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SUMMARY  Compressed sensing is an effective compression algo-
rithm. It is widely used to measure signals in distributed sensor networks
(DSNs). Considering the limited resources of DSNs, the measurement ma-
trices used in DSNs must be simple. In this paper, we construct a determin-
istic measurement matrix based on Gordon-Mills-Welch (GMW) sequence.
The column vectors of the proposed measurement matrix are generated by
cyclically shifting a GMW sequence. Compared with some state-of-the-
art measurement matrices, the proposed measurement matrix has relative
lower computational complexity and needs less storage space. It is suitable
for resource-constrained DSNs. Moreover, because the proposed measure-
ment matrix can be realized by using simple shift register, it is more prac-
tical. The simulation result shows that, in terms of recovery quality, the
proposed measurement matrix performs better than some state-of-the-art
measurement matrices.

key words:  distributed sensor networks, compressed sensing, Gordon-
Mills-Welch sequence, pseudorandom sequence

1. Introduction

Due to convenience deployment and low cost, distributed
sensor networks (DSNs) are widely used in military [1],
environment monitoring [2], industrial monitoring [3] and
health care [4]. Moreover, DSNs are highly related to mo-
bile crowd sensing [5] and edge computing [6], [7]. DSN
faces challenges of limited bandwidth of network, limited
storage space, limited computational capability and limited
sensor node power. The bandwidth issue and power issue
can be solved by reducing the data transmitted from sensor
node to central node. Considering the limited computational
capability and the limited storage space of sensor node, the
data gathering algorithm used in sensor node must be sim-
ple.

Compressed sensing (CS)[8] is a novel information
gathering theory proposed by Donaho et al. Compared with
the Nyquist sampling theory, for a sparse signal, CS can
obtain its information with much higher compression ratio.
Moreover, CS transfers computational burden from sensor
node to central node. Then, CS is especially suitable to
measure signals in DSN. In sensor node, signal is measured
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by projected onto measurement matrix. In the central node,
the signal is recovered by using proper recovery algorithms.
Considering limited resources of sensor node, the measure-
ment matrix used in sensor node must be simple.

The measurement matrix in CS can be divided into ran-
dom measurement matrix and deterministic measurement
matrix [9]. Gaussian random measurement matrix [10] is
the first proposed random measurement matrix. It satisfies
the Restrict Isometry Property (RIP) [10] with high proba-
bility. However, all elements of Gaussian random measure-
ment matrix are needed be stored. This requires large stor-
age space. Moreover, in compressing signal, all nonzero el-
ements of Gaussian random measurement matrix are needed
to be dealed with. This brings huge computational burden.
P. Indyk [11] proposed the random sparse measurement ma-
trix. Because most elements of random sparse measurement
matrix are zeros, Its computational complexity is largely re-
duced. However, it is hard to verify a random measurement
matrix whether satisfies the RIP or not. In Recent years,
deterministic measurement matrix draws researchers’ much
attention [9], [12], [13]. Especially, because pseudorandom
sequences have internal randomness, the deterministic mea-
surement matrices based on pseudorandom sequences draw
researchers’ much attention. Lei Yu[14] constructed the
deterministic measurement matrix by using logistic chaotic
pseudorandom sequence. The column vectors of the mea-
surement matrix are generated by cyclically shifting a lo-
gistic chaotic pseudorandom sequence. H. Gan et al. [15]
proposed the deterministic measurement matrix by using
chebyshev chaotic pseudorandom sequence. M. Frunzete et
al. [16] proposed the deterministic measurement matrix by
using tent chaotic sequence. However, all these matrices are
dense measurement matrices, and they have high computa-
tional complexities.

In this paper, we construct deterministic measurement
matrix using a binary pseudorandom Gordon-Mills-Welch
(GMW) sequence [17]. There are just —1 and 1 two ele-
ments in this measurement matrix. Compared with some
widely used measurement matrices, it has lower computa-
tional complexity and needs smaller storage space. It is suit-
able for signal measurement in DSN. The simulation results
show that, under noisy and noiseless condition, the GMW
measurement matrix performs better than some state-of-the-
art measurement matrices.

