been

computed, the global affinity graph W̃l = (w̃l
i j) is computed

by the same method as Eqs. (2) and (3).

3.2.3 Building and Fusing Enhanced Affinity Graphs of
Different Scales

To comprehensively consider the advantages of the local and
global affinity graph, the global affinity graph can be used
to enhance the local affinity graph to obtain the enhanced
affinity graph WSl. Since Wl and W̃l are calculated by similar
methods, they have the same status at the digital level and
can be added directly to get WSl. The calculation method is
as follows:

WSl = Wl + W̃l (6)

According to the above steps, the enhanced affinity
graph WmLab

Sl and WLBP
Sl can be obtained with the mLab and

LBP features respectively, and then WSl = (wSl
i j ) is obtained

by using the same method as the �0-graph [10] to fuse the
enhanced affinity graphs of different features. The calcula-
tion method is as follows.

wSl
i j =

√
(wmLab

i j )2 + (wLBP
i j )2 (7)

Finally, to fuse the enhanced affinity graphs of different
scales, we plug each scale enhanced affinity graph WSl into
a block diagonal multiscale affinity matrix WSS as follows:

WSS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
WS1 · · · 0
...
. . .

...
0 · · · WSl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , l = 1, 2, 3, · · · (8)

where WSl denotes the enhanced affinity graph at scale l.

3.3 Bipartite Graph Construction and Partition

To achieve the final segmentation of the image, the enhanced
affinity graph is transformed into a bipartite graph [9] and
segmented by Tcuts spectral clustering algorithm [11]. The
bipartite graph can incorporate the affiliation information
between pixels and superpixels. The specific steps are as fol-
lows: First, we build a bipartite graph GB = {U,V, B} over
the pixels set I and superpixels set SI, where U = I ∪ SI,
V = SI, and B = [WIS; WSS], where WIS = (bi j)|I|×|V | denotes
the affiliation matrix between pixels and superpixels.
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bi j =

{
γ pixel i ∈ superpixel s j

0 otherwise
, γ = 0.01 (9)

Then, the Tcuts method yields a partition of the bipar-
tite graph GB into k clusters. More precisely, it provides the
bottom k eigenpairs {λi, fi}ki=1 of the following generalized
eigenvalue problem over superpixels only:

LV = λDV f (10)

where LV = DV −WV , DV = diag(BT1), WV = BTD−1
U B, and

DU = diag(B1)

3.4 The Overall Framework of the Algorithm

Based on the enhanced affinity graph among superpixels, the
overall framework of the image segmentation algorithm pro-
posed in this paper is shown in Fig. 4. The specific calcula-
tion process is shown in Algorithm 1.

4. Experiments and Analysis

To verify the feasibility and effectiveness of the proposed
EA-graph. Firstly, we introduce the database and quantita-
tive evaluation criteria used in experiments. Then, the influ-
ence of different features and sparsity L is analyzed for im-
age segmentation performance. Finally, the proposed EA-
graph is compared with state-of-the-art algorithms. All ex-
periments are carried out under the condition of Windows 7,
CPU of Intel Xeon E5-2640 @2.40GHz, 64GB RAM and
MATLAB R2017a.

4.1 The Database and Evaluation Criteria

All experiments are carried out on the Berkeley Segmenta-
tion Database (BSD) [15], which includes 300 natural im-
ages with a size of 481 × 321 pixels. Each image is manu-
ally annotated by different human subjects, and at least four
ground truths are available for each image.

To further quantitatively evaluate the effectiveness of
the proposed EA-graph, four standard measurements are
used for quantitative evaluation: The probabilistic rand in-
dex (PRI) [16], The variation of information (VoI) [17], The
global consistency error (GCE) [18], and The boundary dis-
placement error (BDE) [19]. The PRI computes the ratio
of pixel pairs whose labels are consistent between the seg-
mentation result and the ground truth. The VoI computes
the amount of information loss/gain between the compared
images. The GCE measures the extent to which two seg-
mentations are mutually consistent. The BDE computes the
average displacement error of boundary pixels between two
segmentation results. The segmentation is better if PRI is
larger and the other three criteria are smaller, when com-
pared to the ground truths.

4.2 Results of Fusing Different Visual Features

Since the different features have a direct impact on the seg-
mentation result, we extract the mLab and LBP features of

Table 1 Quantitative comparison of different features

Table 2 Quantitative comparison of different sparsity L

different dimensions and combine them to measure the ef-
fectiveness on fusing different visual features. The parame-
ters in all experiments are adjusted to the best. The results
on fusing different visual features are shown in Table 1.