The remainder of this paper is organized as follows.
In Sect. 2, we introduce the compressed sensing theory. In
Sect. 3, we introduce the theory of GMW pseudorandom se-
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quence. In Sect.4, we construct the measurement matrix
based on GMW sequence and analyze its performance. In
Sect. 5, we provide the simulation results. Conclusions are
stated in Sect. 6.

2. Compressed Sensing

If there are no more than K nonzero elements in the signal
X = (x1,X2,...,xy)T € RV, xis called a K — sparse signal.
In CS, a K — sparse signal can be measured by projecting it
onto a measurement matrix ® € RM*N where M < N. Ob-
viously, the high-dimensional signal x is reduced to a low-
dimensional signal y. The signal measurement process can
be denoted as

y = ®x (1)

Because M < N, the problem of recovering x from y
is ill posed. However, CS illustrates that if x is sparse, it
can be perfected recovered by solving the ly — minimization
problem as

min [x|lp, s.f. y=®x 2)

There are mainly two kinds of algorithms to solve the
lo — minimization problem.

o Greedy Pursuit (GP) algorithms, such as Orthogonal
Pursuit Match (OMP) algorithm [18], Subspace Pursuit
(SP) algorithm [19] and Compressive Sampling Match-
ing Pursuit (CoSaMP) [20].

o The convex relaxation algorithms. Chen et al. proved
that the Iy — minimization problem can be relaxed to
the I} — minimization problem. Basic Pursuit (BP) [21]
and Gradient Projection for Sparse Reconstruction
(GPSR) [22] can be used to solve this problem.

In order to evaluate the performance of the measure-
ment matrix, Candes and Tao proposed the Restricted Isom-
etry Property (RIP) [10]. For any x, if the Restricted Isome-
try Constant (RIC) dk satisfies

(1 + 6)lI®x|)5 < |Px][3 < (1 = 5x)|Px[3 A3)

where ||x|lp = K and 0 < d¢ < 1, then the measurement
matrix @ satisfies the RIP. When 6k is small enough, the
problem (2) can be perfectly solved by convex relaxation
algorithms or GP algorithms.

Although RIP condition is perfect, it is hard to verify
a measurement matrix’s RIP property. Bourgain et al. [23]
proposed the mutual coherence (MC). It plays an important
role in the evaluation of deterministic measurement matrix.
The mutual coherence u(®) of the measurement matrix @ is
the maximum absolute value of the normalized inner prod-
uct of two arbitrary column vectors in the measurement ma-
trix. The definition of mutual coherence is

K1, @2l

u(®) = max ,
azi lejlllle 2l

1<jl#j2<N 4)

Bourgain et al. [23] proved that @ satisfies RIP of order K
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with 6x < u(®)(K — 1), where K < /ﬁ + 1. This means
the smaller the mutual coherence of a measurement matrix

is, the more information it can obtain.
3. GMW Pseudorandom Sequence

Pseudo-random sequence not only has similar correlation
characteristic to white noise but also deterministic structure.
GMW sequence is a kind of pseudo-random sequence which
has good autocorrelation property and high linear complex-
ity. GMW sequence is proposed by Scholtz and Welch [17].
Compared with M sequence, GMW sequence has larger lin-
ear complexities and larger sequences number.

Trace function [17] is a mapping function in finite field.
It maps number from extension field to subfield. Trace func-
tion is linear. GMW sequences can be constructed by com-
bining mapping functions. We introduce the concept of trace
function.
Definition 1: Let P and J be two positive integers where P is
a divisor of J. The trace function trf (s) maps each element
of finite field GF(2F) to finite field GF(2”).

(P1D-1
Ji
OB (5)
i=0
The binary GMW sequence b(bg, by, - - - , by ) can be de-
fined as

{bj) = tr{{lerf @)}, j=1,2,---,2" —1 (6)

where « is a primitive element of the finite field GF(2M), y
and 2’ — 1 are arbitrary relatively prime integer where 1 <
y<2/-1.

Binary GMW sequence has following characters:

The period of GMW sequence is L = 2 — 1.
The autocorrelation function of GMW sequence is

-1 L -0
(1) = ) bybjur = { ' @)

- -1, 1<7t<L
j=1

The number of zeros in each period of binary GMW
sequence is 27~! — 1, the number of 1s in each period
of the binary GMW sequence is 2°~!. This means, in
each period, the number of zeros is one less than the
number of 1s.