When only a single feature is selected, the segmenta-
tion performance is significantly lower than that of the com-
bined feature. The result indicates that a single feature is
not sufficient to express the affinity and difference among
superpixels. When two features are fused, the segmentation
result is affected by the difference dimensions of LBP fea-
ture. Specifically, if the dimension of the LBP is too small,
the statistics of LBP feature are too concentrated to high-
light the differences between superpixels; on the contrary, if
the dimension of the LBP is too large, the statistics of the
LBP features are too scattered to highlight the similarity be-
tween superpixels. In summary, the combination between
mLab and 128-dimensions LBP is more helpful to improve
the performance of the proposed EA-graph.

4.3 Results of Different Sparsity L

When the sparse reconstruction among superpixels is com-
puted using Eq. (5), the sparsity L directly determines the
number of reconstructed atoms. To verify the influence of
parameter L, we set different L for comparison to find the
best L. The same parameters are used for all experimental
procedures except that the sparsity L is changed. The results
corresponding to different L are shown in Table 2.

The segmentation result is affected by the sparsity L. If
the sparsity L is too small or too large, the segmentation per-
formance of our method will be weakened. Specifically, if
the sparsity L is too small, the global affinity graph does not
sufficiently capture the global similarity information among
superpixels; on the contrary, if the sparsity L is too large, the
similarity information captured by the global affinity graph
is too redundant. In summary, considering the accuracy and
efficiency of the proposed EA-graph, the sparsity L is set
to 3.
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Table 3 Quantitative comparison of the proposed EA-graph with state-of-the-art algorithms on BSD

Fig. 5 Visual results of our method with k = 2

4.4 Comparison with State-of-the-Art Algorithms

We report quantitative comparison with state-of-the-
art algorithms: Ncut [3], Normalized Tree Partitioning
(NTP) [20], Multi-scale Ncut (MNcut) [12], Saliency Driven
Total Variation (SDTV) [21], Learning Full Pairwise Affin-
ity (LFPA) [6], Ultrasound Contour Map (UCM) [15],
JSEG [22], Texture and Boundary Encoding-based
Segmentation (TBES) [23], Context-sensitive [24], Co-
transduction [25], Tensor Product Graph (TPG) [26], Fusion
with TPG [27], SAS [9], �0-graph [10], and GL-graph [8].
The parameters of all methods are adjusted to the optimal,
and the quantitative results are shown in Table 3, where we
highlight in bold the best result for each qualitative criterion.

As shown in Table 3, we can find that our method ranks
in the first place with PRI and VoI, and is competitive with
others in terms of GCE and BDE, in particular the gain is
significant for PRI and VoI. However, these scores are com-
puted by manually adjusting the k of each image to select
the best results, which has no practical meaning in the spe-
cific application. Thus, to demonstrate the obvious advan-
tage of our method related to k in practical applications, we

compare the average scores of SAS, �0-Graph, GL-Graph,
and our method by fixing k = 2 for all images on the BSD.
Those scores are shown in the lower part of Table 3, and
we show more visual segmentation results of the proposed
method with k = 2 as shown in Fig. 5. Table 3 shows that
our method is superior to other related algorithms with PRI,
VoI, and GCE, in particular the gain is significant for PRI. In
Fig. 5, our method can first segment the target object when
the parameter k is set to 2.

The main reason is that our method combines the lo-
cal and global information among the superpixels, which
helps to separate the foreground and background of the im-
age. The advantages of our method are better reflected in
the following 3 cases. 1) the detected object is tiny (as seen
in the first row); 2) multiple objects are needed to segment
in the same image (as seen in the middle row); 3) the color
of background and object are quite similar (as seen in the
last row).

5. Conclusion

We proposed an enhanced affinity graph for unsupervised
image segmentation, which can capture local and global
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information between superpixels. The proposed method
mainly uses superpixels with different scales as the segmen-
tation nodes to build the affinity graph model. Meanwhile,
the sparse reconstruction of the global dictionary is used to
enhance the local affinity graph to obtain the enhanced affin-
ity graph, and the clustering is performed with Tcuts. Exper-
imental results on the BSD database show that our method
has good segmentation performance and competitive advan-
tage, in particular PRI and VoI rank first in comparison with
other state-of-the-art methods.
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