Easy hardware realization: the GMW sequence can be
constructed by crossing and shifting m sequence. Be-
cause m sequence can be realized by using simple shift
register, GMW sequence is also easily realized.

4. The Measurement Matrix Based on GMW Pseudo-
random Sequence

4.1 The Construction of GMW Measurement Matrix

The construction of measurement matrix based on GMW
sequence b can be divided into three steps:
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Fig.1  The mutual coherences of different measurement matrices.

1. Construct a temporary matrix, the first column is the
GMW sequence b and the  — th, (2 < ¢ < L) column is
constructed by cycle-left-shifting b # — 1 times.

2. The measurement matrix @ can be constructed by ran-
domly choosing 7, (1 < T < L) rows from the tempo-
rary matrix.

3. Replace all Os in ® with —1s.

4.2 Performance Analysis

Form Sect. 2, we know that the smaller the mutual coherence
of a measurement matrix, the stronger its ability of obtaining
information. In this part, we analyze the mutual coherences
of the following measurement matrices.

e The GMW measurement matrix proposed in this paper.

e The Gaussian random measurement matrix [10] whose
elements following standard normal distribution.

e The random sparse measurement matrix [11], each col-
umn of which has four 1s and other elements are zeros.
And, the positions of 1s are randomly generated.

e The deterministic measurement matrix constructed
from logistic chaotic sequence [14].

Figure 1 shows the mutual coherences of above mea-
surement matrices with the size of M X N where N = 63.
We can see that the mutual coherences of all measurement
matrices decline with the increase of measurement number
M. This demonstrates that the larger the measurement num-
ber, the stronger the measurement matrix’s ability of obtain-
ing information. The random sparse measurement matrix
has the largest mutual coherence. The mutual coherence of
Gaussian random measurement matrix is similar to that of
chaotic measurement matrix. The GMW measurement ma-
trix has the smallest mutual coherence. Then, we forecast
that the GMW measurement matrix has the strongest ability
of obtaining information.

Table 1 shows the computation complexities and the
storage spaces needed of different measurement matrices.
For the storage space, we assume each element of random
measurement matrix needs one storage space. All elements
of Gaussian random measurement matrix are needed be
stored. Then it needs the maximum storage space. Chaotic
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Table 1  The computational complexity and storage space of different
measurement matrices

[ Multiplication Addition Storage space
Gaussian random M x N Mx(N-1) M x N
Random random 0 4xX(N-1) 4xX(N-1)

Chaotic M x N Mx(N-1) 0
GMW 0 MXx(N-1) 0

measurement matrix and GMW measurement matrix are de-
terministic measurement matrix. They just need a little ini-
tialization parameters. Then, they need the minimum stor-
age space, approximately to zero.

For the computational complexity, all elements of
Gaussian random measurement matrix and chaotic measure-
ment matrix are needed be multiplication calculated and ad-
dition calculated. They need the maximum computational
complexity. The computational complexity of GMW mea-
surement matrix is higher than that of random sparse mea-
surement matrix, but lower than that of Gaussian random
measurement matrix and chaotic measurement matrix.

5. Simulation Result and Analysis

In this part, GMW measurement matrix is compared
with some state-of-the-art measurement matrices, includ-
ing Gaussian random measurement matrix [10], random
sparse measurement matrix [11] and Logistic chaotic mea-
surement matrix [14]. Orthogonal match pursuit (OMP) al-
gorithm [18] is used to recovery signals. The experimental
design is as follows:

e K — sparse vector is used as test signal with length
N =511.

e All simulation results are averaged over independent
trials. In each trial, the measurement matrix ® and sig-
nal x are generated independently. Each signal has K
nonzero elements and N — K zero elements. The po-
sitions of nonzero elements are randomly chosen from

I ={1,2,---,N}. The values of signal’s nonzero ele-
ments are randomly drawn from standard normal dis-
tribution.

o We use perfect recovery percentages to evaluate algo-
rithms’ performances. For the i — th trial, ¥ and x©
respectively denote the recovered signal and the origi-
nal signal. If ||x® — £?|, < 107|x?”||,, we announce
the i — th trial is perfect. Suppose S E recoveries are
perfect in 500 trials, the perfect recovery percentage is
S E/500.

e We perform all simulations in Matlab R2015b running
on a computer with 2.5 GHz, Intel Celeron G540 pro-
cessor, 4.0GB of RAM, and Windows 10 system.

5.1 Recovery from Noiseless Measurement

Figure 2 shows the perfect recovery percentages of different
measurement matrices against the change of measurement
number in noiseless situation. The measurement number
changes from 20 to 120 with step 5, other parameters are
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Fig.3  Perfect recovery percentages of different algorithms against K in
noiseless case.

fixed as N = 511 and K = 15. The perfect recovery percent-
ages of all measurement matrices increase with measure-
ment number. GMW measurement matrix performs always
better than others. GMW measurement matrix just needs 95
measurement numbers to reach 100% recovery. Gaussian
random measurement matrix needs 120 measurement num-
bers to reach 100% recovery. Random sparse measurement
matrix and chaotic measurement matrix need more measure-
ment numbers.

Figure 3 shows the perfect recovery percentages of dif-
ferent measurement matrices against the change of sparsity
in the noiseless situation. The signal sparsity changes from 5
to 40 with the step 5. Other parameters are fixed as N = 511
and M = 100. We can see that with the increase of sparsity,
the perfect recovery percentages of all measurement matri-
ces decline. GMW measurement matrix performs always
better than other measurement matrices. When signal spar-
sity K = 15, the perfect recovery percentage of GMW mea-
surement matrix is still 100%, however, the perfect recovery
percentages of other measurement matrices have fallen be-
low 100%.

The above experiments demonstrate that the proposed
measurement matrix has stronger ability of obtaining infor-
mation than other measurement matrices.
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5.2 Recovery from Noisy Measurement

In this part, we test measurement matrices’ performance
against noise. In noisy case, signal compression process can
be denoted as

y=®x+n ®)

where n = (ny,n,...,ny)" € RM is Gaussian white noise.
Relative error is used to evaluate the measurement matrices’
performances. Its definition is

500 Ix® — 80|12
Relative error = (722)
L\ x0|2

9

where ¥ and x respectively denote the recovered signal
and the original signal in the i-th trial.

We use signal-noise-ratio (SNR) to characterize the re-
lation between measurement signal and noise. Its definition
is

0_2
SNR = 10log;y —— (10)

noise

where 0'%{ and 0"210 e
noise respectively.

Figure 4 shows the performances of different measure-
ment matrices against the change of measurement num-
ber. Other parameters are fixed as N = 511, K = 15 and
SNR = 20db. With the increase of measurement number,
relative errors of all measurement matrices decline. The rel-
ative error of GMW measurement matrix is always lower
than those of other measurement matrices.

Figure 5 shows the performances of different measure-
ment matrices against the change of sparsity. Other parame-
ters are fixed as N = 511, M = 100 and S NR = 20db. With
the increase of sparsity, relative errors of all measurement
matrices decline. The relative error of GMW measurement
matrix is always lower than those of other measurement ma-
trices.

Figure 6 shows the performances of different measure-
ment matrices against the change of SNR. Other parameters

are variance of measurement signal and
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are fixed as N = 511, M = 100 and K = 50. We can see that
the strength of noise affects the performances of all mea-
surement matrices significantly. With the increase of SNR,
relative errors of all measurement matrices decline. The rel-
ative error of GMW measurement matrix is always lower
than those of others when SNR > 10db. This demonstrates
that GMW measurement matrix is more robust against noise
than other measurement matrices.

6. Conclusions

In this paper, deterministic measurement matrix based on
GMW pseudorandom sequence is proposed. The column
vectors of the proposed measurement matrix are generated
by cyclically shifting a GMW sequence. Compared with
some state-of-the-art measurement matrices, the proposed
measurement matrix needs less storage space and has rela-
tive lower computational complexity. It is suitable for the
resource-constrained DSNs. The simulation result shows
that the proposed measurement matrix performs better than
some state-of-the-art measurement matrices. Moreover, the
proposed measurement matrix can be realized by using sim-
ple shift register, it’s more practical.
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